
Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for
Recommender Systems

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit Dhillon
Department of Computer Science

University of Texas at Austin
Austin, Texas, USA

{rofuyu,cjhsieh,ssi,inderjit}@cs.utexas.edu

Abstract—Matrix factorization, when the matrix has missing
values, has become one of the leading techniques for recom-
mender systems. To handle web-scale datasets with millions of
users and billions of ratings, scalability becomes an important
issue. Alternating Least Squares (ALS) and Stochastic Gradient
Descent (SGD) are two popular approaches to compute matrix
factorization. There has been a recent flurry of activity to
parallelize these algorithms. However, due to the cubic time
complexity in the target rank, ALS is not scalable to large-scale
datasets. On the other hand, SGD conducts efficient updates
but usually suffers from slow convergence that is sensitive to
the parameters. Coordinate descent, a classical optimization
approach, has been used for many other large-scale problems,
but its application to matrix factorization for recommender
systems has not been explored thoroughly. In this paper, we
show that coordinate descent based methods have a more
efficient update rule compared to ALS, and are faster and have
more stable convergence than SGD. We study different update
sequences and propose the CCD++ algorithm, which updates
rank-one factors one by one. In addition, CCD++ can be easily
parallelized on both multi-core and distributed systems. We
empirically show that CCD++ is much faster than ALS and
SGD in both settings. As an example, on a synthetic dataset
with 2 billion ratings, CCD++ is 4 times faster than both SGD
and ALS using a distributed system with 20 machines.

Keywords-Recommender systems, Matrix factorization, Low
rank approximation, Parallelization.

I. INTRODUCTION

In a recommender system, we want to learn a model from
past incomplete rating data such that each user’s preference
over all items can be estimated with the model. Matrix
factorization was empirically shown to be a better model
than traditional nearest-neighbor approaches in the Netflix
Prize competition, and since then there has been a great deal
of work dedicated to the design of fast and scalable methods
for large-scale matrix factorization problems [1]–[3].

Let A ∈ Rm×n be the rating matrix in a recommender
system, where m and n are the numbers of users and
items, respectively. The matrix factorization problem for
recommender systems is

min
W∈Rm×k

H∈Rn×k

∑
(i,j)∈Ω

(Aij−wT
i hj)2 +λ

(
‖W‖2F + ‖H‖2F

)
, (1)

where Ω is the set of indices for observed ratings, λ is the
regularization parameter, and wT

i and hT
j are the ith and

the jth row vectors of the matrices W and H , respectively.
The goal of problem (1) is to approximate the incomplete
matrix A by WHT , where W and H are rank-k matrices.
We can interpret this low-rank matrix factorization as a
transformation that maps each user and each item to a feature
vector (either wi or hj) in a latent space Rk. Then the
interaction between the ith user and the jth item is measured
by wT

i hj . Because of the fact that A is not fully observed,
the well-known rank-k approximation by Singular Value
Decomposition (SVD) cannot be directly applied to (1).

In recent recommender system competitions, we observe
that alternating least squares (ALS) and stochastic gradient
descent (SGD) appear to be the two most widely used
methods for matrix factorization. ALS alternatively switches
between updating W and updating H while fixing the
other factor. Although the time complexity per iteration is
O(|Ω|k2 + (m + n)k3), [1] shows that ALS is inherently
suitable for parallelization. It is not a coincidence then that,
ALS is the only parallel matrix factorization implementation
for collaborative filtering in Apache Mahout.1

As mentioned in [2], SGD has become one of the most
popular methods for matrix factorization in recommender
systems due to its efficiency and simple implementation. The
time complexity per iteration of SGD is O(|Ω|k), which is
lower than ALS. However, compared to ALS, SGD usually
needs more iterations to obtain a good enough model, and
the performance is sensitive to the choice of the learning
rate. Furthermore, unlike ALS, parallelization of SGD is
challenging. A variety of schemes have been proposed to
parallelize SGD [4]–[8].

This paper aims to design an efficient and easily par-
allelizable method for matrix factorization in large-scale
recommender systems. Recently, [9] and [10] have showed
that coordinate descent methods are effective for nonnegative
matrix factorization (NMF). This motivates us to investigate
coordinate descent approaches for (1). In this paper, we
propose a coordinate descent based method, CCD++, which

1http://mahout.apache.org/

has fast running time and can be easily parallelized to handle
data of various scales. The main contributions of this paper
are:
• We propose a scalable and efficient coordinate descent

based matrix factorization method CCD++. The time
complexity per iteration of CCD++ is lower than that
of ALS, and it achieves faster convergence than SGD.

• We show that CCD++ can be easily applied to problems
of various scales on both shared-memory multi-core
and distributed systems.

Notation. The following notation is used throughout the
paper. We denote matrices by uppercase letters and vectors
by bold-faced lowercase letters. Aij will denote the (i, j)
entry of the matrix A. We will use Ωi to denote the column
indices of observed ratings in the ith row, and Ω̄j to denote
the row indices of observed ratings in the jth column. We
denote the ith row of W by wT

i , and the tth column of W
by w̄t ∈ Rm:

W =

...

wT
i
...

 =
[
· · · w̄t · · ·

]
.

Thus, both wit (i.e., the tth element of wi) and w̄ti (i.e., the
ith element of w̄t) denote the same entry, Wit. For H , we
use similar notation hj and h̄t.

The rest of the paper is organized as follows. An introduc-
tion to ALS and SGD is given in Section II. We then present
our coordinate descent approaches in Section III. In Section
IV, we give the scalability analysis under different parallel
computing environments. Finally, we present experimental
results in Section V and conclusions in Section VI.

II. RELATED WORK

As mentioned in [2], the two standard approaches to
approximate the solution of problem (1) are ALS and SGD.
In this section we briefly introduce both of them and discuss
recent parallelization approaches.

A. Alternating Least Squares

Problem (1) is intrinsically a non-convex problem; how-
ever, when fixing either W or H , (1) becomes a quadratic
problem with a globally optimal solution. Based on this idea,
ALS alternatively switches between optimizing W while
keeping H fixed, and optimizing H while keeping W fixed.
Thus, ALS monotonically decreases the objective value of
(1) until convergence.

Under this alternating optimization scheme, (1) can be
further separated into many independent least squares sub-
problems. Specifically, if we fix H to minimize over W , the
optimal w∗i can be obtained independently of other rows of
W by solving the least squares subproblem:

min
wi

∑
j∈Ωi

(Aij −wT
i hj)2 + λ‖wi‖2, (2)

which leads to the closed form solution

w∗i = (HT
Ωi
HΩi

+ λI)−1HT ai, (3)

where HΩi
is the sub-matrix formed by {hj : j ∈ Ωi},

and aT
i is the ith row of A with missing entries filled by

zeros. To update each wi, ALS needs O(|Ωi|k2) time to
form the k × k matrix HT

Ωi
HΩi

and another O(k3) time to
solve the least squares problem. Thus, the time complexity
of a full ALS iteration (i.e., updating W and H once) is
O(|Ω|k2 + (m+ n)k3).

In terms of parallelization, [1] points out that ALS can be
easily parallelized in a row-by-row manner as each row of
W or H can be updated independently from the updates of
other rows. However, parallelization of ALS in a distributed
system when W or H exceeds the memory capacity of
a computation node is more involved. More details are
discussed in Section IV-B.

B. Stochastic Gradient Descent

Stochastic gradient descent (SGD) is widely used in many
machine learning problems [11]. SGD has also been shown
to be effective for matrix factorization [2]. In SGD, for each
update, a rating (i, j) is randomly selected from Ω, and the
corresponding variables wi and hj are updated by

wi ← wi − η(λwi −Rijhj),
hj ← hj − η(λhj −Rijwi),

where Rij = Aij − wT
i hj , and η is the learning rate. For

each rating Aij , SGD needs O(k) operations to update wi

and hj . If we define |Ω| consecutive updates as one iteration
of SGD, the time complexity per SGD iteration is thus only
O(|Ω|k). Compared to ALS, it is faster in terms of the time
complexity for one iteration.

However, conducting several SGD updates in parallel di-
rectly might raise the overwriting issue because the updates
for the ratings in the same row or the same column of A in-
volve the same variables. Moreover, traditional convergence
analysis of standard SGD mainly depends on its sequential
update property. These issues make parallelization of SGD
a challenging task. Recently, several update schemes to
parallelize SGD have been proposed. For example, “delayed
updates” are proposed in [4] and [12], while [7] uses a
bootstrap aggregation scheme. A lock-free approach called
HogWild is investigated in [8], in which the overwriting
issue is ignored based on the intuition that the probability
of updating the same row of W or H is small when A
is sparse. The authors of [8] also show that HogWild is
more efficient than the “delayed update” approach in [4].
For matrix factorization, [5] and [6] propose Distributed
SGD (DSGD)2 which partitions A into blocks and updates
a set of independent blocks in parallel at the same time.

2In [6], the name “Jellyfish” is used

Thus, DSGD can be regarded as exact SGD with a specific
ordering of updates.

Another issue with SGD is its convergence, which is
highly sensitive to the learning rate η. In practice, the
initial choice and adaptation strategy for η are crucial issues
when applying SGD to matrix factorization problems. As the
learning rate issue is beyond the scope of this paper, here we
briefly discuss how the learning rate is adjusted in HogWild
and DSGD. In HogWild [8], η is reduced by multiplying a
constant β ∈ (0, 1) at each iteration. In DSGD, [5] proposes
using the “bold driver” scheme, in which, at each iteration, η
is increased by a small proportion (5% is used in [5]) when
the function value decreases; when the value increases, η is
drastically decreased by a large proportion (50% is used in
[5]).

We close this section with a comparison of ALS,3 DSGD,4

and HogWild5 on the movielens10m dataset with k = 40
and λ = 0.1 (more details on the dataset are given later in
Table I of Section V). Here we conduct the comparison on a
Intel Xeon X5570 8-core machine with 8 MB L2-cache and
enough memory. All 8 cores are utilized for each method.6

Figure 1 shows the comparison; “-s1” and “-s2” denote two
choices of the initial η.7 The reader might notice that the
performance difference between ALS and DSGD is not as
large as in [5]. The reason is that the parallel platform used
in our comparison is different from the platform used in [5],
which is a modified Hadoop distributed system.

From Figure 1, we first observe that the performance
of both DSGD and HogWild is sensitive to the choice of
η. In contrast, ALS, a parameter-free approach, is more
stable, albeit it has higher time complexity per iteration than
SGD. Next, we can see that DSGD converges slightly faster
than HogWild with both initial η’s. Given the fact that the
computation time per iteration of DSGD is similar to that of
HogWild (as DSGD is also a lock-free scheme), we believe
that there are two possible explanations: 1) the “bold driver”
approach used in DSGD is more stable than the exponential
decay approach used in HogWild; 2) the variable overwriting
might slow down the convergence of HogWild.

III. COORDINATE DESCENT APPROACHES

Coordinate descent is a classic and well-studied opti-
mization technique [13, Section 2.7]. Recently it has been
successfully applied to various large-scale problems such
as linear SVMs [14], maximum entropy models [15], NMF
problems [9], [10], and sparse inverse covariance estimation

3Intel MKL is used in the implementation of ALS.
4We implement a multi-core version of DSGD according to [5].
5HogWild is downloaded from http://research.cs.wisc.edu/hazy/victor/

Hogwild/ and modified to start from the same initial point as ALS and
DSGD.

6In HogWild, seven cores are used for SGD updates, and one core is
used for random shuffle.

7for -s1, initial η = 0.001; for -s2, initial η = 0.05.

Figure 1. Comparison between ALS, DSGD, and HogWild on the
movielens10m dataset with k = 40 on a 8-core machine (-s1 and -s2
stand for different initial learning rates).

[16]. The basic idea of coordinate descent is to update a sin-
gle variable at a time while keeping others fixed. There are
two key components in coordinate descent methods: one is
the update rule used to solve each one-variable subproblem,
and the other is the update sequence of variables.

In this section, we apply coordinate descent to solve (1).
We first form the one-variable subproblem and derive the
update rule. Based on the rule, we investigate two sequences
to update variables: item/user-wise and feature-wise.

A. The Update Rule

If only one variable wit is allowed to change to z while
fixing all other variables, we are able to formulate the
following one-variable subproblem as

min
z

f(z) =
∑
j∈Ωi

(
Aij − (wT

i hj − withjt)− zhjt

)2
+λz2.

(4)
As f(z) is a univariate quadratic function, the unique

solution z∗ to (4) can be easily found:

z∗ =

∑
j∈Ωi

(Aij −wT
i hj + withjt)hjt

λ+
∑

j∈Ωi
h2

jt

. (5)

Direct computation of z∗ via (5) from scratch takes O(|Ωi|k)
time. For large k, we can accelerate the computation by
maintaining the residual matrix R,

Rij ≡ Aij −wT
i hj , ∀(i, j) ∈ Ω.

In terms of Rij , the optimal z∗ can be obtained by:

z∗ =

∑
j∈Ωi

(Rij + withjt)hjt

λ+
∑

j∈Ωi
h2

jt

. (6)

When R is available, computing z∗ by (6) only costs O(|Ωi|)
time. After z∗ is obtained, wit and Rij ∀j ∈ Ωi can also be

updated in O(|Ωi|) time via

Rij ← Rij − (z∗ − wit)hjt, ∀j ∈ Ωi, (7)
wit ← z∗. (8)

Therefore, if we maintain the residual matrix R, the time
complexity of each single variable update is reduced from
O(|Ωi|k) to O(|Ωi|). Similarly, the update rules for each
variable in H , hjt for instance, can be derived as

Rij ← Rij − (s∗ − hjt)wit, ∀i ∈ Ω̄j , (9)
hjt ← s∗, (10)

where s∗ can be obtained by either:

s∗ =

∑
i∈Ω̄j

(Aij −wT
i hj + withjt)wit

λ+
∑

i∈Ω̄j
w2

it

, (11)

or

s∗ =

∑
i∈Ω̄j

(Rij + withjt)wit

λ+
∑

i∈Ω̄j
w2

it

. (12)

With update rules (7)-(10), we are able to apply any
update sequence over variables in W and H . We now
investigate two main sequences: item/user-wise and feature-
wise update sequences.

B. Item/User-wise Update: CCD

First, we consider the item/user-wise update sequence,
which updates the variables corresponding to either an item
or a user at the same time.

ALS is a method which adopts this update sequence.
As mentioned in Section II-A, ALS switches the updating
between W and H . To update W when fixing H or vice
versa, ALS solves many k-variable least squares subprob-
lems. Each subproblem corresponds to either an item or
a user. That is, ALS cyclically updates variables with the
following sequence:

W︷ ︸︸ ︷
w1, . . . ,wm,

H︷ ︸︸ ︷
h1, . . . ,hn .

In ALS, the update rule in (3) involves forming a k × k
Hessian matrix and solving a least squares problem which
takes O(k3) time. However, it is not necessary to solve all
subproblems (2) exactly in the early stages of the algorithm.
Thus, [17] proposed a cyclic coordinate descent method
(CCD), which is similar to ALS with respect to the update
sequence. The only difference is the update rules. In CCD,
we update wi by applying (8) over all elements of wi (i.e.,
wi1, . . . , wik) with a finite number of cycles. The entire
update sequence of one iteration in CCD is

W︷ ︸︸ ︷
w11, . . . , w1k︸ ︷︷ ︸

w1

, . . . , wm1, . . . , wmk︸ ︷︷ ︸
wm

,

H︷ ︸︸ ︷
h11, . . . , h1k︸ ︷︷ ︸

h1

, . . . , hn1, . . . , hnk︸ ︷︷ ︸
hn

.

(13)

Algorithm 1 CCD Algorithm [17]
Input: Initial R = A, W = 0, H , λ, and k

for iter = 1, 2, . . . , T do
for i = 1, 2, . . . ,m do

for t = 1, 2, . . . , k do
Obtain z∗ using (6).
Update R and wit using (7) and (8).

end for
end for
for j = 1, 2, . . . , n do

for t = 1, 2, . . . , k do
Obtain s∗ using (12).
Update R and hjt using (9) and (10).

end for
end for

end for

Algorithm 1 describes the CCD procedure with T itera-
tions. Note that if we set the initial W to 0, then the initial
R is exactly equal to A, so no extra effort is needed.

As mentioned in Section III-A, the update cost for each
variable in W and H , taking wit and hjt for instance, is just
O(|Ωi|) or O(|Ω̄j |). If we define one iteration in CCD as
updating all variables in W and H once, the time complexity
per iteration for CCD is thus

O

∑
i

|Ωi|+
∑

j

|Ω̄j |

 k

 = O(|Ω|k).

We can see that an iteration of CCD is faster than an iteration
of ALS when k > 1, because ALS requires O(|Ω|k2 +
(m+n)k3) time to update at each iteration. Of course, each
iteration of ALS makes more progress; however, at early
stages of this algorithm, it is not clear that this extra progress
helps.

Instead of cyclically updating through wi1, . . . , wik, one
may think of a greedy update sequence that sequentially
updates the variables that decrease the objective function
the most. In [10], a greedy update sequence is applied to
solve the NMF problem in an efficient manner which utilizes
the property that all subproblems in NMF share the same
Hessian. However, unlike NMF, each subproblem (2) in
problem (1) has a potentially different Hessian as Ωi1 6= Ωi2

for i1 6= i2 in general. Thus, the greedy coordinate descent
(GCD) method proposed by [10] would require O(|Ω|k2)
operations per iteration.

C. Feature-wise Update: CCD++

The factorization WHT can be represented as a summa-
tion of k outer products:

A ≈WHT =
k∑

t=1

w̄th̄
T
t , (14)

Algorithm 2 CCD++ Algorithm
Input: Initial R = A, W = 0, H , λ, and k

for iter = 1, 2, . . . do
for t = 1, 2, . . . , k do

Get (u∗,v∗) using T CCD iterations for (16).
Update R and (w̄t, h̄t) using (17) and (18).

end for
end for

where w̄t ∈ Rm is the tth column of W , and h̄t ∈ Rn is the
tth column of H . From the perspective of the latent feature
space, w̄t and h̄t correspond to the tth latent feature.

This leads us to our next coordinate descent method,
CCD++. At each time, we select a specific feature t and
conduct the update

(w̄t, h̄t)← (u∗,v∗),

where (u∗,v∗) is obtained by solving the following sub-
problem:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(
Rij + w̄tih̄tj − uivj

)2+λ(‖u‖2+‖v‖2).

(15)
If we define R̂ij = Rij + w̄tih̄tj ∀(i, j) ∈ Ω, (15) can be

rewritten as:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(R̂ij − uivj)2 + λ(‖u‖2 + ‖v‖2), (16)

which is exactly the rank-one matrix factorization problem
(1) for the matrix R̂. Thus we can apply CCD on (16) to
obtain an approximation by alternatively updating u and
updating v. The update sequence for u and v is

u1, u2, . . . , um, v1, v2, . . . , vn.

When the rank is equal to one, (5) and (6) have the same
complexity. Thus, during the CCD iterations to update ui

and vj , z∗ and s∗ can be directly obtained by (5) and (11)
without additional residual maintenance. After obtaining
(u∗,v∗), we can update (w̄t, h̄t) and R by

Rij ← R̂ij − u∗i v∗j , ∀(i, j) ∈ Ω, (17)

(w̄t, h̄t)← (u∗,v∗). (18)

The update sequence for each outer iteration of CCD++ is

w̄1, h̄1, . . . , w̄t, h̄t, . . . , w̄k, h̄k. (19)

We summarize CCD++ in Algorithm 2. A similar procedure
with the feature-wise update sequence is also used in [18]
to avoid the over-fitting issue in recommender systems.

For the tth feature, variable updating in CCD++ consists of
three parts: T CCD iterations to approximate R̂, the update
of |Ω| residual entries by (17), and the update of (w̄t, h̄t)
by (18). Thus the time complexity per iteration for CCD++
is O(|Ω|k).

At first glance, the only difference between CCD++ and
CCD is their update sequences. However, such difference
might affect the convergence. A similar update sequence
has also been considered for NMF problems. [19] observes
that such feature-wise update sequence leads to faster con-
vergence than other sequences on moderate-scale matrices.
However, for large-scale NMF problems, when all entries are
known, the residual matrix becomes a m× n dense matrix,
which is too large to maintain. Thus [9], [10] utilize the
property that all subproblems share a single Hessian because
no missing values exist in NMF problems. Based on the
property, they develop a technique such that variables can
be efficiently updated without maintenance of the residual.

Due to the large number of missing entries in A, problem
(1) does not have the nice property as NMF problems.
However, as a result of the sparsity of observed entries,
the residual maintenance is affordable for problem (1) with
a large-scale A. Furthermore, the feature-wise update se-
quence might even bring faster convergence as it does for
NMF problems.

D. An Adaptive Technique to Accelerate CCD++

In this section, we investigate how to accelerate CCD++
by controlling the number of CCD iterations for each sub-
problem (16). The approaches [9], [19] with the feature-wise
update sequence to solve NMF problems consider only one
iteration for each subproblem. However, CCD++ could be
slightly more efficient when T > 1 due to the benefit brought
by the “delayed residual update.” Note that R is fixed during
CCD iterations for each rank-one approximation (16), and so
the residual update (17) is required only when we switch to
the next subproblem corresponding to another feature. The
ratio of the computation spent on residual maintenance over
that spent on variable updating is O(1/T) for CCD++. Thus,
given the same number of variable updates, CCD++ with T
CCD iterations is O(2T

T+1) times faster than that with only
one CCD iteration. Moreover, the more CCD iterations we
use, the better the approximation to subproblem (16). Hence,
a direct approach to accelerate CCD++ is to increase T . On
the other hand, a large and fixed T might result in too much
effort on a single subproblem.

We propose a technique to adaptively determine when to
stop CCD iterations based on the relative function value
reduction at each CCD iteration. At each outer iteration of
CCD++, we maintain the maximal function value reduction
from past CCD iterations, dmax. Once the function value
reduction at the current CCD iteration is less than εdmax, we
stop CCD iterations, update the residual by (17), and switch
to the next subproblem, where ε ≤ 1 is a small positive ratio
such as 10−3. It is not hard to see that the function value
reduction at each CCD iteration for subproblem (16) can
be efficiently obtained by accumulating reductions from the
update of each single variable. For example, updating ui to

Figure 2. Comparison between CCD and CCD++ on netflix dataset.
Clearly, CCD++, the feature-wise update approach, has faster convergence
than CCD, the item/user-wise update approach.

u∗i decreases the function by

(u∗i − ui)2

λ+
∑
j∈Ωi

v2
j

 ,

where both terms are available when updating ui. Thus
function value reduction can be obtained without extra effort.

We close this section by a comparison between CCD
and CCD++ in Figure 2. Here we compare four settings
with the netflix dataset on a machine with enough memory:
one setting is the item/user-wise CCD, and three others
are CCD++ with fixed T = 1 (CCD++T1), fixed T = 5
(CCD++T5), and adaptive T based on the function value
reduction (CCD++F, ε = 10−3 is used), respectively. From
the figure, we clearly observe that the feature-wise update
approach CCD++, even when T = 1, converges faster than
CCD, which confirms the observation for NMF in [19]. We
also observe that larger T improves convergence of CCD++
in the early stages, though it also results in too much effort
during some periods (e.g., the period from 100s to 180s in
Figure 2). We also notice that the technique to adaptively
control T slightly shortens such periods.

IV. PARALLELIZATION OF CCD++

With the exponential growth of dyadic data on the web,
scalability becomes an issue when applying state-of-the-art
matrix factorization approaches to large-scale recommender
systems. Recently, there has been a growing interest on
addressing the scalability problem by using parallel and
distributed computing for existing matrix factorization al-
gorithms. Both CCD and CCD++ can be easily parallelized.
Due to the similarity with ALS, CCD can be parallelized in
the same way as ALS in [5]. For CCD++, we propose two

versions parallelization: one version for multi-core shared
memory systems and the other for distributed systems.

It is important to select the appropriate parallel environ-
ment based on the scale of the recommender system. Specif-
ically, when the matrices A, W , and H can be loaded in the
memory of a single machine, and we consider a distributed
system as the parallel environment, the communication
among machines dominates the entire procedure. In this
case, a multi-core shared memory system is a better parallel
environment. However, when the data/variables exceed the
memory capacity of a single machine, a distributed sys-
tem, in which data/variables are distributed across different
machines, is required to handle problems of this scale. In
the following sections, we demonstrate how to parallelize
CCD++ under both these parallel environments.

A. CCD++ in Multi-core Systems

In this section we discuss the parallelization of CCD++
under a multi-core shared memory setting. If the matrices
A, W , and H fit in a single machine, CCD++ can achieve
significant speedup by utilizing all cores available in the
machine.

The key component in CCD++ that requires paralleliza-
tion is the computation to solve subproblem (16). In CCD++,
the approximate solution to the subproblem is obtained by
updating u and v alternately. If we fix v, each variable in
u can be independently updated by (5) and (8). Therefore,
we are able to divide the task of updating u into several
independent subtasks that can be handled by different cores
in parallel. Given a machine with p cores, we define S =
{S1, . . . , Sp} as a partition of row indices of W , {1, . . . ,m}.
We decompose u into p vectors u1,u2, . . . ,up, where ur

is the sub-vector of u corresponding to Sr. Each core r then

updates ui by (5) and (8), ∀i ∈ Sr. (20)

Updating H can be parallelized in the same way with G =
{G1, . . . , Gp}, which is a partition of row indices of H ,
{1, . . . , n}. Similarly, each core r

updates vj by (11) and (10), ∀j ∈ Gr. (21)

As all cores in a machine share common memory space, no
communication is required for each core to access the latest
u and v. After obtaining (u∗,v∗), we can also update the
residual R and (w̄r

t , h̄
r
t) in parallel by assigning core r to

perform the update:

Rij ← Rij + w̄tih̄tj − uivj , ∀(i, j) ∈ ΩSr
, (22)

(w̄r
t , h̄

r
t)← (ur,vr), (23)

where ΩSr
=
⋃

i∈Sr
{(i, j) : j ∈ Ωi}. We summarize the

parallel CCD++ in Algorithm 3.

Algorithm 3 Parallel CCD++ in multi-core systems
Input: Initial R = A, W = 0, H , λ, and k

for iter = 1, 2, . . . , do
for t = 1, 2, . . . , k do

Initialize u = 0 and v = 0.
for inneriter = 1, 2, . . . , T do

Parallel: core r updates ur using (20).
Parallel: core r updates vr using (21).
Parallel: core r updates R using (22).
Parallel: core r updates w̄r

t and h̄
r
t using (23).

end for
end for

end for

Algorithm 4 Parallel CCD++ in distributed systems
Input: Initial R = A, W = 0, H , λ, and k

for iter = 1, 2, . . . do
for t = 1, 2, . . . , k do

Broadcast: machine r broadcasts w̄r
t and h̄

r
t .

for inneriter = 1, 2, . . . T do
Parallel: machine r updates ur using (20).
Broadcast: machine r broadcasts ur.
Parallel: machine r updates vr using (21).
Broadcast: machine r broadcasts vr.

end for
Parallel: machine r updates R using (24).
Parallel: machine r updates w̄r

t , h̄
r
t using (23).

end for
end for

B. CCD++ in Distributed Systems

In this section, we investigate the parallelization of
CCD++ when the matrices A, W , and H exceed the
memory capacity of a singe machine. To avoid frequent
access from disk, we consider handling these matrices with
a distributed system, which connects several machines with
their own computing resources (e.g., CPUs and memory)
via a network. The algorithm to parallelize CCD++ in a
distributed system is similar to the multi-core version of
parallel CCD++ introduced in Algorithm 3. The common
idea is to enable each machine/core to solve subproblem (16)
and update a subset of variables and residual in parallel.

When W and H are too large to fit in memory of a single
machine, we have to divide them into smaller components
and distribute them to different machines. There are many
ways to divide W and H . In the distributed version of
parallel CCD++, assuming that the distributed system is
composed of p machines, we consider p-way row partitions
for W and H: S = {S1, . . . , Sp} is a partition of the
row indices of W ; G = {G1, . . . , Gp} is a partition of
the row indices of H . We further denote the sub-matrices
corresponding to Sr and Gr by W r and Hr, respectively. In

the distributed version of CCD++, machine r is responsible
for the storage and the update of W r and Hr.

Typically, the residual R is much larger than W and H ,
thus we should avoid communication of R. Here we describe
an arrangement of R in a distributed system such that we can
conduct all updates in CCD++ without any communication
of the residual.

As mentioned above, machine r is in charge of updating
variables in W r and Hr. From the update rules of CCD++,
we can see that values Rij ∀(i, j) ∈ ΩSr are required to
update variables in W r, and Rij ∀(i, j) ∈ Ω̄Gr are required
to update Hr, where Ω̄Gr

=
⋃

j∈Gr
{(i, j) : i ∈ Ω̄j}. Thus,

the following entries of R should be easily accessed from
machine r:

Ωr = ΩSr
∪ Ω̄Gr

.

Thus, we only store Rij ∀(i, j) ∈ Ωr in machine r. Assum-
ing that the latest Rij’s corresponding to Ωr are available in
machine r, the entire w̄t and h̄t are still required to construct
subproblem (16). Unlike the shared-memory environment,
we need to broadcast w̄t and h̄t in the distributed version
of parallel CCD++ such that each machine has a complete
local copy of the latest w̄t and h̄t for updating ur. Similarly,
machine r needs to broadcast the updated ur to others before
updating vr.

After each machine obtains ((u∗)r, (v∗)r) by T alternat-
ing iterations, the residual R can also be updated without
extra communication as (w̄r

t , h̄
r
t) is also available in each

machine r. Therefore machine r can update Rij ∀(i, j) ∈ Ωr

by
Rij ← Rij + w̄tih̄tj − u∗i v∗j ∀(i, j) ∈ Ωr, (24)

and update (w̄t, h̄t) by (23). Our parallel CCD++ method
in a distributed system is described in Algorithm 4.

C. Scalability Analysis of Other Methods

As mentioned in Section II-A, ALS can be easily paral-
lelized. However, it is hard to be scaled up to very large-
scale recommender systems when W or H cannot fit in the
memory of a single machine. When ALS updates wi, HΩi

is required to compute the Hessian matrix (HT
Ωi
HΩi

+ λI)
in Eq. (3). In parallel ALS, even though each machine
only updates a subset of rows of W or H at a time, [1]
proposes that each machine should gather the entire latest
H or W before the updates. However, when W or H
is beyond the memory capacity of a single machine, it
is not feasible to gather entire W or H and store them
in the memory before the updates. Thus, each time when
some rows of H or W are not available locally but are
required to form the Hessian, the machine has to initiate
communication with other machines to fetch those rows
from them. Such complicated communication could severely
reduce the efficiency of ALS. Furthermore, the higher time
complexity per iteration of ALS is unfavorable when dealing

Table I
THE STATISTICS AND PARAMETERS FOR EACH DATASET

dataset movielens10m netflix yahoo-music synthetic
m 71,567 2,649,429 1,000,990 1,000,000
n 65,133 17,770 624,961 1,000,000
|Ω| 9,301,274 99,072,112 252,800,275 1,999,822,277
|ΩTest| 698,780 1,408,395 4,003,960 21,736,041
k 40 40 100 10
λ 0.1 0.05 1 0.001

with large W and H . Thus, ALS is not scalable to handle
recommender systems with very large W and H .

Recently, [5] proposed a distributed SGD approach,
DSGD, which partitions A into blocks and conducts SGD
updates with a restricted ordering. Similar to our approach,
DSGD stores W , H , and A in a distributed manner such that
each machine only needs to store O((n+m)k/p) variables
and O(|Ω|/p) rating entries. Thus both DSGD and CCD++
can handle recommender systems with very large W and H .

V. EXPERIMENTAL RESULTS

In this section, we compare parallel CCD++, parallel ALS,
and parallel SGD in large-scale datasets under both multi-
core and distributed platforms. For CCD++, we use the
implementation with one adaptive technique based on the
function value reduction. We implement parallel ALS with
the Intel Math Kernel Library.8 Based on the observation in
Section II, we choose DSGD among variants of parallel SGD
for its faster and more stable convergence. Each algorithm
is implemented in C++ to make a fair comparison. Similar
to [1], all of our implementations use the weighted λ
regularization.9

Datasets. We consider three public datasets for the ex-
periment: movielens10m, netflix, and yahoo-music. The
original training/test split is used for reproducibility.

To conduct experiments in a distributed environment, we
follow the procedure used to create the Jumbo dataset in [8]
to generate the synthetic dataset from a 1M by 1M matrix
with rank 10. We first build the ground truth W and H with
each variable drawn from a zero-mean Guassian distribution
with a small variance. We then randomly sample about 2
billion entries from WHT with a small noise as our training
set and sample about 20 million entries without noise as the
test set. See Table I for more information about the statistics
and parameters used (k and λ) for each dataset.

A. Experiments on a Multi-core Environment

In this section, we compare the multi-core version of
parallel CCD++ with other methods on a multi-core shared-
memory environment.

Experimental platform. We use an 8-core Intel Xeon
X5570 processor with 8 MB L2-cache and enough memory

8Our C implementation is 6x faster than the MATLAB version in [1].
9λ

(∑
i
|Ωi|‖wi‖2 +

∑
j
|Ω̄j |‖hj‖2

)
is used to replace the regular-

ization term in (1).

for the comparison. The OpenMP10 library is used for the
multi-core parallelization.

Results. We ensure that eight cores are fully utilized for
each method. Figure 3 shows the comparison of the running
time versus RMSE for the three real-world datasets. We
observe that the performance of CCD++ is generally better
than parallel ALS and DSGD for each dataset.

Speedup. Another important measurement in parallel
computing is the speedup – how much faster is a parallel
algorithm when we increase the number of cores. We run
each parallel method on yahoo-music with various numbers
of cores, from 1 to 8, and measure the running time for one
iteration. We also include HogWild in Figure 4. We clearly
see that all methods have nearly linear speedup. However,
the slopes of CCD++ and ALS are steeper than DSGD and
HogWild. This can be explained by the cache-miss rate
for each method. Due to the fact that CCD++ and ALS
access variables in contiguous memory spaces, both of them
enjoy better locality. In contrast, due to the randomness, two
consecutive updates in SGD usually access non-contiguous
variables in W and H , which increases the cache-miss rate.
Given the fixed size of cache, time spent on loading data
from memory to cache becomes the bottleneck for DSGD
and HogWild to achieve better speedup when the number of
cores increases.

B. Experiments on a Distributed Environment
In this section, we conduct experiments to show that dis-

tributed CCD++ is faster than DSGD and ALS for handling
large-scale data on a distributed system.

Experimental platform. We use a MPI11 cluster as our
distributed platform. Each computing node in the cluster is
a Intel Xeon 5355 2.66 GHz CPU machine with 16 GB
memory and communicates by Fast Ethernet (100 Mbps).
For a fair comparison, we implement a distributed version
with MPI in C++ for each method. The reason we do not
use Hadoop is that almost all operations in Hadoop need
to access data and variables from disks, which is slow and
not suited for iterative methods. It is reported in [20] that
ALS implemented with MPI is 40 to 60 times faster than
the Hadoop implementation in the Mahout project.

Results on yahoo-music. First we show the comparison
on yahoo-music dataset, which is the largest real-world
dataset we used. Figure 5 shows the result with 4 computing
nodes – we can make similar observations as in Figure 3.
In a distributed environment, CCD++ still outperforms ALS
and DSGD. However, one may find that distributed CCD++
with 4 nodes is slower than CCD++ on a multi-core machine.
This is a result of the high communication cost introduced
in the distributed system. Thus, when data can fit in the
memory of a single machine, the multi-core setting would
be a better choice for parallelization.

10http://openmp.org/
11http://www.mcs.anl.gov/research/projects/mpi/

(a) movielens10m: Time versus RMSE. (b) netflix: Time versus RMSE. (c) yahoo-music: Time versus RMSE.

Figure 3. RMSE versus computation time on a 8-core system for different methods (time is in seconds). Due to non-convexity of the problem, different
methods may converge to different values.

Figure 4. Speedup comparison between three algorithms in a shared-
memory multi-core environment. All of them have nearly linear speedup.
CCD++ and ALS have better performance than DSGD and HogWild
because of better locality.

Results on synthetic data. When data is large enough, we
believe that the benefit of distributed environments would be
obvious. In our implementation, which uses the compressed
sparse row format, the memory need for synthetic data (see
Table I for details) is more than 48 GB. Given the fact that
each node only has 16 GB memory, it requires at least 4
computing nodes to load this data. To conduct scalability
comparison, each method is run with varying numbers of
computing nodes, ranging from 4 to 20. Here we calculate
the time taken by each method to achieve 0.01 test RMSE.
The result is shown in Figure 6a. We can see clearly that
our method CCD++ outperforms both DSGD and ALS.
Specifically, CCD++ is 4 times faster than both DSGD and
ALS. We also show the speedup in Figure 6b. Note that
since the data cannot be loaded in memory of a single
machine, the speedup using p machines is Tp/T4, where
Tp is the time taken on p machines. All three methods have

Figure 5. Comparison among CCD++, ALS, and DSGD with the yahoo-
music dataset on a MPI distributed system with 4 computing nodes.

similar speedup, although the speedup of DSGD is slightly
better than the other two because of its lower communication
cost per iteration. Note though that the speedups are smaller
than in a multi-core setting, CCD++ takes the least time to
achieve the desired RMSE. This shows that CCD++ is not
only fast but also scalable for large-scale matrix factorization
on distributed systems.

VI. CONCLUSIONS

In this paper, we have shown that the coordinate descent
method is efficient and scalable for solving large-scale
matrix factorization problems in recommender systems. The
proposed method CCD++ not only has lower time complex-
ity per iteration than ALS, but also achieves faster and more
stable convergence than SGD in practice. We also explore
different update sequences and show that the feature-wise
update sequence (CCD++) gives better performance. More-
over, we show that CCD++ can be easily parallelized in both
multi-core and distributed environments and thus can handle

(a) Number of computation nodes versus training time. (b) Number of computation nodes versus speedup.

Figure 6. Comparison among CCD++, ALS and DSGD on the synthetic dataset (2 billion ratings) in a MPI distributed system with varying number of
computing nodes. The vertical axis in the left panel is the time for each method to achieve 0.01 test RMSE, while the right panel shows the speedup for
each method. Note that, as discussed in Section V-B, speedup is Tp/T4, where Tp is the time taken on p machines.

large-scale datasets where both ratings and variables cannot
fit in the memory of a single machine. Empirical results
demonstrate the superiority of CCD++ under both parallel
environments. For instance, on a large-scale synthetic dataset
(2 billion ratings), CCD++ is 4 times faster than both ALS
and DSGD on a distributed system with 20 machines.

VII. ACKNOWLEDGMENTS

This research was supported by NSF grants CCF-
0916309, CCF-1117055, and DOD Army grant W911NF-
10-1-0529.

REFERENCES

[1] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan, “Large-scale
parallel collaborative filtering for the netflix prize,” in Pro-
ceedings of the 4th international conference on Algorithmic
Aspects in Information and Management, 2008.

[2] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, vol. 42,
pp. 30–37, 2009.

[3] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scalable
collaborative filtering approaches for large recommender sys-
tems,” JMLR, vol. 10, pp. 623–656, 2009.

[4] J. Langford, A. Smola, and M. Zinkevich, “Slow learners are
fast,” in NIPS, 2009.

[5] R. Gemulla, P. J. Haas, E. Nijkamp, and Y. Sismanis, “Large-
scale matrix factorization with distributed stochastic gradient
descent,” in ACM KDD, 2011.

[6] B. Recht, C. Re, and S. J. Wright, “Parallel stochastic
gradient algorithms for large-scale matrix completion,” 2011.
Submitted for publication.

[7] M. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized
stochastic gradient descent,” in NIPS, 2010.

[8] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-
free approach to parallelizing stochastic gradient descent,” in
NIPS, 2011.

[9] A. Cichocki and A.-H. Phan, “Fast local algorithms for large
scale nonnegative matrix and tensor factorizations,” IEICE
Transactions on Fundamentals of Electronics Communica-
tions and Computer Sciences, vol. E92-A, no. 3, pp. 708–721,
2009.

[10] C.-J. Hsieh and I. S. Dhillon, “Fast coordinate descent meth-
ods with variable selection for non-negative matrix factoriza-
tion,” in ACM KDD, 2011.

[11] L. Bottou, “Large-scale machine learning with stochastic
gradient descent,” in Proceedings of the 19th International
Conference on Computational Statistics, 2010.

[12] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic
optimization,” in NIPS 24, 2011.

[13] D. P. Bertsekas, Nonlinear Programming. Belmont, MA
02178-9998: Athena Scientific, second ed., 1999.

[14] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and
S. Sundararajan, “A dual coordinate descent method for large-
scale linear SVM,” in ICML, 2008.

[15] H.-F. Yu, F.-L. Huang, and C.-J. Lin, “Dual coordinate descent
methods for logistic regression and maximum entropy mod-
els,” Machine Learning, vol. 85, pp. 41–75, October 2011.

[16] C.-J. Hsieh, M. Sustik, I. S. Dhillon, and P. Ravikumar,
“Sparse inverse covariance matrix estimation using quadratic
approximation,” in NIPS, 2011.

[17] I. Pilászy, D. Zibriczky, and D. Tikk, “Fast ALS-based matrix
factorization for explicit and implicit feedback datasets,” in
RecSys, 2010.

[18] R. M. Bell, Y. Koren, and C. Volinsky, “Modeling rela-
tionships at multiple scales to improve accuracy of large
recommender systems,” in ACM KDD, 2007.

[19] N.-D. Ho and P. V. D. V. D. Blondel, “Descent methods for
nonnegative matrix factorization,” in Numerical Linear Alge-
bra in Signals, Systems and Control, pp. 251–293, Springer
Netherlands, 2011.

[20] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein, “Distributed GraphLab: A framework
for machine learning in the cloud,” PVLDB, vol. 5, no. 8,
pp. 716–727, 2012.

