
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

MOBILE AND UBIQUITOUS SYSTEMS
www.computer.org/pervasive

Scalable, Distributed, Real-Time
Map Generation

Jonathan J. Davies, Alastair R. Beresford, and Andy Hopper

Vol. 5, No. 4

October–December 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

1536-1268/06/$20.00 © 2006 IEEE ■ Published by the IEEE CS and IEEE ComSoc PERVASIVEcomputing 47

P O S I T I O N I N G S Y S T E M S

Scalable, Distributed,
Real-Time Map
Generation

M
odern vehicles have a plethora

of onboard computing equip-

ment. Today’s cars have up to

50 microprocessors governing

various aspects of their oper-

ation. We foresee a future in which vehicles’

sensor, communication, and computational re-

sources are harnessed to improve the trans-

portation infrastructure and have a positive

impact on society.

To start working toward that vision, we can

exploit modern vehicles’ com-

puting facilities to provide a

host of participative mobile

applications. Such uses include

vastly improved collection and

dissemination of weather data

and real-time measurement of

road surface conditions. In particular, the shar-

ing of movement data from vehicles might help

facilitate city planning, improve fleet manage-

ment, and enforce congestion charging (charging

fees for driving in certain areas at certain times).

The map data in a vehicle’s navigation unit

forms the basis of the unit’s routing decisions. This

data is prone to cartographic errors and to inac-

curacies due to recent changes in the road net-

work, including temporary road closures. These

problems can frustrate drivers when they cause the

unit to give impossible driving instructions.

So, organizations that produce digital maps,

such as Navteq and Tele Atlas, must invest signif-

icant effort in maintaining and improving their

data’s accuracy. Details about new roads and the

modification or closure of existing roads must be

incorporated into the databases in a timely fash-

ion. Mapping organizations obtain data about

road network changes from various sources,

including local authorities and building contrac-

tors, but this data tends to be highly inaccurate.

Aerial photographs can help mapmakers deduce

roads’ presence and shape but are prohibitively

expensive to update frequently. Instead, mapping

companies typically own fleets of probe vehicles

that investigate discrepancies and explore new

roads. Tele Atlas spends tens of millions of dollars

each year in North America to keep its databases

up-to-date, while in 2004 Navteq employed more

than 500 analysts who drove a total of 3.5 million

miles throughout North America and Europe.

To simplify this mapmaking process, vehicles

could use their computational resources to

directly generate accurate map data. We envisage

vehicles on the road network forming a wide-

scale mobile sensing and computing platform.

Toward that goal, we’ve developed an algorithm

for keeping digital maps up-to-date, using ordi-

nary vehicles making normal journeys rather than

fleets of dedicated probe vehicles. However, fur-

ther development is required to address several

remaining challenges, including the choice of

architecture to support the algorithm.

Automatically generating
digital maps

Information about a road network can be rep-

resented as a directed graph with metadata asso-

ciated with its edges. Such a graph can be used to

both render a graphical depiction of the road net-

work and serve as an input to in-vehicle naviga-

tion systems. The graph’s edges represent roads

(or road lanes), and its vertices represent junctions.

In this application, many vehicles participate in the collection,

processing, and dissemination of data to automatically generate digital

road maps.

I N T E L L I G E N T T R A N S P O R T A T I O N S Y S T E M S

Jonathan J. Davies, Alastair R.

Beresford, and Andy Hopper

University of Cambridge

Generating a directed graph

The application based on our algo-

rithm transforms GPS traces from mul-

tiple vehicles into a road map. Process-

ing involves four basic stages:

1. Generate a 2D histogram indicating

the number of GPS fixes found in

each cell.

2. Deduce the road edges’ positions.

3. Compute the positions of the roads’

centerlines.

4. Determine the direction of travel

permitted along each road.

We now examine these stages in detail,

using figure 1 as a running example.

A trace of location fixes obtained from

a vehicle’s GPS unit will show which

roads the vehicle has traveled along. The

trace will contain errors due to uncer-

tainty in the location fixes and missed

sightings when the GPS satellite signal is

obscured. From a single trace, distin-

guishing between junctions and bends in

roads is difficult. Moreover, the GPS

readings’ inherent errors might mean that

the trace misrepresents the roads’ true

positions. However, if we superimpose

the traces from several vehicles traveling

along different routes, junctions will soon

become apparent. Also, the roads’ true

positions will become clearer as noise due

to errors becomes less significant.

Creating a histogram. Splitting up 2D

space in the horizontal plane into cells—

small, tessellating, square units of area—

we wish to determine the likelihood that

each cell is part of a road. The Nyquist-

Shannon sampling theorem dictates that

the cell width should be at most half the

minimum road width to prevent aliasing.

In practice, this equates to a few meters.

A GPS reading falling in a cell is a good

indication that the cell might be part of a

road. So, if we associate with each cell

the number of GPS points that fall in it,

cells with higher frequencies will more

likely be parts of a road. In this way, we

group our 2D real-valued GPS fixes into

discrete cells. (For a brief look at similar

research and other research related to

map generation, see the “Related Work

in Map Generation” sidebar.)

At highway speeds, with GPS fixes

obtained at 1 Hz, consecutive fixes will

fall approximately 30 meters apart. Thus,

with a cell size of a few meters, succes-

sive fixes won’t lie in adjacent cells, leav-

ing us with disjoint regions of road. But

if the GPS fixes are temporally ordered,

we know that road exists between con-

secutive fixes. So, we can also increment

the value in the cells that are between

those cells in which the fixes lie. If the fre-

quency of readings is greater than a few

Hertz, then linear interpolation between

the GPS fixes will likely be acceptable.

However, higher-order interpolation

might yield more realistic results.

The value attached to each cell repre-

sents the confidence that the cell is part of

a road. Our application increments a cell’s

value by an amount proportional to the

length of the line that passes through the

cell. In this way, if the line traverses only

a cell’s corner, then that cell’s value is

incremented by only a small amount.

After the application has processed all

the available GPS fixes in this way, we

have a 2D histogram that estimates the

confidence of each cell constituting part

of a road, based on all the journeys

traced out in the data (see figure 1a).

Despite the interpolation between suc-

cessive GPS fixes, gaps will likely exist

because a cell with a low frequency

might be surrounded by cells with high

frequencies. This might be due to a ran-

dom paucity of data collected in that cell;

systematic errors intrinsic in the original

GPS data; real-world features that

48 PERVASIVEcomputing www.computer.org/pervasive

I N T E L L I G E N T T R A N S P O R T A T I O N S Y S T E M S

REFERENCES

1. H.P. Moravec and A. Elfes, “High Resolution Maps from Wide Angle

Sonar,” Proc. 1985 IEEE Int’l Conf. Robotics and Automation, IEEE Press,

1985, pp. 116–121.

2. A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and Nav-

igation,” Computer, June 1989, pp. 46–57.

3. S. Thrun, “Robotic Mapping: A Survey,” Exploring Artificial Intelligence in

the New Millennium, G. Lakemeyer and B. Nebel, eds., Morgan Kauf-

mann, 2002, pp. 1–36.

4. H. Choset and K. Nagatani, “Topological Simultaneous Localization and

Mapping (SLAM): Toward Exact Localization without Explicit Localiza-

tion,” IEEE Trans. Robotics and Automation, vol. 17, no. 2, 2001, pp.

125–137.

5. R.K. Harle, “Maintaining World Models in Context-Aware Environ-

ments,” doctoral thesis, Laboratory for Communications Eng., Dept. of

Eng., Univ. of Cambridge, 2004.

Related Work in Map Generation

D iscretizing the space covered by sensor readings into a grid

of cells is an established practice. Robotics researchers use

certainty grids1 or occupancy grids2 to store the probability that

an obstacle exists in any particular cell in an environment that ro-

bots will explore.3 Unlike that research, we don’t have the luxury

of being able to determine obstacles’ presence. Robotics research

also heavily employs Voronoi graphs,4 particularly because they

describe an environment’s topological features, making them suit-

able for route planning.

Robert Harle investigated generating descriptions of an in-

door environment purely from records of location fixes.5 While

it’s unrealistic to expect exhaustive coverage of a typical in-

door environment, we can expect vehicles to exhaust all avail-

able road space. This is because the road network imposes

greater constraints on the users’ movement.

obstruct vehicles, such as lampposts or

road barriers; or blackspots (areas with-

out GPS coverage) such as under bridges.

In any case, these gaps are undesirable

and should be removed because we’re

merely aiming for a directed graph of the

road network’s topology where connec-

tivity is important.

To remove such gaps in the histogram,

we apply a blur filter. This removes small

gaps because the filter averages cell values

with neighboring cells, but larger gaps will

persist. Similarly, the filter will smooth

jagged edges. However, performing a blur

might undesirably merge two nearby but

distinct roads. Figure 1b depicts the data

convolved with a three-by-three-cell uni-

form blur convolution filter.

Deducing edge positions. At this pro-

cessing stage, we have a good idea of

whether a road exists in any given cell.

So, we binarize this metric to a Boolean

value: is there a road or not? To do this,

we apply a global threshold to our cells.

The threshold’s value will relate to the

degree of confidence we want in the road

network deduced from our algorithm. A

lower threshold will be more susceptible

to noise due to GPS errors. Figure 1c

shows the result of thresholding the data.

After thresholding, we apply a contour

follower1 to the image. This extracts a set

of closed polygons describing the road

regions’ outline (see figure 1d). This out-

line might not coincide precisely with the

roads’ real-life edges, owing to errors in

the original GPS data. However, if these

errors are symmetrically distributed, the

centerline between the edges will coincide

with the road’s actual centerline.

Computing centerlines. A Voronoi graph

is the set of points equidistant from the

nearest two points on the boundaries of a

set of closed polygons.2 We can compute

the road centerlines by producing the

Voronoi graph of the contours describing

the roads’ edges and discarding the result-

ing edges that lie outside the roads.

However, because the roads’ edges

aren’t convex, many short edges of the

Voronoi graph will be attached to the

main trunk of each road. This gives the

graph a rather “hairy” appearance. These

edges don’t correspond to real-life roads;

they’re artifacts from our initial dis-

cretization of GPS fixes into square cells.

We can remove the edges that are shorter

than a threshold representing the mini-

mum permitted road length, leaving

just the main edges running the roads’

lengths. Figure 1e depicts the Voronoi

graph generated from the contours, with

the short edges in red.

Determining road direction. The final

stage is to deduce which edges of the

OCTOBER–DECEMBER 2006 PERVASIVEcomputing 49

(a) (b)

(c) (d)

(e) (f)

Shaved
edges

Retained
edges

One−way
roads

Two−way
roads

Figure 1. Generating a map of the city

center of Cambridge, UK:

(a) a histogram, with one pixel per cell,

(b) a blurred histogram,

(c) a thresholded histogram,

(d) contours, (e) a Voronoi graph, and

(f) a directed graph.

undirected Voronoi graph represent uni-

directional roads and which represent

bidirectional roads. If the original GPS

data was temporally ordered, we can

produce a further data structure that will

help us determine this. Again splitting

space into cells, in each cell we now keep

track of the number of journeys embod-

ied in the GPS traces that pass through

the cell in each of the eight compass direc-

tions. We generate this by quantizing the

bearing of the displacement vector

between each successive pair of fixes and

incrementing the count for that direction.

For each compass direction, we sum

the counts of journeys associated with

each cell on a road. Unidirectional roads

have significantly more cars traveling

parallel to the road in one direction than

in the other. Figure 1f shows which edges

the algorithm deduced as unidirectional

and as bidirectional.

Complexity. The algorithm’s overall time

complexity is O(n + m), where n is the

number of GPS readings and m is the

total number of cells. Individually, the

stages involving the processing of GPS

readings are O(n) and the stages involv-

ing image processing are O(m). However,

if we can store the latest versions of the

histogram and direction data, the time

complexity of generating the new map

incorporating an incremental set of GPS

readings of size �n is merely O(�n + m).

Reflecting road changes

We wanted our application to produce

digital maps that reflect the creation of

new roads, the closure of old roads, and

the change in geometry of existing roads.

Our algorithm makes it trivial to estab-

lish that a new road has been opened: it

acquires GPS traces of vehicles using the

road and regenerates the map to show

the new road. However, we can’t say that

about the other two goals. Once we have

some GPS traces traveling down a par-

ticular road, the digital maps that our

basic application produces will always

contain that road.

To reflect changes to existing roads over

time, we must place lower trust in older

data than in more recent data. This means

that vehicles must continue to travel down

roads regularly to maintain our level of

trust in the roads’ existence. To adjust the

trust levels accordingly, we could adjust

the values in the histogram by smaller

increments when processing an older GPS

trace than when processing a more recent

one. So, when a road is closed, we would

no longer receive GPS traces showing it

in use. Eventually the histogram cells’

value would fall below our binarization

threshold, causing the road to disappear

from the map. However, this implies that

a certain latency would exist between

when the road closes and when the map

reflects the closure. We could reduce this

delay if we can obtain more GPS traces

from more vehicles.

Map regeneration

For the map to be suitable for naviga-

tion, we need to associate metadata with

each edge in the directed graph. How-

ever, this task might be relatively expen-

sive because it might involve manual

effort. While metadata such as the speed

limit could be inferred from the GPS

data, metadata such as the road name

could be determined only by visiting

each road or, perhaps in the future, from

active road signs. Because we want the

application to generate up-to-date maps,

we must execute the algorithm repeti-

tively as new GPS traces come to light.

However, we need to avoid the cost of

reassociating the metadata from scratch

every time we regenerate a map.

On the basis of the knowledge ob-

tained from additional GPS traces, roads

in the old version might change their

shape, and junctions might shift position.

Furthermore, roads—and thus junctions—

might appear or disappear. This makes it

difficult to determine which roads in the

old version correspond to which roads in

the present version, thus making it diffi-

cult to transfer the old roads’ metadata

to the new roads.

To estimate which roads in the old ver-

sion correspond to which roads in the

present version, and which roads exist

only in one version, we can employ a

weighted bipartite graph. A bipartite

graph is a special type of undirected

graph that splits vertices into two disjoint

sets, with no edges between two vertices

in the same set. A weighted bipartite

graph has costs associated with its edges.

In this case, the two sets of vertices

represent the roads in the old version and

the roads in the present version. The

edges have an associated cost relating to

the similarity between a pair of roads

from those sets. So, a low-cost edge

between two vertices in the bipartite

graph means that a road in the old ver-

sion very closely corresponds to a road

in the present version. The cost metric

relates to the distance that the ends of

the road network edges have moved

between the two versions and to the sim-

ilarity in the edges’ shape.

Figures 2a and 2b show a map’s old and

new versions; figure 2c shows a bipartite

graph constructed from the two versions.

A minimum-cost maximal matching

on this bipartite graph will therefore

indicate which edges in the old and pre-

sent versions best correspond and will

50 PERVASIVEcomputing www.computer.org/pervasive

I N T E L L I G E N T T R A N S P O R T A T I O N S Y S T E M S

For the map to be suitable for navigation, we

need to associate metadata with each edge in

the directed graph.

contain high-cost edges between the

remaining vertices. (A matching is a sub-

set of the graph’s edges with no vertices

in common. A maximal matching em-

ploys as many edges as possible. A min-

imum-cost maximal matching minimizes

the sum of its edges’ costs.) The applica-

tion can ignore these high-cost edges,

which correspond to pairs of roads in

one version of the map but not the other.

For the remaining low-cost edges, the

application can transfer metadata be-

tween the roads corresponding to the

vertices. In figure 2d, the red edge rep-

resents a discarded high-cost edge. This

matching indicates that road B has

closed and roads 1, 3, and 7 are new.

Scalability

To process GPS traces from a vast

number of vehicles covering a large geo-

graphical area, our algorithm must scale

gracefully. Fortunately, it’s highly paral-

lelizable, by dividing up space into tes-

sellating regions or tiles. (A tile comprises

many cells and might cover several

square kilometers.) Then, an individual

processing node can use the GPS traces

falling in a tile to produce a directed

graph of the road network in that tile.

Once each processing node has pro-

duced its tile’s graph, we need to stitch

the results back together into one com-

plete graph. However, we can’t expect

that roads spanning the tiles’ edges will

necessarily align and thus be contiguous

when juxtaposed. This is because we

can’t be certain about the results pro-

duced near a tile’s border when that tile

has been processed in isolation.

To solve this problem, we process a set

of tiles, each of which overlaps the adja-

cent tiles by the number of cells corre-

sponding to the region of uncertainty.

Then, to stitch together the resulting

directed graphs from each tile, we simply

clip the roads to the tile’s central region.

A road that originally traversed two

adjacent tiles will now be contiguous, so

we join into a single edge the edges that

meet at the seam between their respec-

tive tiles. The ratio of the overlap region’s

area to that of the entire map corre-

sponds to the parallelization overhead.

We’ve tested this technique successfully

by partitioning the data used in figure 1

into four quadrants, mimicking separate

processing nodes. Processing each quad-

rant individually and stitching the result-

ing graphs together produced the same

output as processing all the data at once.

Possible system architectures
Many modern satellite navigation

units are, in fact, small computers con-

taining general-purpose processors and

hard disks. Some (such as the TomTom

GO) already use a GPRS (General Packet

Radio Service) connection from an

attached mobile telephone to download

real-time traffic reports. Navigation units

with Internet connectivity could support

our mapping application by sharing GPS

traces at regular intervals. Further in the

future, vehicles will likely also carry IEEE

802.11 communications equipment,

which could upload data when within

range of a suitable access point.

A broad spectrum of system architec-

tures could support map generation. We

can view a network of vehicles and any

infrastructure support as a set of nodes

in a distributed-memory parallel com-

puter. At one end of the spectrum is the

fully centralized approach, where vehi-

cles upload their raw GPS readings to a

central server that generates new map

data. Despite bringing benefits, particu-

larly timely data delivery and homoge-

neous results, this approach will likely

be impractical because of the communi-

cation bandwidth needed to transmit all

the GPS readings to the server.

To distribute the communications

OCTOBER–DECEMBER 2006 PERVASIVEcomputing 51

A

B

C

D

E

1

2

3

4

5

6

7

A

B

C

D

E

1

2

3

4

5

6

7

Low cost

High cost

A

B

C

D

E

1

2

3

4

5

6

7

Low cost

High cost

(a) (b)

(c)
(d)

Figure 2. Estimating which roads in an

old map correspond to which roads in a

new map: (a) an old version of a map,

(b) a new version of a map, (c) a

weighted bipartite graph of the maps,

and (d) a minimum-cost maximal match-

ing on the bipartite graph.

bandwidth, we can employ multiple

servers, each processing data for a dif-

ferent geographical region. Commercial

operators seeking to gather and process

data cheaply might prefer this approach.

Furthermore, to avoid requiring a costly

backhaul network between regional

servers, the vehicles themselves could dis-

tribute data across region boundaries.

This is a topic of ongoing research in the

CarTel project, which uses vehicles as

high-bandwidth “data mules.”3

An increasingly common solution is

to execute some processing on the vehi-

cles themselves. For example, in the

Vehicle Data Stream Mining (VEDAS)

project, vehicles process their own sensor

data, uploading the results to a remote

central server over a low-bandwidth

wireless network.4

Another architecture is to provide

public data caches that are connected to

the Internet and store data but don’t con-

tain any processing facilities. In this sce-

nario, the vehicles must acquire as many

GPS traces as they can from the nearest

public data cache (perhaps by IEEE

802.11 communications) and execute

the map application locally. Consumers

concerned about location privacy might

prefer this approach; such a decentral-

ized scheme can limit the transmission

of personally identifiable data.

At the far end of the architecture spec-

trum is the fully peer-to-peer scenario

in which vehicular ad hoc networks

(VANETs) share GPS and map data. Al-

though this solution won’t have any

ongoing service costs to customers, it’s

unlikely that it can gather sufficient data

to produce up-to-date, reliable maps.

VANETs will likely be more suited to

small-scale cooperative driver assistance

systems such as TrafficView5 and those

enabled by Network-on-Wheels.6

Performance limitations
Our application has several funda-

mental performance limitations.

GPS reading errors are typically mod-

eled by a bivariate normal distribution.

The standard deviation, �, in the error of

the position estimate for a modern GPS

receiver has recently been estimated as

4.25 m, giving a 95 percent confidence

interval of 8.5 m.7 (Others have esti-

mated the value to be 3.5 m.8) We believe

that a reasonable minimum distance

between two adjacent parallel roads

should be 4�. This means that no more

than approximately 2.5 percent of the

position estimates of vehicles at one

road’s edge can overlap with no more

than approximately 2.5 percent of the

position estimates of vehicles at the other

road’s nearest edge. If this limit isn’t

observed, the region between the roads

might be filled with stray GPS fixes, caus-

ing no discernable gap between the roads

after thresholding. For example, with �

= 4 m, the minimum road spacing toler-

ated is approximately 16 m.

The distribution of GPS readings for

vehicles traveling in all lanes of a road

won’t be normal. However, we can ap-

proximate it using a multimodal distri-

bution consisting of one normal distri-

bution per lane. We assume that this

distribution’s underlying mean is on the

road’s centerline (roughly, that the traf-

fic volume is evenly distributed about

the centerline). By the central limit the-

orem, the error on the mean of the GPS

readings, when compared with the

road’s actual centerline, will be normally

distributed. Also, its standard deviation

will decrease at a rate of 1/�n for an n-

fold increase in the number of samples.

So, with sufficient samples, GPS data

becomes an accurate predictor of the

real centerline.

More specifically, we can model the

distribution of GPS samples collected

from a two-lane road as a distribution

(N(�1, �
2) + N(�2, �

2))/2, where �1 and

�2 are the positions of the lanes’ center-

lines and the mean is the road’s center-

line. By the central limit theorem, with

73 samples, the estimate of the road’s

centerline with the lanes’ centers 3 m

apart will be within 1 m of the true posi-

tion, 95 percent of the time.

High GPS sampling rates are desir-

able. Ideally, the sampling rate should

be such that when an abrupt change of

direction occurs, consecutive position

fixes are no more than one cell width

apart. This corresponds to a frequency

of v/w for maximum cornering speed v

and cell width w. For a cell width of a

few meters, a 1 Hz sampling rate typi-

cally gives adequate performance. With

lower frequencies, when the samples

are linearly interpolated, the change of

direction won’t be as sharp as in real-

ity. When a vehicle is traveling rapidly,

the distance between consecutive fixes

will be larger, but abrupt direction

changes aren’t possible owing to phys-

ical limits on deceleration. To decrease

the volume of GPS data that a vehicle

collects, we could adopt a strategy such

as recording only the points where the

direction changes substantially.

Roads with little traffic volume will

require more time for changes to appear

in the map. Furthermore, less popular

roads might even fall under the threshold

and thus not appear in the generated

map because they aren’t distinguishable

from erroneous road segments.

When the algorithm receives a new

GPS trace, the degree to which the trace

52 PERVASIVEcomputing www.computer.org/pervasive

I N T E L L I G E N T T R A N S P O R T A T I O N S Y S T E M S

We can view a network of vehicles and any

infrastructure support as a set of nodes in a

distributed-memory parallel computer.

OCTOBER–DECEMBER 2006 PERVASIVEcomputing 53

affects the generated map varies. If the

trace uses roads that haven’t been visited

recently, the map won’t likely be affected

because the contributions to cells in the

histogram won’t rise above the thresh-

old. On the other hand, if it uses roads

that have been recently heavily visited,

the map will be minimally affected

because the trace will have little impact

on the centerlines’ positions. Between

these two extremes, the trace will have

a more significant effect. Because of the

cost of regenerating the map, we can

choose to regenerate it only when we

have sufficient new data to significantly

affect the output. We can further reduce

the cost of executing the algorithm by

regenerating only the map parts that

have received new data.

Practical analysis
To investigate our algorithm’s efficacy

with real-world data, we performed a

practical experiment. Our application

generated the images in figures 1 and 3

from GPS traces constituting nearly one

million position readings collected by a

single vehicle that we drive in and around

Cambridge. (For more on that vehicle,

see the Works in Progress department in

this issue. We’ve also generated road

maps from other GPS data sources.)

We compared our application’s output

with a UK Ordnance Survey map of the

same region (see figure 3). Our proof-of-

concept implementation of the algorithm

takes less than two minutes to complete

on a standard desktop workstation, for a

40 km2 region comprising approximately

one million cells, with approximately one

million GPS samples. In the histogram,

93 percent of the cells were empty, with

22 percent of the remainder falling below

an empirically determined threshold.

According to the Cambridgeshire

County Council, approximately 1,000

vehicles per hour use a typical city-cen-

ter road.9 If we need 73 samples at a par-

ticular point along a road’s length to

achieve acceptable accuracy, we should

regenerate the map 14 times per hour—

once every four minutes—with fresh

data. Because the algorithm’s time com-

plexity is linear with area, our imple-

mentation could process an area approx-

imately 80 km2 every four minutes. So,

to process the entire UK, we would need

approximately 3,000 processing nodes.

However, we believe that an optimized

implementation could execute at least an

order of magnitude more quickly.

On the roads that have a sufficient

density of GPS readings, the generated

road segments align well with the OS

road segments. However, we noticed

five main differences between our map

and the OS map.

First, some road segments exist in the

generated map but not in the OS map.

These correspond to newly constructed

roads that don’t yet appear in the OS

data, justifying our claim that you can

use our algorithm to highlight the cre-

ation of new roads. The yellow circle in

figure 3 indicates such new roads.

Second, the generated segments are

much more jagged than the OS segments.

This is because the algorithm extracts the

segments from a Voronoi graph of jagged

boundaries. A topic for further research

is whether a line simplification algorithm

such as the Douglas-Peucker algorithm10

could smooth the segments.

Third, the generated map interprets

road bridges as crossroads (see the red cir-

cle in figure 3). This is because we discard

altitude data when initially forming the

2D histogram. This problem has two

© Crown Copyright/database right 2005. An Ordnance Survey/EDINA supplied service.

Figure 3. A UK Ordnance Survey map of

the Cambridge area, with a generated

road map overlaid in black. The yellow

circle highlights new roads. The red circle

highlights a bridge misinterpreted as a

junction. The blue circle highlights a

misaligned junction. The green circle

highlights two junctions that have

merged into one.

54 PERVASIVEcomputing www.computer.org/pervasive

I N T E L L I G E N T T R A N S P O R T A T I O N S Y S T E M S

potential solutions, which we plan to

explore. By using a 3D histogram, extract-

ing the 3D surface (using an algorithm

such as Marching Cubes11), and produc-

ing a 3D Voronoi graph, we should find

that the two roads no longer intersect.

Alternatively, we could analyze each gen-

erated junction and determine which

turns the vehicles can actually make. The

algorithm would then interpret bridges as

crossroads with no permissible turns.

Fourth, the generated map has some

skewed junctions (see the blue circle in

figure 3). This results from the errors

inherent in the initial GPS fixes, causing

the histogram to inaccurately reflect the

true road layout. This problem is hard

to fix but might be solved by having

vehicles use accelerometers and sensor

fusion techniques to improve the loca-

tion fixes’ accuracy.

Finally, some pairs of nearby junctions

have merged (see the green circle in figure

3). This results from an excessively gross

discretization resulting from too large a

cell size or too heavy a blur. So, we can

potentially fix this by adjusting these

parameters.

Generating road maps in this way

doesn’t produce a perfect result, but nei-

ther do traditional mapmaking tech-

niques. By using data from privately

owned vehicles, we have the advantage

of being able to discover changes to the

road network. We hope that the degree

of automation will increase as we solve

the issues outlined in this section.

W
e plan to investigate mak-

ing the histogram’s cell

sizes adaptive, so that our

algorithm can more ac-

curately inspect areas with many GPS

readings. We also plan to analyze vehi-

cles’ direction of approach to and depar-

ture from junctions to determine the junc-

tions’ nature more precisely.

Future research on such a system’s

architectural design will simulate vari-

ous architectures and investigate their

applicability to applications with other

data and processing requirements. Re-

search is also necessary on social and

security issues related to such participa-

tive applications, such as protecting vehi-

cle owners’ privacy and protecting the

system from malicious users.

ACKNOWLEDGMENTS

We thank Andrew Rice, David Cottingham, Robert

Harle, and Ripduman Sohan for useful discussions; Ri-

chard Gibbens for assistance with the statistical an-

alysis; Andrew Rice for the use of his contour follower

implementation; and Keith Farkas for his helpful advice.

REFERENCES

1. S. Yokoi, J.-I. Toriwaki, and T. Fukumura,
“An Analysis of Topological Properties of
Digitized Binary Pictures Using Local Fea-
tures,” Computer Graphics and Image Pro-
cessing, vol. 4, no. 1, 1975, pp. 63–73.

2. F. Aurenhammer, “Voronoi Diagrams—A
Survey of a Fundamental Geometric Data
Structure,” ACM Computing Surveys, vol.
23, no. 3, Sept. 1991, pp. 345–405.

3. B. Hull et al., “CarTel: A Distributed Mo-
bile Sensor Computing System,” to be pub-
lished in Proc. 4th ACM Conf. Embedded
Network Sensor Systems (SenSys 06), ACM
Press, 2006.

4. H. Kargupta et al., “VEDAS: A Mobile and
Distributed Data Stream Mining System for
Real-Time Vehicle Monitoring,” Proc.
SIAM Int’l Data Mining Conf., Cambridge
Univ. Press, 2004, pp. 300–311.

5. T. Nadeem et al., “TrafficView: Traffic Data
Dissemination Using Car-to-Car Commu-
nication,” Mobile Computing and Comm.
Rev., vol. 8, no. 3, 2004, pp. 6–19.

6. M. Torrent-Moreno, A. Festag, and H.
Hartenstein, “System Design for Informa-
tion Dissemination in VANETs,” Proc. 3rd
Int’l Workshop Intelligent Transportation
(WIT), Technische Universität Hamburg-
Harburg, 2006, pp. 27–33.

7. R. Prasad and M. Ruggieri, Applied Satellite
Navigation Using GPS, GALILEO, and Aug-
mentation Systems, Artech House, 2005.

8. K.D. McDonald and C. Hegarty, “Post-
modernization GPS Performance Capabil-

ities,” Proc. IAIN World Congress and the
ION 56th Ann. Meeting, Inst. of Naviga-
tion, 2000, pp. 242–249.

9. 2005 Traffic Monitoring Report, Cam-
bridgeshire County Council, 2006, www.
cambridgeshire .gov.uk/ transport /
monitoring/network/traffic+monitoring+
report.htm.

10. D.H. Douglas and T.K. Peucker, “Algo-
rithms for the Reduction of the Number of
Points Required to Represent a Line or Its
Caricature,” The Canadian Cartographer,
vol. 10, no. 2, 1973, pp. 112–122.

11. W.E. Lorensen and H.E. Cline, “Marching
Cubes: A High Resolution 3D Surface Con-
struction Algorithm,” SIGGRAPH Computer
Graphics, vol. 21, no. 4, 1987, pp. 163–169.

the AUTHORS

Jonathan J. Davies is a PhD

candidate in the University

of Cambridge’s Computer

Laboratory. His research in-

terests include intelligent

transportation systems and

sentient computing. He re-

ceived his BA in computer

science from the University

of Cambridge. Contact him at the Computer

Laboratory, 15 JJ Thomson Ave., Cambridge,

CB3 0FD, UK; jjd27@cam.ac.uk; www.cl.cam.

ac.uk/~jjd27.

Alastair R. Beresford is a

research associate in the Uni-

versity of Cambridge’s Com-

puter Laboratory and a re-

search fellow at Robinson

College. His research inter-

ests include ubiquitous sys-

tems, computer security,

and networking. He received

his PhD in engineering from the University of

Cambridge. Contact him at the Computer Lab-

oratory, 15 JJ Thomson Ave., Cambridge, CB3

0FD, UK; arb33@cam.ac.uk; www.cl.cam.ac.uk/

~arb33.

Andy Hopper is a professor

of computer technology and

the department head in the

University of Cambridge’s

Computer Laboratory. His

research interests include

network design and sustain-

able and mobile computing.

He received his PhD in com-

puter science from the University of Cambridge.

He’s a fellow of the Royal Academy of Engineer-

ing and the Royal Society and is a trustee of the

Institution of Engineering and Technology. Con-

tact him at the Computer Laboratory, 15 JJ

Thomson Ave., Cambridge, CB3 0FD, UK;

ah12@cam.ac.uk; www.cl.cam.ac.uk/~ah12.

