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ABSTRACT
Several techniques have been developed for identifying similar code
fragments in programs. These similar fragments, referred to as
code clones, can be used to identify redundant code, locate bugs,
or gain insight into program design. Existing scalable approaches
to clone detection are limited to finding program fragments that
are similar only in their contiguous syntax. Other, semantics-based
approaches are more resilient to differences in syntax, such as re-
ordered statements, related statements interleaved with other un-
related statements, or the use of semantically equivalent control
structures. However, none of these techniques have scaled to real
world code bases. These approaches capture semantic informa-
tion from Program Dependence Graphs (PDGs), program represen-
tations that encode data and control dependencies between state-
ments and predicates. Our definition of a code clone is also based
on this representation: we consider program fragments with iso-
morphic PDGs to be clones.

In this paper, we present the first scalable clone detection algo-
rithm based on this definition of semantic clones. Our insight is the
reduction of the difficult graph similarity problem to a simpler tree
similarity problem by mapping carefully selected PDG subgraphs
to their related structured syntax. We efficiently solve the tree sim-
ilarity problem to create a scalable analysis. We have implemented
this algorithm in a practical tool and performed evaluations on sev-
eral million-line open source projects, including the Linux kernel.
Compared with previous approaches, our tool locates significantly
more clones, which are often more semantically interesting than
simple copied and pasted code fragments.
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1. INTRODUCTION
Considerable research has been dedicated to methods for the de-

tection of similar code fragments in programs. Once located, these
fragments, or clones, can be used in many ways. Clones have been
used to gain insight into program design, to identify redundant code
to use as candidates for refactoring, and to be analyzed for consis-
tent usage for the purpose of bug detection.

DECKARD [9], CP-Miner [14], CCFinder [10], and CloneDR [3]
represent the most mature clone detection techniques. These tools
share several common characteristics. Each tool locates syntactic
clones, and each has been shown to scale to millions of lines of
code. Under empirical evaluation, each tool has been shown to
locate comparable numbers of clones.

By operating on token streams and syntax trees, these techniques
locate clones that are resilient to minor code modifications, such
as the changing of types or constant values. This resilience gives
these tools some modicum of semantic awareness: two program
fragments may differ in their concrete syntax, but the normalizing
effects of the respective clone tools allow the detection of their se-
mantic similarity.

The sets of clones located by each of these tools are fundamen-
tally limited by the working definition of a code clone. Each tool
is capable of finding clones solely within a program’s contiguous,
structured syntax. Certain interesting clones can elude detection:
these tools are sensitive to even the most simple structural differ-
ences in otherwise semantically similar code. These structural dif-
ferences can include reordered statements, related statements inter-
leaved with other unrelated statements, or the use of semantically
equivalent control structures.

As a motivating example, consider the code snippet in Figure 1.
When compared with the listing in Figure 2, the code is similar:
both perform the same overall computation, but the latter snippet
contains extra statements to time the loop. Current scalable clone
detection techniques are unable to detect these interleaved clones.

While detecting true semantic similarity is undecidable in gen-
eral, some clone detection techniques have attempted to locate clones
with a less strict, semantics preserving definition of similar code.
Rather than scanning token sequences or similar subtrees, these
techniques have operated on program dependence graphs [6], or
PDGs. A PDG is a representation of a procedure in which the nodes
represent simple statements and control flow predicates, and edges



1 int func(int i, int j) {
2 int k = 10;

4 while (i < k) {
5 i++;
6 }

8 j = 2 * k;

10 printf("i=%d, j=%d\n", i, j);
11 return k;
12 }

Figure 1: Example code listing.

1 int func_timed(int i, int j) {
2 int k = 10;

4 long start = get_time_millis();
5 long finish;

7 while (i < k) {
8 i++;
9 }

11 finish = get_time_millis();
12 printf("loop took %dms\n", finish − start);

14 j = 2 * k;

16 printf("i=%d, j=%d\n", i, j);
17 return k;
18 }

Figure 2: A similar example code listing.

encode data and control dependencies. PDG-based similarity de-
tection tools have all used some variant of subgraph isomorphism to
detect either similar procedures or code fragments [12, 16]. These
computations are particularly expensive, and each technique has
not been shown to scale to even moderately-sized code bases.

In this paper, we introduce an extended definition of code clones,
based on PDG similarity, that captures more semantic information
than previous approaches. We then provide a scalable, approximate
algorithm for detecting these clones. We reduce the difficult graph
similarity problem to a simpler tree similarity problem by creating a
mapping between PDG subgraphs and their related structured syn-
tax. Specifically, we make the following technical contributions:

1. We extend the definition of a code clone to include seman-
tically (but not necessarily syntactically) related code frag-
ments. Our definition is a generalization of previous syntac-
tic clone definitions, and it thus defines a superset of previ-
ously defined clones.

2. We introduce an approximate algorithm for detecting these
clones that scales to millions of lines of code. Our algo-
rithm is based on a reduction of deliberately selected PDG
subgraphs to abstract syntax tree forests. We then utilize an
existing, tree-based detection technique [9] to locate clones.

3. We implement a practical tool based on our algorithm and
perform an extensive empirical evaluation. Our tool is capa-
ble of scanning large, real-world C and C++ projects. Com-
pared with previous approaches, our tool locates significantly
more clones, which are often more semantically interesting
than simple copied and pasted code fragments.

The rest of this paper is structured as follows. We begin with a
discussion of background information on components of our anal-
ysis (Section 2). The body of our work continues with the presen-
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Figure 3: The PDG for Figure 1.

tation of our definitions and algorithm (Section 3). We then dis-
cuss our implementation (Section 4) and present the results of our
empirical evaluation (Section 5). Finally, we discuss related work
(Section 6) and conclude with ideas for future work (Section 7).

2. BACKGROUND
Our algorithm augments an existing clone detection technique,

DECKARD [9], with semantic information derived from program
dependence graphs (PDGs). This section provides the necessary
background on both program dependence graphs and DECKARD’s
vector based clone detection.

2.1 Program Dependence Graphs
A program dependence graph [6] (PDG) is a static representa-

tion of the flow of data through a procedure. It is commonly used
to implement program slicing [20]. The nodes of a PDG consist
of program points constructed from the source code: declarations,
simple statements, expressions, and control points. A control point
represents a point at which a program branches, loops, or enters or
exits a procedure and is labeled by its associated predicate.

A PDG models the flow of data through a procedure. In effect,
the PDG abstracts away many arbitrary syntactic decisions a pro-
grammer made while constructing a function. For example, any
possible arbitrary interleaving of unrelated statements within a pro-
cedure yields precisely the same PDG.

The edges of a PDG encode the data and control dependencies
between program points. Given two program points p1 and p2,
there exists a directed data dependency edge from p1 to p2 if and
only if the execution of p2 depends on data calculated directly by
p1. For example, consider the statements on lines 2 and 8 of the
listing in Figure 1. The second statement calculates a value that is
initialized in the first. This dependency is illustrated by a directed
edge between the two nodes in Figure 3.

Note that the node corresponding to the formal parameter j does
not have any outgoing edges. This accurately reflects the fact that j
is redefined without ever being used at line 8 in the listing.

The incrementing of i on line 5 also presents an interesting case.
Because an increment constitutes both a use and a definition, the
node in the PDG corresponding to i++ has both a self data depen-
dency loop and outgoing data dependency edges.
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Figure 4: The AST for Figure 1 with characteristic vectors.

Similarly, there exists a directed control dependency edge from
p1 to p2 if and only if the choice to execute p2 depends on the test
in p1. The while loop on line 4 of the listing illustrates the use of
control dependency edges flowing from a control point node. The
corresponding PDG node in Figure 3 is labeled with the guard ex-
pression, and there is a control dependency edge to the enclosed
increment statement. Note that this node also has a control depen-
dency self loop. This is indicative of a looping structure: if we
replace while with if, we need only remove this one self looping
control edge to yield the new PDG.

Callsites are modeled as control points that control the execu-
tion of expressions corresponding to the calculation of the actual
parameters and the assignment of the return value (or assignments
to out parameters). The call to printf on line 10 is modeled in this
way: there are three outgoing control edges that connect to the three
parameters.

PDGs may also contain implicit nodes that do not have a di-
rect source correspondence. These include entry, exit, and function
body control points, and are represented by a light shade in Fig-
ure 3. These nodes are used to connect PDGs and form a larger,
interprocedural structure that is sometimes referred to as a system
dependence graph (SDG) [8]. Because our work focuses on in-
traprocedural dependencies only, we simplify our graphs by omit-
ting these nodes.

2.2 Scalable Tree-based Clone Detection
The foundation of our analysis is the DECKARD clone detection

tool. DECKARD implements a tree-similarity based technique that
uses the idea of characteristic vectors to efficiently match clone
pairs. This section provides a brief review of this technique. A
more detailed discussion can be found in the full paper [9].

A characteristic vector is a numerical approximation of a par-
ticular subtree. The dimension of the vectors is uniform and is
determined by the total number of possible types of q-level atomic
patterns deemed relevant to approximate a given tree, where a q-
level atomic pattern is a complete binary tree of height q with tree
node labels for identification. In our context, these node labels cor-
respond to terminals and non-terminals in the grammar for a lan-
guage. The maximum number of q-level atomic patterns is L2q−1

if the number of possible labels (including the empty label) is L.
Each characteristic vector is a point 〈c1, ..., cn〉 in n-dimensional

Euclidean space, where n is the number of distinct q-level atomic
patterns. Each ci counts the number of occurrences of the atomic
pattern represented by index i. One important property of char-
acteristic vectors is that given two subtrees, T1 and T2, and their
respective q-level vectors, v1 and v2, if the edit distance between

the trees is k, then the Euclidean distance between the vectors is
no more than (4q − 3)k [21]. This characterization allows the
tree-based clone detection problem to be reformulated as a near-
est neighbor problem on numerical vectors.

For the application of tree-based clone detection, we use 1-level
atomic patterns. The actual domain of atomic patterns is given by
the various node types defined in the grammar for a language that
the user deems “significant.” For parse trees, insignificant nodes
might include semicolons and brackets, and significant nodes might
include expressions, operators, and statements.

DECKARD focuses on parse trees, but we have adapted the al-
gorithm to function on abstract syntax trees. The algorithm is es-
sentially the same, but a few changes were necessary. This will be
discussed in Section 4.

DECKARD first generates vectors that effectively cover an entire
tree. This is done in two distinct phases. The first phase traverses
the tree in postorder and generates vectors for each “significant”
subtree, where relevance is a heuristic setting that marks a node
type as being a suitable parent node. In the original implemen-
tation, “significant” nodes included statements, expressions, and
declarations. In our current, AST-based implementation, we have
the luxury of more semantic information from the AST class hier-
archy. We define “significant” nodes to be those that descend from
the parent “statement” class.

Figure 4 depicts a simplified abstract syntax tree for the code list-
ing in Figure 1. The subtree vectors appear below each significant
node. For each node, DECKARD first creates a vector that consists
of the sum of the node’s children’s vectors. Then, it increments
the value in the current node’s index position if the current node is
significant.

The second phase consists of moving a sliding window along ad-
jacent subtrees and merging the subtree vectors. This allows groups
of contiguous statements or expressions to be grouped into a single
vector for matching. Configuration options prevent merges that are
not likely to be useful, like the merging of the tail end of a block
with the head of an adjacent block. Figure 4 contains merged vec-
tors that were generated with a sliding window size of three.

At this point, the tree has been reduced to a set of points in the
Euclidean space. To efficiently cluster large numbers of vectors,
DECKARD uses Locality Sensitive Hashing [7], an efficient approx-
imate near-neighbor solver. When combined with a lossless parti-
tioning of the vectors based on their size [9], the LSH engine is
capable of enumerating clone groups from millions of vectors in a
few minutes.

Using these approximations, DECKARD is able to enumerate a
comprehensive set of clone groups over millions of lines of code in



tens of minutes. In practice, the use of vector approximations and
an approximate nearest neighbor solver does not affect the quality
of the results; the false positive rate is extremely low.

3. ALGORITHM DESCRIPTION
The vectors generated during the first phase of DECKARD’s exe-

cution provide a high degree of coverage of the syntactic structure
of a given program. Our approach involves augmenting DECKARD’s
vector generation phase with a third pass: the generation of vectors
for semantic clones. We then use the same LSH-based clustering
technique to solve the near-neighbor problem and generate clone
reports.

3.1 Definitions
Considering once again the motivating example in Figure 2, we

notice that the computation of data is identical to that of the code in
Figure 1. However, purely syntactic definitions of code clones do
not capture this relationship. Syntactic definitions of code clones
are defined similarly:

Definition 3.1 (Syntactic Code Clone) Two disjoint, contiguous se-
quences of program syntax S1 and S2 are code clones if and only
if δ(S1, S2).

In this general definition, the precise form of the syntax is not
described, and δ refers to a similarity function. CP-Miner uses a
distance metric on token streams called gap, CloneDR uses a size-
sensitive definition on trees referred to as Similarity, and DECKARD

uses tree edit distance.
We expand this definition to include non-contiguous but related

code. Assume we have a mapping function, ρ, that maps a sequence
of syntax (of arbitrary type) to a PDG subgraph.

Definition 3.2 (Semantic Code Clone) Two disjoint, possibly non-
contiguous sequences of program syntax S1 and S2 are semantic
code clones if and only if S1 and S2 are syntactic code clones or
ρ(S1) is isomorphic to ρ(S2).

Applying this relaxed definition to our example allows us to con-
sider a subset of the code in Figure 2 as a candidate for clone detec-
tion. In this instance, we disregard the timing code. The remaining
subset is a syntactic clone with the body of Figure 1, and their as-
sociated PDGs are identical.

3.2 High-Level Algorithm
There are difficulties with locating these semantic clones in a

scalable manner. First, there is a combinatorial explosion of pos-
sible clones. Second, although graph isomorphism testing may be
feasible for small, simple PDGs, it is computationally expensive
in general. Any method that would require pairwise comparisons
would not scale.

Thus far, no scalable algorithm exists for detecting semantic clones.
We present a scalable, approximate technique for locating semantic
clones based on the fact that both structured syntax trees and depen-
dence graphs are derived from the original source code. Because of
this relationship, we are able to construct a mapping function that
locates the associated syntax for a given PDG subgraph. We refer
to this associated syntax as the syntactic image. For compatibil-
ity with DECKARD’s tree-based clone detection, we map to AST
forests.

Definition 3.3 (Syntactic Image) The syntactic image of a PDG
subgraph G, μ(G), is the maximal set of AST subtrees that corre-
spond to the concrete syntax of the nodes in G. The set is a domi-
nating set, i.e., for all pairs of trees T, T ′ ∈ μ(G), T � T ′.

For example, consider the code snippet in Figure 1. Suppose we
have the PDG subgraph corresponding to all lines that reference the
variable i, i.e., the graph consisting of the nodes (from Figure 3)
“int i,” “i < k,” “i++,” and the actual parameter to the printf call.

We map each of these nodes to their structured syntax. The
actual parameter maps to the subtree corresponding to the call of
printf, which is the “function-call” subtree in Figure 4 (we only
consider subtrees that can be syntactically separated).

The incrementing of i corresponds to the “ipost-incr” subtree,
and the control point (i < k) corresponds to the “while” subtree.
Because the “ipost-incr” subtree is subsumed by the “while” sub-
tree, we include only the latter in the syntactic image.

Mapping a PDG subgraph to an AST forest effectively reduces
the graph similarity problem to an easier tree similarity problem
that we can solve efficiently using DECKARD.

yields something that we can match very efficiently, both par-
tially and fully, using DECKARD’s vector generation. This rela-
tionship to syntax effectively reduces the graph similarity problem
to an easier tree similarity problem.

The overall architecture is shown in Figure 5. At a high level,
our algorithm functions as follows:

1. We run DECKARD’s primary vector generation. Subtree and
sliding window vectors efficiently provide contiguous syn-
tactic clone candidates for the entire program.

2. For each procedure, we enumerate a finite set of significant
subgraphs; that is, we enumerate subgraphs that hold seman-
tic relevance and are likely to be good semantic clone can-
didates. These algorithms are discussed in Section 3.3. In
short, we produce subgraphs of maximal size that are likely
to represent distinct computations.

3. For each subgraph G, we compute μ(G) to generate an AST
forest.

4. We use DECKARD’s sliding window vector merging to gen-
erate a complete set of characteristic vectors for each AST
forest.

5. We use LSH to quickly solve the near-neighbor problem and
enumerate the clone groups. As before, we apply a set of
post-processing filters to remove spurious clone groups and
clone group members.

If a semantic vector is a member of a clone group, then the flow
of data represented by its syntactic members is duplicated by the
other members of the clone group—each of which can come from
any phase of vector generation. That is, a given semantic vector
can match either:

• a complete AST subtree,
• a sequence of contiguous statements, or
• another semantic vector: a slice of another procedure.

3.3 PDG Subgraph Selection
Our algorithm generates vectors over a finite set of subgraphs

of a given procedure’s PDG. This section details our definitions of
interesting subgraph sets and our algorithms for enumerating them.

3.3.1 Weakly Connected Components
Consider two statements, s1 and s2, that are contained in a single

given procedure with PDG P . As discussed in Section 2.1, s1 and
s2 have an implied relationship (a data or control dependency) if
there exists a path between them. However, the absence of a path
does not imply that the statements are completely unrelated: the
two statements could both influence a third, common statement.
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Figure 5: Semantic clone detection algorithm.

Consider our earlier example in Figure 1. Statements 5 (increment)
and 8 (simple assignment) do not have a connecting path in the
PDG, but they are still tied together by their common use at the call
site on line 10.

Note, though, that these indirect relationships are characterized
by undirected paths in the PDG. We say that two statements are
unrelated if there does not exist any undirected path between them
in the PDG, i.e., each resides in separate weakly connected compo-
nents.

A natural but conservative choice for a set of interesting PDG
subgraphs is to cluster the graph into weakly connected compo-
nents. Statements that are separated are definitely unrelated, and
statements that are clustered have a semantic relationship. These
subgraphs are especially interesting if their respective sets of state-
ments are interleaved when viewed in the context of the concrete
syntax of the procedure.

Practically, this can be implemented with a series of linear-time
graph searches. As previously noted, we operate over our sim-
plified PDGs: implicit entry and exit nodes are omitted. Without
breaking the implicit control dependence of function entry and exit,
every procedure would have exactly one weakly connected compo-
nent.

3.3.2 Semantic Threads
Although analyzing weakly connected components for clones

does yield interesting results, many semantic clones may not be
detected this way. Thus, for better coverage, we need a more fine-
grained partitioning of the statements in a procedure body. First,
to illustrate the problem, let us consider the following hypothetical
example in Figure 6.

It is clear that there are two distinct flows of data throughout the
function, which only merge at the end. However, the aggregation
of the two calculations (through “return result”) causes the entire
function body to be grouped as a single component. The PDG sub-
graphs corresponding to these computations overlap, but only at the
end when the results are returned.

One way of modeling this particular flow of data is through the
concept of a forward slice [8], which is a specific variant of pro-
gram slicing [20]. A forward slice from a program point s with
respect to a variable v consists of all program points that may be
directly or indirectly affected by the execution of s with the value

struct file_stat *compute_statistics() {
struct file_stat *result = malloc(sizeof(struct

file_stat));
int avg_temp_file_size = 0;
int avg_data_file_size = 0;

/* iterate the temp files */
...
/* iterate the data files */
...
/* avg results and store in avg_temp_file_size */
...
/* avg results and store in avg_data_file_size */
...

result−>temp_size = avg_temp_file_size;
result−>data_size = avg_data_file_size;
return result;

}

Figure 6: Semantic thread example.

of v. In our work, we adopt a simplified definition, which assumes
that all slices from point s are computed with respect to all variables
used or defined in s.

This type of static intraprocedural slicing is straightforward when
given a dependence graph. Forward slices are defined by graph
connectivity in the PDG: each forward edge encodes a specific data
or control dependency.

Definition 3.4 (Forward Slice) Let G be the PDG of procedure P ,
and let s be a statement in P . The static intraprocedural forward
slice from s over P , f(s), is defined as the set of all nodes reach-
able from s in G.

In the above example, two forward slices from the declarations at
the second and third lines yield two distinct but interleaving threads
of computation that intersect at one statement.

We wish to enumerate these potentially overlapping flows of data
for each procedure, which we refer to as semantic threads.

Definition 3.5 (Semantic Thread) A semantic thread of a proce-
dure P is either a forward slice f(s) or the union of one or more
forward slices.

Simply enumerating the set of forward slices of a procedure yields
redundant data. For example, some slices may fully subsume oth-
ers. It is clear from our definition that

∀s1, s2 ∈ P. s1 ∈ f(s2) ⇒ f(s1) ⊆ f(s2)

In addition, although some overlapping among different slices
should be allowed (and even desired), a significant amount of over-
lapping may imply that these slices might be part of the same higher-
level computation. This is especially evident in forward slices from
consecutive, related declarations:

int count_list_nodes(struct list_node *head) {
int i = 0;
struct list_node *tail = head−>prev;

while (head != tail && i < MAX) {
i++;
head = head−>next;

}

return i;
}

The forward slices from the declarations on the first and second
lines differ only in their respective first nodes. Considering these to
be separate computations would be a mistake: we not only create



Algorithm 1 Construct Semantic Threads
1: function BST(P : PDG, γ : int): STs
2: IST, seen← ∅
3: Sort nodes in P in asc. order w.r.t. their locs. in source code.
4: for all node n in P do
5: if n /∈ seen then
6: slice← DepthFirstSearch(n, P )
7: seen← seen ∪ slice
8: IST ← AddSlice(IST, slice, γ)
9: end if

10: end for
11: return IST
12: end function
13:
14: function ADDSLICE(IST : STs, slice : ST, γ : int): STs
15: conflicts← ∅
16: for all thread T in IST do
17: if |slice ∩ T | > γ then
18: conflicts← conflicts ∪ {T}
19: end if
20: end for
21: if conflicts = ∅ then
22: return IST ∪ {slice}
23: else
24: slice← slice ∪S

T∈conflicts T

25: return AddSlice(IST \ conflicts, slice, γ)
26: end if
27: end function

redundant data, but we also fail to recognize the larger semantic
thread and may miss important clones.

We define a set, IST (P, γ), that consists of our set of interesting
γ-overlapping semantic threads. These subgraphs represent our
candidates for possible semantic clones.

Definition 3.6 (Interesting Semantic Threads) The set of inter-
esting γ-overlapping semantic threads is a finite set of semantic
threads with the following properties:

1. The set is complete; its union represents the entire PDG.

2. The set must not contain any fully subsumed threads:

� sl, sl′ ∈ IST (P, γ).sl′ ⊆ sl

3. Any two threads in the set share at most γ nodes.

∀sl, sl′ ∈ IST (P, γ).|sl ∩ sl′| ≤ γ

4. IST (P, γ) is maximal, i.e., it has the maximal size of all sets
that meet properties 1-3.

With γ set to one, the first code example has two semantic threads.
Note that setting γ to zero is precisely equivalent to computing
weakly connected components.

Algorithm 1 is a simple greedy algorithm for computing this
set. The function AddSlice ensures that the final set contains
no threads that overlap by more than γ nodes, and the enumeration
of each node in the PDG implies the completeness of the returned
set. The following argues that Algorithm 1 produces a maximal set.

Lemma 3.7 If AddSlice combines two slices, then they must be
combined in any set that satisfies the definition of interesting se-
mantic threads.

PROOF. Consider a procedure P and two statements, s1 and s2.
Assume that |f(s1)∩ f(s2)| > γ. Their individual presence in the
final set would clearly violate property 3.

Let IST (P, γ) be an arbitrary set that meets our requirements.
Because every node must be included in at least one semantic thread

and the domain of semantic threads consists of non-empty unions
of forward slices, it follows that:

|f(s1) ∩ f(s2)| > γ ⇒ ∃ T ∈ IST (P, γ).f(s1) ∪ f(s2) ⊆ T

Similarly, if two slices must be combined, then any thread that
conflicts with this combined thread must also be combined.
AddSlice implements this process of recursive greedy combi-

nation exactly.

Theorem 3.8 (Maximality) The set of interesting semantic threads
returned by BST is maximal.

PROOF. Define BST (P, γ) to be the set returned by Algorithm 1.
Assume that there exists another set, IST , that meets all require-
ments and is strictly larger than this set.

BST (P, γ) = {T1, . . . , Tn}
IST (P, γ) =

˘
T ′

1, . . . , T
′
n, . . . , T ′

m

¯

Because each set contains no fully subsumed threads, it follows that
there exists at least one “head node,” h1, . . . , hn and h′

1, . . . , h
′
m

for each semantic thread. By the pigeonhole principle,

∃ i, j, k. h′
i ∈ Tk ∧ h′

j ∈ Tk

h′
i and h′

j are associated with unique forward slices that do not fully
subsume each other. By Lemma 3.7, because AddSlice com-
bined these two slices (f(h′

i) ∪ f(h′
j) ⊆ Tk), they must be com-

bined in every set that meets our requirements. Because these slices
are separated in IST , IST does not meet our requirements—a
contradiction.

In the worst case, the algorithm’s execution time is cubic in the
number of nodes of a given procedure’s PDG. In practice, this is
not a problem. The size of a given PDG is usually small, in the
tens of nodes, and the number of non-subsumed forward slices is
considerably less.

The problem also scales gracefully in the sense that procedure
sizes are generally bounded: larger code bases have more proce-
dures, not necessarily larger procedures. Finally, our empirical re-
sults show that the execution time of this algorithm is inconsequen-
tial (Section 5).

3.3.3 Empirical Study
This section contains a brief evaluation of the occurrence of weakly

connected components and semantic threads in real systems. We
evaluated five open source projects: The GIMP, GTK+, MySQL,
PostgreSQL, and the Linux kernel (these same projects are ana-
lyzed for clones in Section 5). Figure 7 contains the numbers of
weakly connected components per project.

Procedures Procedures with n WCCs
1 2 3 4 5+

GIMP 13337 7255 3498 1255 627 702
GTK 13284 8773 2967 763 348 433

MySQL 14408 5419 6134 1450 616 789
PostgreSQL 9276 4105 3290 1033 335 513

Linux 136480 60533 52771 13273 5094 4809

Figure 7: Number of weakly connected components.

We noted that each project contains a significant number of pro-
cedures with more than one weakly connected component. This
suggests that there are functions in real systems that do in fact per-
form separate computations. Not all of these computations are nec-
essarily interleaved; they could be sequential, and may not repre-
sent new targets for clone detection.

Figure 8 counts the number of procedures that contain non-trivial
weakly connected components (γ = 0) and γ = 3 semantic threads.



Procedures Procs w/non-triv. Procs w/non-triv.
γ = 0 STs γ = 3 STs

GIMP 13337 903 3008
GTK 13284 697 2380

MySQL 14408 1618 2441
PostgreSQL 9276 1221 2267

Linux 136480 10609 22514

Figure 8: Number of procedures with non-trivial semantic threads.

Non-trivial semantic threads include interleaved sequences of re-
lated code that cannot be detected by current scalable clone detec-
tion techniques.

Overall, we are able to consider a significant number of new
clone candidates. In addition, the concept of γ-overlapping seman-
tic threads allows us to extend our search to a far greater number of
potential clone candidates.

4. IMPLEMENTATION
This section describes the implementation of our tool. It consists

of three primary components: AST and PDG generation, vector
generation, and LSH clustering. To generate syntax trees and de-
pendence graphs, we use Grammatech’s CodeSurfer1, which allows
us to analyze both C and C++ code bases. We output this data to
a proprietary format using a Scheme script that utilizes Grammat-
ech’s API.

This raw data is read and used by a Java implementation of
DECKARD’s vector generation engine. This component also per-
forms the syntactic image mapping and semantic vector generation.
The LSH clustering back-end of DECKARD is used without modi-
fication.

4.1 Implementation Details
DECKARD’s vector generation engine previously operated over

parse trees. We reimplemented the algorithm to generate vectors
for abstract syntax trees. In the process, we made several core im-
provements.

In order to efficiently utilize our dual core machines, we made
the vector generation phase parallel using Java’s concurrency API.
At present, we use a procedure as a single unit of work. The tasks
are inherently independent: generating the vectors for a procedure
does not require any data outside of the procedure. Our paral-
lel Java implementation generated vectors faster than we expected
(Section 5).

The move to ASTs also posed a challenge. Unlike token-based
parse trees, setting the minimum size for a vector was not intu-
itive. While 30 tokens (DECKARD’s default) usually map to about
three statements, 30 AST nodes could map to either fewer (less than
one) or many more. Instead of judging a vector’s size on its magni-
tude, we utilize the additional semantic information from the AST
type hierarchy to judge vectors based on the number of contained
statement nodes. We modified both the subtree and sliding window
phases to use this new measure.2

One challenge the original DECKARD faced was the coverage
of all interesting combinations of statements. The coverage was
affected by three parameters: the minimum vector size, the size of
the sliding window, and the sliding window’s stride, or how often it
outputs vectors. Because the sliding window is now sized on state-
ment nodes, we can permanently set the stride to one and output all
interesting vectors: each new vector has at least one new statement.

Instead of operating in a single pass over a fixed vector size,
we scan several times, starting at the minimum vector size. Each

1http://www.grammatech.com
2As a usability improvement, we can also set the measure to use
lines of code. This can cause issues with multiline statements,
though.

pass increases the sliding window size by a multiplicative factor,
which we have set at 1.5. The sliding window phase terminates
when the minimum vector size exceeds the size of the procedure.
We apply this exponential sliding window when generating vectors
over semantic threads as well.

4.2 Other Implementation Considerations
Our greatest limitation is that we must have compilable code to

retrieve ASTs and PDGs, and only the compiled code is reflected in
these structures. At present, we do not have a way to scan code that
is deleted by the preprocessor before compilation (other than run-
ning multiple builds with different settings). To mitigate this prob-
lem for our evaluated projects, we set the configuration to maximize
the amount of compiled code whenever possible. For example, our
Linux configuration builds every possible kernel option and builds
modules for every driver.

The construction of PDGs is not a trivial task, and it presents
scaling issues in its own right. CodeSurfer facilitates this process
by offering numerous options that control the precision of the PDG
build. In order to build PDGs for projects on the million line scale,
we were forced to disable precise alias analysis on all builds. This
undoubtedly leads to some imprecision in the final graphs, and we
could potentially produce multiple semantic threads where only
one truly exists. This may cause our tool to miss certain seman-
tic clones, but it does not cause false positives.

With the addition of the semantic vector phase, we have the po-
tential to generate many duplicate vectors. This is not a problem in
practice. First, we take advantage of the intraprocedural model and
buffer all vectors before printing them, conservatively removing the
likely duplicates as they are added. The comparatively small size
of a single procedure lets these linear algorithms run quickly.

Second, the LSH back-end is robust against these extra vectors:
they merely show up as duplicates in true clone groups or as spu-
rious clone groups. Our post-processing engine quickly removes
these.

Third, we exploit the fact that there is a correlation between the
number of PDG nodes and the number of AST statement nodes. In
the semantic vector phase, we size γ (the overlap constant) to be
strictly smaller than our minimum vector size.

5. EMPIRICAL EVALUATION
We evaluated the effectiveness of our tool on five open source

projects: The GIMP, GTK+, MySQL, PostgreSQL, and the Linux
kernel. The evaluation was performed against DECKARD, the state-
of-the-art tool for detecting syntactic clones. In this section, we
also present examples of new classes of detectable clones.

5.1 Experimental Setup
We performed our evaluation on a Fedora 6/64bit workstation

with a 2.66GHz Core 2 Duo and 4GB of RAM. We used CodeSurfer
2.1p1 and the Sun Java 1.6.0u1 64-bit server VM. To set up the data
for analysis, we first maximized the build configuration of each
project. We then allowed CodeSurfer to build the PDGs and dump
the information to a file. Figure 9 lists the approximate project sizes
and build times for our test targets. The size metric is approximate;
all whitespace is counted.

Size (MLoc) PDG Build Time PDG Dump Time

GIMP 0.78 25m 57s 20m 40s
GTK 0.88 12m 50s 16m 54s

MySQL 1.13 16m 56s 12m 36s
PostgreSQL 0.74 9m 12s 21m 48s

Linux 7.31 296m 1s 241m 4s

Figure 9: Project sizes and AST/PDG build times.



The PDG builds—especially for the Linux kernel—are particu-
larly expensive. When viewed in the context of other PDG based
detection approaches that use subgraph isomorphism testing, though,
the build times are quite reasonable. In addition, this cost is in-
curred once per project: repeated runs of our tool reuse the same
input data.

5.2 Performance
Through our testing, we observed that requiring a minimum state-

ment node count of 8 produces clones similar in size to DECKARD’s
minimum token count of 50. Figure 10 shows the execution times
for both our semantic clone detection algorithm and our tree-based
algorithm.

AST Only AST/PDG
VGen Cluster VGen Cluster

GIMP 0m37s 1m11s 0m44s 1m45s
GTK 0m31s 0m57s 0m34s 0m53s

MySQL 0m27s 1m16s 0m29s 1m34s
PostgreSQL 0m40s 1m50s 0m51s 2m30s

Linux 8m42s 6m1s 9m48s 7m24s

Figure 10: Clone detection times.

In this table, the VGen phase performs all vector generation. For
both the tree-only and the tree/PDG modes, this includes the sub-
tree and sliding window phases. In addition, the AST/PDG mode
enumerates both the weakly connected components and the γ = 3
semantic threads (Algorithm 1) and enumerates their respective
vectors using the sliding window.

Semantic vector generation adds surprisingly little to the execu-
tion overhead. We can attribute this to several factors:

• PDGs are in general significantly (about an order of magni-
tude) smaller than their equivalent ASTs;

• There are relatively few semantic threads per procedure; and
• Our parallel Java implementation allows the utilization of

spare CPU cycles that sat idle during the previously IO-bound
tree-only phase.

Coverage wise, our tool locates more clones than its tree-only
predecessor. This is expected: we produce exactly the same set
of vectors, then augment it with vectors for semantic clones. In
many cases, we observed that the average number of cloned lines
of code per clone group differs significantly between the tree-only
and semantic versions of the analysis. As we increase the minimum
number of statement nodes for a given clone group, the clones re-
ported by the semantic analysis tend to cover more lines of code
than those reported by the tree-only analysis.

We believe this is because when the minimum vector size is set
to smaller values, the larger semantic clones are detected simul-
taneously with their smaller, contiguous constituent components.
While the semantics-based analysis is able to tie these disparate
components together, it does not necessarily increase the cover-
age. When the minimum is raised, these smaller components are
no longer detected as clones.

Figure 11 contains our coverage results for the Linux kernel.
Line counts are conservative: we count the precise set of lines cov-
ered by each clone group. Whitespace is ignored, and multi-line
statements are usually counted as a single line.

After each of our experiments, we sampled thirty clone groups at
random and verified their contents as clones. When the minimum
number of statement nodes was set to 4, we experienced a false
positive rate of 2 in 30. These false positives took the form of small
(two to three lines) snippets of code that incidentally mapped to
identical characteristic vectors. When the minimum was set to 8 or
more, we found no false positives in these random samples.

1 static void zc0301_release_resources(struct zc0301_device* cam)
2 {
3 DBG(2, "V4L2 device /dev/video%d deregistered"

, cam−>v4ldev−>minor);
4 video_set_drvdata(cam−>v4ldev, NULL);
5 video_unregister_device(cam−>v4ldev);
6 kfree(cam−>control_buffer);
7 }

1 static void sn9c102_release_resources(struct sn9c102_device* cam)
2 {
3 mutex_lock(&sn9c102_sysfs_lock);

5 DBG(2, "V4L2 device /dev/video%d deregistered"
, cam−>v4ldev−>minor);

6 video_set_drvdata(cam−>v4ldev, NULL);
7 video_unregister_device(cam−>v4ldev);

9 mutex_unlock(&sn9c102_sysfs_lock);
10 kfree(cam−>control_buffer);
11 }

Figure 12: Two semantic clones differing only by global locking
(Linux).

This low false positive rate is possibly due to the relatively large
magnitude of AST-based vectors: the Linux kernel code contained
(after macro expansion) an average of 30 AST nodes per line. These
larger vectors create a more unique signature for each line of code
that is less likely to incidentally match a non-identical line.

5.3 Qualitative Analysis
The quantitative results show that this technique finds more clones

with a larger average size. However, this new class of analysis de-
serves a closer, qualitative look at the results. Semantic clones are
more interesting than simple copied and pasted or otherwise struc-
turally identical code. We have observed programming idioms that
are pervasive throughout the results.

On a general level, our tool was able to locate semantic clones
that were slightly to somewhat larger than their syntactic equiva-
lents, which were also found. The semantic clone often contained
the syntactic clone coupled with a limited number of declarations,
initializations, or return statements that were otherwise separated
from the syntactic clone by unrelated statements. In addition, many
semantic clones were subsumed by larger syntactic clones.

We observed cases where our tool was able to locate clone groups
that differed only in their use of global locking (Figures 12 and 13).
In each case, the tool generated semantic threads for the intrinsic
calculation as well as the locking. While the locking pattern itself
was too small to be considered a clone candidate, the calculations
themselves were matched. In Figure 12, we omitted the third mem-
ber of the clone group due to space restrictions. This third member
also had the locking code in place, and each came from very similar
drivers. This lack of locking in one of the three could possibly be
indicative of a bug.

Our tool also found clones that differed only by debugging state-
ments. One example appears in Figure 14. While we found several
examples of this behavior, we do suspect that we missed other cases
due to the fact that logging code often displays current state infor-
mation. This places a data dependency on the logging code and
causes its inclusion in a larger semantic thread.

We were able to discover specific data access patterns. One ex-
ample appears in Figure 15. The pattern consists of the semantic
thread created by the union of the forward slices of the underlined
variables. Note that unrelated (data-wise, but perhaps temporally)
statements are interleaved through the pattern-forming code. These
frequency and complexity of these “patterns” implies that they are
possibly prescriptive and not just coincidental. They could then be
used as a specification for bug finding.



Min. Nds. AST Only PDG/AST

4 935203 940497
8 350804 354079

14 150694 152484
22 65275 66489
32 30039 30367

(a) Cloned LOC

Min. Nds. AST Only PDG/AST

4 160934 170544
8 49003 54761

14 16114 18918
22 5692 7439
32 2295 3446

(b) Num. of Clone Groups

Min. Nds. AST Only PDG/AST

4 13.9 14.1
8 15.5 16.2
14 20.8 22.5
22 26.5 30.1
32 31.9 38.9

(c) Avg. Cloned LOC / Group
Figure 11: Coverage results for the Linux Kernel.

1 static void os_event_free_internal(os_event_t event)
2 {
3 ut_a(event);
4 /* This is to avoid freeing the mutex twice */
5 os_fast_mutex_free(&(event−>os_mutex));
6 ut_a(0 == pthread_cond_destroy(&(event−>cond_var)));
7 /* Remove from the list of events */
8 UT_LIST_REMOVE(os_event_list, os_event_list, event);
9 os_event_count−−;

10 ut_free(event);
11 }

1 void os_event_free(os_event_t event)
2 {
3 ut_a(event);
4 os_fast_mutex_free(&(event−>os_mutex));
5 ut_a(0 == pthread_cond_destroy(&(event−>cond_var)));
6 /* Remove from the list of events */
7 os_mutex_enter(os_sync_mutex);
8 UT_LIST_REMOVE(os_event_list, os_event_list, event);
9 os_event_count−−;

10 os_mutex_exit(os_sync_mutex);
11 ut_free(event);
12 }

Figure 13: Another example of semantic clones differing only by global locking (MySQL).

6. DISCUSSION AND RELATED WORK
This work presents the first scalable clone analysis that incorpo-

rates semantic information. Komondoor and Horwitz [12] use the
dependence graph to find semantically identical code fragments.
They also successfully use this technique [11] to identify candi-
dates for automatic procedure extraction. Our work also has the
potential to be used in this way: our semantic threads are similar
to the subgraphs that they discover and extract. Their work relies
heavily on expensive graph algorithms and pairwise comparisons
and does not scale like ours: they report analysis times of more
than an hour [12] (not including the PDG build) for a 10,000 line
program. Our algorithm’s scalability would allow us to analyze
larger projects that may have a greater number of duplicate code
fragments. This scalability also makes possible a more detailed
and direct comparison with different techniques and tools, similar
to the experiments performed by Bellon et al. [4].

We use a scalable, approximate technique for solving the tree
similarity problem. Wahler et al. [19] use frequent itemset mining
on serialized representations of ASTs to detect clones. Other tech-
niques [13, 17] generate fingerprints of subtrees and report code
with similar fingerprints as clones. Compared with our vector-
based clone detection, these techniques are less scalable and more
coarse grained.

Most potential applications for purely syntactic clone detection
are also feasible for semantics-assisted clone detection, and other,
new applications exist as well. In the previous section, we iden-
tified code patterns that our tool was able to find with the aid of
dependency information. Bruntink et al. studied the capabilities
of token-based and AST-based clone detection tools for detecting
crosscutting concerns [5]. Our PDG-based clone definition may
further facilitate such a detection since crosscutting concerns may
form large semantic threads. Li and Zhou [15] use frequent item-
set mining to identify similar code patterns. Their technique is
highly scalable as well, but the mined properties lack temporal
information–only association. The patterns we inferred are specific
and precise, reflecting direct data flow relationships. However, we
found fewer total patterns. We leave for future work the study of
our tool’s efficacy in mining true specifications and the evaluation
of these pattern and data-based specifications against those found
by automaton-learning techniques [1].

Clone detection has also been used to detect design level similar-
ities. Basit and Jarzabek [2] use CCFinder to detect syntactic clone
fragments and later correlate them using data mining techniques.
Our semantics-based technique could be used in this way as well,

and the ability to detect interleaving patterns might increase the
scope of the analysis.

Another potential interesting application of this work is soft-
ware plagiarism detection. Current, well-used tools include Moss
[18] and JPlag3, but these are too coarse grained to find general
sets of code clones. Liu et al. [16] have recently developed the
GPLAG tool, which applies subgraph isomorphism testing to PDGs
to identify plagiarized code. They note that PDGs are resilient to
semantics-preserving modifications like (unrelated) statement in-
sertion, statement reordering, and control replacement. Our tech-
nique can easily handle interleaved clones, which are characteristic
of code with purposefully inserted garbage statements. We expect
that our technique can be straightforwardly extended to handle con-
trol replacement as well.

We also handle statement reordering: we eliminate ordering in-
formation as a result of our transformation of trees to characteristic
vectors. Our scalability provides additional opportunities. For ex-
ample, our tool could be used to perform open source license com-
pliance checks for proprietary software. In this mode, we could
generate a large body of vectors representing common or related
open source projects and include them in the clustering phase. We
leave for future work the evaluation of our tool’s applicability to
plagiarism detection.

Aside from the scale issues of performing both pairwise compar-
isons and subgraph isomorphism testing, GPLAG considers only
top level procedures as candidates for clones. We are able to con-
sider a much larger set that includes smaller code fragments. Their
definition of code similarity as general subgraph isomorphism is
also less refined than ours: two isomorphic subgraphs that cross
logical flows of data are not likely to be interesting clones. We
more carefully enumerate these flows as semantic threads.

7. CONCLUSIONS AND FUTURE WORK
This paper presents the first scalable algorithm for semantic clone

detection based on dependence graphs. We have extended the def-
inition of a code clone to include semantically related code and
provided an approximate algorithm for locating these clone pairs.
We reduced the difficult graph similarity problem to a tree similar-
ity problem by mapping interesting semantic fragments to their re-
lated syntax. We then solved this tree-based problem using a highly
scalable technique. We have implemented a practical tool based
on our algorithm that scales to millions of lines of code. It finds

3http://www.jplag.de



1 struct nfs_server *server = NFS_SB(sb);
5 struct inode *inode;
6 int error;

8 /* create a dummy root dentry with dummy inode for this superblock */
9 if (!sb−>s_root) {

10 struct nfs_fh dummyfh;
16 nfs_fattr_init(&fattr);
17 fattr.valid = NFS_ATTR_FATTR;
18 fattr.type = NFDIR;

1 struct nfs_server *server = NFS_SB(sb);
4 struct inode *inode;
5 int error;

7 dprintk("--> nfs4_get_root()\n");

9 /* create a dummy root dentry with dummy inode for this superblock */
10 if (!sb−>s_root) {
17 nfs_fattr_init(&fattr);
18 fattr.valid = NFS_ATTR_FATTR;
19 fattr.type = NFDIR;

Figure 14: Partial semantic clones differing only by a debugging statement (Linux).

1 pg_index = heap_open(IndexRelationId, RowExclusiveLock);
2 indexTuple = SearchSysCacheCopy(INDEXRELID,

ObjectIdGetDatum(indexRelationId), 0, 0, 0);

4 if (!HeapTupleIsValid(indexTuple))
5 elog(ERROR, "cache lookup failed for index %u",

indexRelationId);

7 indexForm = (Form_pg_index) GETSTRUCT(indexTuple);

9 Assert(indexForm−>indexrelid = indexRelationId);
10 Assert(!indexForm−>indisvalid);
11 indexForm−>indisvalid = true;

13 simple_heap_update(pg_index, &indexTuple−>t_self, indexTuple);
14 CatalogUpdateIndexes(pg_index, indexTuple);

16 heap_close(pg_index, RowExclusiveLock)

1 rel = heap_open(TypeRelationId, RowExclusiveLock);
2 tup = SearchSysCacheCopy(TYPEOID, ObjectIdGetDatum(typeOid),

0, 0, 0);

4 if (!HeapTupleIsValid(tup))
5 elog(ERROR, "cache lookup failed for type %u",

typeOid);

7 typTup = (Form_pg_type) GETSTRUCT(tup);

9 typTup−>typowner = newOwnerId;

11 simple_heap_update(rel, &tup−>t_self, tup);
12 CatalogUpdateIndexes(rel, tup);

14 /* Update owner dependency reference */
15 changeDependencyOnOwner(TypeRelationId, typeOid, newOwnerId);

17 heap_close(rel, RowExclusiveLock); /* Clean up */

Figure 15: An example of semantic clones revealing a pattern (PostgreSQL).

strictly more clones than previous syntax-only techniques, and it is
capable of producing interesting sets of semantically similar code
fragments.

For future work, we are interested in developing an intraprocedu-
ral analysis framework that could aid us in generating PDGs more
quickly and for other languages. We also plan to explore applica-
tions of this technique.
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