
Scalable Density-Based Distributed Clustering

Eshref Januzaj1, Hans-Peter Kriegel2, Martin Pfeifle2

1Braunschweig University of Technology, Software Systems Engineering
http://www.sse.cs.tu-bs.de, januzaj@sse.cs.tu-bs.de

2University of Munich, Institute for Computer Science
http://www.dbs.ifi.lmu.de, {kriegel,pfeifle}@dbs.ifi.lmu.de

Abstract. Clustering has become an increasingly important task in analysing huge amounts
of data. Traditional applications require that all data has to be located at the site where it is
scrutinized. Nowadays, large amounts of heterogeneous, complex data reside on different,
independently working computers which are connected to each other via local or wide area
networks. In this paper, we propose a scalable density-based distributed clustering algorithm
which allows a user-defined trade-off between clustering quality and the number of trans-
mitted objects from the different local sites to a global server site. Our approach consists of
the following steps: First, we order all objects located at a local site according to a quality
criterion reflecting their suitability to serve as local representatives. Then we send the best
of these representatives to a server site where they are clustered with a slightly enhanced
density-based clustering algorithm. This approach is very efficient, because the local deter-
mination of suitable representatives can be carried out quickly and independently from each
other. Furthermore, based on the scalable number of the most suitable local representatives,
the global clustering can be done very effectively and efficiently. In our experimental eval-
uation, we will show that our new scalable density-based distributed clustering approach re-
sults in high quality clusterings with scalable transmission cost.

1 Introduction

Density-based clustering has proven to be very effective for analyzing large amounts of heteroge-
neous, complex data, e.g. for clustering of complex objects [1][4], for clustering of multi-repre-
sented objects [9], and for visually mining through cluster hierarchies [2]. All these approaches
require full access to the data which is going to be analyzed, i.e. the data has to be located at one
single site. Nowadays, large amounts of heterogeneous, complex data reside on different, indepen-
dently working computers which are connected to each other via local or wide area networks
(LANs or WANs). Examples comprise distributed mobile networks, sensor networks or supermar-
ket chains where check-out scanners, located at different stores, gather data unremittingly. Fur-
thermore, international companies such as DaimlerChrysler have some data which is located in
Europe and some data in the US. Those companies have various reasons why the data cannot be
transmitted to a central site, e.g. limited bandwidth or security aspects. Another example is
WAL-MART featuring the largest civil database in the world, consisting of more than 200 ter-
abytes of data [11]. Every night all data is transmitted to Betonville from the different stores via
the largest privately hold satellite system. Such a company would greatly benefit, if it were possi-
ble to cluster the data locally at the stores, and then determine and transmit suitable local repre-
sentatives which allow to reconstruct the complete clustering at the central in Betonville. The
transmission of huge amounts of data from one site to another central site is in some application
areas almost impossible. In astronomy, for instance, there exist several highly sophisticated space
telescopes spread all over the world. These telescopes gather data unceasingly. Each of them is

Proc. 8th European Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD), Pisa, Italy, 2004

able to collect 1GB of data per hour [5] which can only, with great difficulty, be transmitted to a
global site to be analyzed centrally there. On the other hand, it is possible to analyze the data lo-
cally where it has been generated and stored. Aggregated information of this locally analyzed data
can then be sent to a central site where the information of different local sites are combined and
analyzed. The result of the central analysis may be returned to the local sites, so that the local sites
are able to put their data into a global context.

In this paper, we introduce a scalable density-based distributed clustering algorithm which ef-
ficiently and effectively detects information spread over several local sites. In our approach, we
first compute the density around each locally located object reflecting its suitability to serve as a
representative of the local site. After ordering the objects according to their density, we send the
most suitable local representatives to a server site, where we cluster the objects by means of an
enhanced DBSCAN [4] algorithm. The result is sent back to the local sites. The local sites update
their clustering based on the global model, e.g. merge two local clusters to one or assign local
noise to global clusters.

This paper is organized as follows: In Section 2, we review the related work in the area of den-
sity-based distributed clustering. In Section 3, we discuss a general framework for distributed
clustering. In Section 4, we present our quality driven approach for generating local representa-
tives. In Section 5, we show how these representatives can be used for creating a global clustering
based on the information transmitted from the local sites. In Section 6, we present the experimen-
tal evaluation of our SDBDC (Scalable Density-Based Distributed Clustering) approach showing
that we achieve high quality clusterings with relative little information. We conclude the paper in
Section 7 with a short summary and a few remarks on future work.

2 Related Work on Density-Based Distributed Clustering

Distributed Data Mining (DDM) is a dynamically growing area within the broader field of
Knowledge Discovery in Databases (KDD). Generally, many algorithms for distributed data min-
ing are based on algorithms which were originally developed for parallel data mining. In [8] some
state-of-the-art research results related to DDM are resumed.

One of the main data mining tasks is clustering. There exist many different clustering algo-
rithms based on different paradigms, e.g. density-based versus distance-based algorithms, and hi-
erarchical versus partitioning algorithms. For more details we refer the reader to [7].

To the best of our knowledge, the only density-based distributed clustering algorithm was pre-
sented in [6]. The approach presented in [6] is based on the density-based partitioning clustering
algorithm DBSCAN. It consists of the following steps. First, a DBSCAN algorithm is carried out
on each local site. Based on these local clusterings, cluster representatives are determined. There-
by, the number and type of local representatives is fixed. Only so called special core-points are
used as representatives. Based on these local representatives, a standard DBSCAN algorithm is
carried out on the global site to reconstruct the distributed clustering. The strong point of [6] is that
it tackles the complex and important problem of distributed clustering. Furthermore, it was shown
that a global clustering carried out on about 20% of all data points, yields a clustering quality of
more than 90% according to the introduced quality measure.

Nevertheless, the approach presented in [6] suffers from three drawbacks which are illustrated
in Figure 1 depicting data objects located at 3 different local sites.

• First, local noise is ignored. The clustering carried out on the local sites ignores the local
noise located in the upper left corner of each site. Thus the distributed clustering algorithm of
[6] does not detect the global cluster in the upper left corner.

• Second, the number of representatives is not tuneable. Representatives are always special
core-points of local clusters (cf. black points in Figure 1). The number of these special
core-points is determined by the fact that each core point is within the ε-range of a special
core-point. Dependent on how the DBSCAN algorithm walks through a cluster, the special
core-points are computed.

• Third, these special core points might be located at the border of the clusters (cf. Figure 1).
Of course, it is much better if the representatives are not located at the trailing end of a clus-
ter, but are central points of a cluster. Representatives located at the border of local clusters
might lead to a false merging of locally detected clusters when carrying out a central cluster-
ing. This is especially true, if we use high ε-values for the clustering on the server site, e.g. in
[6] a high and static value of εglobal = 2εlocal was used. The bottom right corner of Figure 1

shows that badly located representatives along with high εglobal-values might lead to wrongly

merged clusters.

To sum up, in the example of Figure 1, for instance, the approach of [6] would only detect one
cluster instead of three clusters, because it cannot deal with local noise and tend to merge clusters
close to each other. Our new SDBDC approach enhances the approach presented in [6] as follows:

• We deal effectively and efficiently with the problem of local noise.
• We do not produce a fixed number of local representatives, but allow the user to find an indi-

vidual trade-off between cluster quality and runtime.
• Our representatives reflect dense areas tending to be in the middle of clusters.
• Furthermore, we propose a more effective way to detect the global clustering based on the

local representatives. We do not apply a DBSCAN algorithm with a fixed ε-value. Instead we
propose to use an enhanced DBSCAN algorithm which uses different ε-values for each local
representative r depending on the distribution of the objects represented by r.

3 Scalable Density-Based Distributed Clustering

Distributed Clustering assumes that the objects to be clustered reside on different sites. Instead of
transmitting all objects to a central site (also denoted as server) where we can apply standard clus-
tering algorithms to analyze the data, the data is analyzed independently on the different local sites
(also denoted as clients). In a subsequent step, the central site tries to establish a global clustering

Fig. 1. Local noise on different local sites.

Site 1 Site 2 Site 3

local noise

local representatives

local objects belonging to a local cluster clustering based
on all objects

3 different clusters
are detected

the distributed cluster-

detects only one large
cluster

of all sites:

ing approach of [6]

based on the local models, i.e. the local representatives. In contrast to a central clustering based on
the complete dataset, the central clustering based on the local representatives can be carried out
much faster.

Distributed Clustering is carried out on two different levels, i.e. the local level and the global
level (cf. Figure 2). On the local level, all sites analyse the data independently from each other re-
sulting in a local model which should reflect an optimum trade-off between complexity and accu-
racy. Our proposed local models consist of a set of representatives. Each representative is a
concrete object from the objects located at the local site. Furthermore, we augment each represent-
ative r with a suitable covering radius indicating the area represented by r. Thus, r is a good ap-
proximation for all objects residing on the corresponding local sites and are contained in the
covering area of r.

Next, the local model is transferred to a central site, where the local models are merged in order
to form a global model. The global model is created by analysing the local representatives. This
analysis is similar to a new clustering of the representatives with suitable global clustering param-
eters. To each local representative a global cluster identifier is assigned. The resulting global clus-
tering is sent to all local sites.

If a local object is located in the covering area of a global representative, the cluster-identifier
from this representative is assigned to the local object. Thus, we can achieve that each site has the
same information as if their data were clustered on a global site, together with the data of all the
other sites. To sum up, distributed clustering consists of three different steps (cf. Figure 2):

• Determination of a local model

• Determination of a global model which is based on all local models

• Updating of all local models

In this paper, we will present effective and efficient algorithms for carrying out step 1 and
step 2. For more details about step 3, the relabeling on the local sites, we refer the interested reader
to [6].

Fig. 2. Distributed clustering.

local data

Site 1

...

determination of
local representatives

local data

Site 2

determination of
local representatives

local data

Site n

determination of
local representatives

local data
labeling

local data
labeling

local data
labeling

local
level

global
level

local
level

determination of global representatives

4 Quality Driven Determination of Local Representatives

In this section, we present a quality driven and scalable algorithm for determining local repre-
sentatives. Our approach consists of two subsequent steps. First, we introduce and explain the term
static representation quality which assigns a quality value to each object of a local site reflecting
its suitability to serve as a representative. Second, we discuss how the object representation quality
changes, dependent on the already determined local representatives. This quality measure is called
dynamic representation quality. In Section 4.2, we introduce our scalable and quality driven algo-
rithm for determining suitable representatives along with additional aggregated information de-
scribing the represented area.

4.1 Object Representation Quality

In order to determine suitable local cluster representatives, we first carry out similarity range
queries on the local sites around each object o with a radius ε.
Definition 1 (Similarity Range Query on Local Sites)
Let O be the set of objects to be clustered and the underlying distance function
reflecting the similarity between two objects. Furthermore, let be the set of objects located
at site i. For each object and a query range , the similarity range query simrange:

 returns the set.

After having carried out the range queries on the local sites, we assign a static representation
quality StatRepQ(o,ε) to each object o w.r.t. a certain ε-value.

Definition 2 (Static Representation Quality StatRepQ)
Let be the set of objects located at site i. For each object and a query range

, StatRepQ: is defined as follows:

For each object oi contained in the ε-range of a query object o, we determine the distance to the
border of the ε-range query, i.e. we weight each object oi in the ε-range of o by . This
value is the higher, the closer oi is to o. Then the quality measure StatRepQ(o,ε) sums up all the
values for all objects located in the ε-range of our query object. Obviously,
StatRepQ(o,ε) is the higher, the more objects are located in the ε-range around o and the closer
these objects are to o. Figure 3 illustrates that the highest StatRepQ(o,ε) value is assigned to those

d:O O× IR0
+→
Oi O⊆

o Oi∈ ε IR0
+∈

Oi IR0
+

2Oi→×

simrange o ε,() oi Oi∈ | d oi o,() ε≤{ }=

Oi O⊆ o Oi∈
ε IR0

+∈ Oi IR0
+

IR0
+→×

StatRepQ o ε,() ε d oi o,()–
oi simrange o ε,()∈

∑=

ε d– oi o,()

ε d– oi o,()

Fig. 3. Static representation quality.

local site i

ε

d1

d3

d4 d2

A’

d’1

d’2

ε
StatRepQ A() =

ε d1–() ε d2–() ε d3–() + + +

ε d4–() ε 0–()+

 >
StatRepQ A'() =

ε d'1–() ε d'2–() ε 0–()+ +

A

objects which intuitively seem to be the most suitable representatives of a local site. The figure
shows that the value StatRepQ(A,ε) is much higher than the value StatRepQ(A’,ε), reflecting the
more central role of object A compared to object A’.

Next we define a dynamic representation quality DynRepQ(o,ε,Repi) for each local object o.
This quality measure depends on the already determined set of local representatives Repi of a site
i and the radius of our ε-range query.

Definition 3 (Dynamic Representation Quality DynRepQ)
Let be the set of objects located at site i and the set of the already determined
local representatives of site i. Then, DynRepQ: is defined as follows:

DynRepQ(o,ε,Repi) depends on the number and distances of the elements found in the ε-range
of an object o, which are not yet contained in the ε-range of a former local representative. For each
object o which has not yet been selected as a representative, the value DynRepQ(o,ε,Repi) gradu-
ally decreases with an increasing set of local representatives, i.e. an increasing set Repi. Figure 4
illustrates the different values of DynRepQ(B,ε,Repi) for two values of the set Repi. If Repi={}, the
value DynRepQ(B,ε,Repi) is much higher than if the element A is included in Repi.

4.2 Scalable Calculation of Local Representatives

In this subsection, we will show how we can use the quality measures introduced in the last
subsection to create a very effective and efficient algorithm for determining a set of suitable local
representatives. The basic idea of our greedy algorithm is very intuitive (cf. Figure 5).

• First, we carry out range queries for each object of a local site.

• Second, we sort the objects in descending order according to their static representation qual-
ity.

• Third, we delete the first element from the sorted list and add it to the set of local representa-
tives.

• Fourth, we compute the dynamic representation quality for each local object which has not
yet been used as a local representative and sort these objects in descending order according to
their dynamic representation quality.

• If we have not yet determined enough representatives, we continue our algorithm with step 3.
Otherwise, the algorithm stops.

Oi O⊆ Repi Oi⊆
Oi IR0

+
2Oi× IR0

+→×

DynRepQ o ε Repi, ,() ε d– oi o,()
oi simrange o ε,()∈

r Repi:oi simrange r ε,()∉∈∀

∑=

Fig. 4. Dynamic representation quality.

local site i

A

B

ε DynRepQ B ε { }, ,() =

ε d1–() ε d2–() ε d3–() ε 0–()+ + +

 >
DynRepQ B ε A{ }, ,() =

ε d1–() ε 0–()+

d1
d2

d3

Obviously, the algorithm delivers the most suitable local representatives at a very early stage
of the algorithm. After having determined a new local representative, it can be sent to a global site
without waiting for the computation of the next found representative. As we decided to apply a
greedy algorithm for the computation of our local representatives, we will not revoke a represent-
ative at a later stage of the algorithm. So the algorithm works quite similar to ranking similarity
queries known from database systems allowing to apply the cursor principle on the server site. If
the server decides that it has received enough representatives from a local site, it can close the cur-
sor, i.e. we do not have to determine more local representatives. The termination of the algorithm
can either be determined by a size-bound or an error-bound stop criterion [10]. This approach is
especially useful if we apply a clustering algorithm on the server site which efficiently supports
incremental clustering as, for instance, DBSCAN [3].

For all representatives included in a sequence of local representatives, we also compute their
Covering Radius CovRad, indicating the element which has the maximum distance from the rep-
resentative, and the number CovCnt of objects covered by the representative.

Definition 4 (Covering Radius and Covering Number of Local Representatives)
Let be the set of objects located at site i and the sequence of the
first n local representatives where . Then the covering radius CovRad:

 and the covering number CovCnt: of the th
representative are defined as follows:

Figure 6 depicts the CovRad and CovCnt values for two different representatives of site i. Note
that the computation of CovRad and CovCnt can easily be integrated into the computation of the
representatives as illustrated in Figure 5. The local representatives along with the corresponding
values CovRad and CovCnt are sent to the global site in order to reconstruct the global clustering,
i.e. we transmit the following sequence consisting of n local representatives from site i:

Oi set of objects located at site i;
ε ε-range value;
ALGORITHM DeterminationOfLocalRepresentatives;
BEGIN

Repi :={}; // set of local representatives;

FOR EACH DO
compute StatRepQ(o,ε);

END FOR;
SortRepList := <(o1,StatRepQ(o1,ε)), ..., (o|Oi|

,StatRepQ(o|Oi|
,ε))| i≤j =>StatRepQ(oi,ε) ≥StatRepQ(oj,ε)>;

WHILE NOT stop_criterion (Repi) DO
Repi := Repi + SortRepList[1];

FOR EACH DO
compute DynRepQ(o,ε,Repi);

END FOR;
SortRepList := <(o1,DynRepQ(o1,ε,Repi)), ..., (o|Oi-REPi|

,DynRepQ(o|Oi-REPi|
,ε,Repi))|

i ≤ j =>DynRepQ(oi,ε,Repi) ≥ DynRepQ(oj,ε,Repi)>;
END WHILE;

END.

Fig. 5. Scalable calculation of local representatives.

o Oi∈

o Oi REPi–∈

Oi O⊆ Repin
ri1

… rin
, ,{ }=

ri1
… rin

, ,{ } Oi⊆
Oi IR0

+
2Oi× IR0

+→× Oi IR0
+

2Oi× IR0
+→× in 1+

CovRad rin 1+
ε Rep, in

,() =

max ε d– o rin 1+
,() | o Oi∈ r Repin

∈∀ :o sim∈ range rin 1+
ε,()∀ o sim∉ range r ε,()∧{ }

CovCnt rin 1+
ε Repin

, ,() o | o Oi∈ r Repin
∈∀ :o sim∈ range rin 1+

ε,()∀ o sim∉ range r ε,()∧{ }=

< (ri1, CovRad(ri1, ε, {}), CovCnt(ri1, ε, {})),
.
.

(rin, CovRad(rin, ε, {ri1,.., rin-1
}),CovCnt(rin, ε, {ri1,.., rin-1

})) >.

For simplicity, we will write CovRad(rij) instead of CovRad(rij, ε, {ri1,.., rij-1}) and CovCnt(rij)
instead of CovCnt(rij, ε, {ri1,.., rij-1}), if the set of already transmitted representatives and the used
ε-values are clear from the context.

5 Global Clustering

On the global site, we apply an enhanced version of DBSCAN adapted to clustering effectively
local representatives. We carry out ε-range queries around each representative. Thereby, we use a
specific ε-value ε(ri) for each representative ri (cf. Figure 7). The ε-value ε(ri) is equal to the sum
of the following two components. The first component consists of the basic ε-value which would
be used by the original DBSCAN algorithm and which was used for the range queries on the local
sites. The second component consists of the specific CovRad(ri) value of the representative ri, i.e
we set ε(ri) = ε + CovRad(ri).

The idea of this approach is as follows (cf. Figure 8). The original DBSCAN algorithm based
on all data of all local sites would carry out an ε-range query around each point of the data set. As
we perform the distributed clustering only on a small fraction of these weighted points, i.e. we
cluster on the set of the local representatives transmitted from the different sites, we have to en-
large the ε-value by the CovRad(ri) value of the actual representative ri. This approach guarantees
that we can find all objects in the enlarged ε-range query which would have been found by any
object represented by the actual local representative ri. For instance in Figure 7, the representative
rj1

 is within the ε-range of the local object oi represented by ri1
. Only because we use the enlarged

ε-range ε(ri1
), we detect that the two representatives ri1

 and rj1
 belong to the same cluster.

dB

Fig. 6. Covering radius CovRad and covering number CovCnt.

local site i

A

B

ε
CovRad A 〈 〉,() dA=

CovCnt A 〈 〉,() 9=

CovRad B A〈 〉,() dB=

CovCnt B A〈 〉,() 2=

ε

dA sent to global site: < (A, dA, 9), (B, dB, 2)>

Fig. 7.Global clustering on varying ε(ri)-parameters for the different representatives ri

global site

ε
CovRad(r)

ε + CovRad(r)

ri1

rj1

oi

local objects of site i represented by ri1
local representatives of different sites

Furthermore, we weight each local representative ri by its CovCnt(ri) value, i.e. by the number
of local objects which are represented by ri. By taking these weights into account, we can detect
whether local representatives are core-points, i.e. points which have more than MinPts other ob-
jects in their ε-range. For each core-point rj contained in a cluster C, we carry out an enlarged
ε-range query with radius ε(rj) trying to expand C. In our case, a local representative rj might be
a core-point although less than MinPts other local representatives are contained in its ε(rj)-range.
For deciding whether rj is a core-point, we have to add up the number of objects CovCnt(ri) rep-
resented by the local representatives ri contained in the ε(rj)-range of rj (cf. Figure 8).

R set of all representatives from all local sites;
// R ={(r1, CovRad(r1), CovCnt(r1)), .., (r|R|, CovRad(r|R|), CovCnt(r|R|));

ε, MinPts ε-range value and MinPts parameter used by DBSCAN

Algorithm DistributedGlobalDBSCAN
BEGIN

ActClusterId := 1; // ClusterId = 0 is used for NOISE and
FOR i =1 .. |R| DO // ClusterId = -1 for UNCLASSIFIED objects

ActObj := R.get(i); // select the ith object from R
IF ActObj.ClusterId = -1 THEN

IF ExpandCluster THEN
ActClusterId:=ActClusterId +1;

END IF;
END IF;

END FOR;
END.

ExpandCluster: Boolean;
BEGIN

seeds := RangeQuery(ActObj, ε+CovRad(ActObj)); // range query with enlarged radius around ActObj
CntObjects := 0;
FOR i = 1 .. |seeds| DO

CntObjects := CntObjects + seeds[i].CovCnt; // all objects represented by representatives
END FOR;
IF CntObjects < MinPts THEN // Object ActObj is not a core object

ActObj.ClusterID := 0 // ClusterID 0 is used for NOISE
RETURN FALSE;

ELSE // Object o is a core object
FOR i = 1 .. |seeds| DO

IF seeds[i].ClusterId = {-1, 0} THEN
seeds[i].ClusterId := ActClusterId;

END IF;
END FOR;
delete ActObj from seeds;
WHILE seeds NOT EMPTY DO

ActObj := seeds[1];
neighborhood := RangeQuery(ActObj, ε+CovRad(ActObj)); // range query with enlarged radius
CntObjects := 0
FOR i = 1 .. |neighborhood| DO

CntObjects := CntObjects + neighborhood[i].CovCnt;
END FOR;
IF CntObjects >= MinPts THEN // ActObj is a core object

FOR i = 1 .. |neighborhood| DO
 p := neighborhood[i];
 IF p.ClusterId = {-1, 0} THEN // object p is UNCLASSIFIED or NOISE

 IF p.ClusterId = -1 THEN // object p is UNCLASSIFIED
 add p to seeds;

 END IF;
 p.ClusterId := ActClusterID;

 END IF;
END FOR;

END IF;
delete ActObj from seeds;

END WHILE;
RETURN TRUE;

END IF;
END;

Fig. 8.Distributed global DBSCAN algorithm.

6 Experimental Evaluation
We evaluated our SDBDC approach based on three different 2-dimensional point sets where

we varied both the number of points and the characteristics of the point sets. Figure 9 depicts the
three used test data sets A (8700 objects, randomly generated data/clusters), B (4000 objects, very
noisy data) and C (1021 objects, 3 clusters) on the central site.

In order to evaluate our SDBDC approach, we equally distributed the data set onto the different
client sites and then compared SDBDC to a single run of DBSCAN on all data points. We carried
out all local clusterings sequentially. Then, we collected all representatives of all local runs, and
applied a global clustering on these representatives. For all these steps, we used a Pentium III/700
machine. In all experiments, we measured the overall number of transmitted local representatives,
which primarily influences the overall runtime. Furthermore, we measured the cpu-time needed
for the distributed clustering consisting of the maximum time needed for the local clusterings and
the time needed for the global clustering based on the transmitted local representatives.

We measured the quality of our SDBDC approach by the quality measure introduced in [6].
Furthermore we compared our approach to the approach presented in [6] where for the three test
data sets about 17% of all local objects were used as representatives. Note that this number is fixed
and does not adapt to the requirements of different users, i.e high clustering quality or low runtime.

Figure 10 shows the trade-off between the clustering quality and the time needed for carrying
out the distributed clustering based on 4 different local sites.

Figure 10a shows clearly that with an increasing number of local representatives the overall
clustering quality increases. For the two rather noisy test data sets A and B reflecting real-world
application ranges, we only have to use about 5% of all local objects as representatives in order to
achieve the same clustering quality as the one achieved by the approach presented in [6].

Figure 10b1 shows the speed up w.r.t. the transmission cost we achieve when transmitting only
the representatives determined by our SDBDC approach compared to the transmission of all data
from the local sites to a global site. We assume that a local object is represented by n bytes and
that both CovRad(ri) and CovCnt(ri) need about 4 bytes each. For realistic values of n, e.g. n=100,
a more than three times lower representative number, e.g. 5% used by the SDBDC approach com-
pared to 17% used by the approach presented in [6], results in a 300% speed up w.r.t. the overall
transmission cost which dominate the overall runtime cost (cf. Figure 10b1).

Figure 10b2 depicts the sum of the maximum cpu-time needed for the clustering on the local
site and the cpu-time needed for the clustering on the global site. A small number of local repre-
sentatives terminates the generation of the local representatives at an early stage leading to a short
runtime for computing the required local representatives. Furthermore, the global clustering can
be carried out the more efficiently, the smaller the overall number of local representatives is.

screenshot data set A
8700 objects

screenshot data set B
4000 objects

screenshot data set C
1021 objects

b)a) c)

Fig. 9. Used test data sets.
a) test data set A, b) test data set B, c) test data set C

To sum up, a small number of local representatives accelerates the SDBDC approach consid-
erably. If we use about 5% of all objects as representatives, we can achieve a high quality and,
nevertheless, efficient distributed clustering.

Figure 11 shows how the clustering quality depends on the number of local sites. Obviously,
the quality decreases when increasing the number of sites. This is especially true for the approach
presented in [6] which neglects the problem of local noise. The more sites we have and the noisier
the data set is, the more severe this problem is. As Figure 11 shows, our approach is much less
susceptible to an increasing number of local sites. Even for the noisy test data set B, our approach
stays above 90% clustering quality although using more than 10 different local sites and only 13%
of all objects as local representatives (in contrast to the fixed 17% used in [6]).

0

20

40

60

80

100

120

1 3 5 8 13 17

0

500

1000

1500

2000

2500

0 5 10 15 20
0 ,0

0 ,1

1 ,0

1 0 ,0

0 2 0 4 0 6 0

b1)

a1)

Fig. 10. Trade-off between runtime and clustering quality (4 sites).
a) clustering quality (a1) SDBDC a2) approach presented in [6]),

b) runtime (b1) transmission cost b2) cpu-cost for local and global clustering)

b2)

no. of representatives [%]tr
an

sm
is

si
on

 c
os

t S
D

B
D

C
/

tr
an

sm
is

si
on

 c
os

t a
ll

lo
ca

l d
at

a

no. of representatives [%]cp
u

-
co

st
 S

D
B

D
C

 [
m

s]

n=4
n=20

n=100

test data set A
test data set B
test data set C

no. of representatives [%]

qu
al

it
y

[%
]

test data set A
test data set B
test data set C

0

20

40

60

80

100

120
test data set A, B, and C

A

B

C
(17% representatives)a2)

qu
al

it
y

[%
]

20

40

60

80

100

2 4 8 14

qu
al

it
y

[%
]

no. of sites85

90

95

100

2 4 8 14

qu
al

it
y

[%
]

no. of sites
97

98

99

100

2 4 8 14

qu
al

it
y

[%
]

no. of sites

b)a) c)
approach presented in [6] (17% representatives) SDBDC (13% representatives)

Fig. 11. Clustering Quality dependent on the number of local sites.
a) test data set A, b) test data set B, c) test data set C

7 Conclusions

In this paper, we first discussed some application ranges which benefit from an effective and
efficient distributed clustering algorithm. Due to economical, technical and security reasons, it is
often not possible to transmit all data from different local sites to one central server site where the
data can be analysed by means of clustering. Therefore, we introduced an algorithm which allows
the user to find an individual trade-off between clustering-quality and runtime. Our approach first
analyses the data on the local sites and orders all objects o according to a quality criterion
DynRepQ(o) reflecting whether the actual object is a suitable representative. Note that this quality
measure depends on the already determined representatives of a local site. After having transmit-
ted a user dependent number of representatives to the server, we apply a slightly enhanced
DBSCAN clustering algorithm which takes the covering radius and the number of objects covered
by each representative ri into account, i.e. the server site clustering is based on the aggregated in-
formation CovRad(ri) and CovCnt(ri) describing the area on a local site around a representative ri.
As we produce the local representatives in a give-me-more manner and apply a global clustering
algorithm which supports efficient incremental clustering, our approach allows to start with the
global clustering algorithm as soon as the first representatives are transmitted from the various
local sites. Our experimental evaluation showed that the presented scalable density-based distrib-
uted clustering algorithm allows effective clustering based on relatively little information, i.e.
without sacrificing efficiency and security.

In our future work, we plan to develop hierarchical distributed clustering algorithms which are
suitable for handling nested data.

References

1. Ankerst M., Breunig M. M., Kriegel H.-P., Sander J.: "OPTICS: Ordering Points To Identify the Cluster-
ing Structure", Proc. ACM SIGMOD, Philadelphia, PA, 1999, 49-60.

2. Brecheisen S., Kriegel H.-P., Kröger P., Pfeifle M.: “Visually Mining Through Cluster Hierarchies”, Proc.
SIAM Int. Conf. on Data Mining, Orlando, FL, 2004.

3. Ester M., Kriegel H.-P., Sander J., Wimmer M., Xu X.: "Incremental Clustering for Mining in a Data
Warehousing Environment", Proc. 24th Int. Conf. on Very Large Databases (VLDB), New York City, NY,
1998, 323-333.

4. Ester M., Kriegel H.-P., Sander J., Xu X.: "A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise", Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD),
Portland, OR, AAAI Press, 1996, 226-231.

5. Hanisch R. J.: "Distributed Data Systems and Services for Astronomy and the Space Sciences", in ASP
Conf. Ser., Vol. 216, Astronomical Data Analysis Software and Systems IX, eds. N. Manset, C. Veillet,
D. Crabtree (San Francisco: ASP) 2000.

6. Januzaj E., Kriegel H.-P., Pfeifle M.: “DBDC: Density-Based Distributed Clustering”, Proc. 9th Int. Conf.
on Extending Database Technology (EDBT), Heraklion, Greece, 2004, 88-105.

7. Jain A. K., Murty M. N., Flynn P. J.:"Data Clustering: A Review", ACM Computing Surveys, Vol. 31,
No. 3, Sep. 1999, 265-323.

8. Kargupta H., Chan P. (editors) : "Advances in Distributed and Parallel Knowledge Discovery", AAAI/
MIT Press, 2000.

9. Kailing K., Kriegel H.-P., Pryakhin A., Schubert M.: “Clustering Multi-Represented Objects with Noise”,
Proc. 8th Pacific-Asia Conf. on Knowledge Discovery and Data Mining, Sydney, Australia, 2004.

10. Orenstein J. A.: “Redundancy in Spatial Databases”, Proc. ACM SIGMOD Int. Conf. on Management of
Data, 1989, 294-305.

11. http://www.walmart.com.

