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Abstract

With social networking sites providing increasingly richebntext, user-centric service creation is expected to
follow a similar growth with User-Generated Content. Theawvis-often-called User Generated Services paradigm
calls for efficient yet scalable solutions for optimally gilag service facilities. Typically seen as an instance of
the facility location problem, service placement has beeainiy treated with centralized solutions requiring global
topology and demand information

We propose an iterative distributed service migration raa@m, which improves significantly the complexity
and scalability of the service placement process. Centrahis algorithm is a novel metric drawing on Complex
Network Analysis, which captures the capacity of a node tbascservice demand concentrator. In each service
migration step, the metric is exploited for: a) extractingignificantly smaller subgraph of candidate service hasts f
solving the respective 1-median optimization problem @dimn subgraph); b) mapping the demand of the remaining
nodes on the 1-median subgraph nodes. This way, the seadilitiés move towards their optimal location through a
number of computationally lighter steps. The extensivéuaton of our algorithm with real-world network topologie
suggests that it achieves high accuracy and fast convexgamm when the size of the 1-median subgraph is smaller
than half a dozen nodes. The performance of our algorithrwshiemarkable insensitivity to the size and diameter
of the network and resilience to inaccurate estimates ofsdm@ice demand across the network. Compared with
distributed approaches that constrain the 1-median spbgmthe direct node neighborhood, our mechanism yields
better service placements, which are not dependent on tia¢ida of the service generation.

I. INTRODUCTION

One of the most significant changes in networked commumicatover the last few years concerns the role of
the end-userTill recently the end-user has been ttansumerof content and services generated by explicit entities

called content and service providers, respectively. Nayadthe Web2.0 technologies have enabled a paradigm
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shift towards more user-centric approaches to contentrggoe and provision. The first strong evidence of this
shift has been the abundanceldder-Generated Conterft/ GC) in social networking sites, blogs, wikis, or video
distribution sites such as YouTube, which motivated evenr#ithinking of the Internet architecture fundamentals
[1], [2]. The generalization of th&/ GC' concept towards services is increasingly viewed as the meyor trend

in user-oriented networking [3].

The user-oriented service creation concept aims at engagid-users in the generation and distribution of service
components, more generally service facilities [4]. Howetlee proliferation of the so-calledser-Generated Service
(UGS) paradigm must overcome at least two technical challenggghe availability of simple programming
interfaces that will enable the involvement of end-userthait strong programming background; and b) the
deployment of scalable distributed mechanisms for disdoge publishing, and moving service facilities within
the network.

Our work focuses on the second challenge. In particularditresses the problem of optimal placement of
service facilities within the network so that the cost of égsing and using them is minimized. The problem is
typically viewed as an instance of the family Hcility location problems; it is formulated as ah or, more
generally,k-median problem, depending on whether facilities can béicaed in the network [5]. The majority
of proposed solutions to the problem are centralized (s#einétance, [6]). The globally optimal location of the
service is determined by a single entity that should possgsitcit global information for both the network topology
and distribution of service demand across the network. Negkess, the service deployment scenarios considered
in this work, involving the flexible and scalable deploymefitmany distributed user-generated services within
possibly large networks, bring traditional approachetroblem solution to their limits. Gathering the required
information to a single physical location in a scalable rmeris already a challenge. Furthermore, the centralized
treatment of the problem introduces an implicit logicalrhrehy in the role of nodes in the network, placing
asymmetrically higher burden on the decision-making gn8ignificant part of this burden is computational and
has to do with the solution of thik)-median problem, which becomes a difficult task for largelestetworks, as
we explain in Section Il. Given that (minor) user demandtshif network topology changes may alter the optimal
service location, it is neither practical nor affordablestich time centrally compute a new problem solution.

In our paper we propose solutions for overcoming these atioins. The approach we have taken is highly
decentralized; individual nodes (provisionally) hostmgervice iteratively decide locally whether the servioeuith
stay with them omigrateto another lower-cost node. Topological and demand inftionastill needs to propagate
in the network and in Section IX we discuss mechanisms thaldogase this task. However, the service migrates
within the network over a few computationally cheaper hdy form a cost-decreasing path towards its optimal
location. The computational load is spread amongst the siodethe migration path and consists in the iterative
solution of the 1-median problem at a much smaller scale tizat a global centralized solution would require.

To achieve this, we devise a metric, caldighted Conditional Betweenness Centrality (WCH@Y draws on
Complex Network Analysi€CNA). CNA provides a theoretical framework for unified méidg and analysis of

several types of networks and the expectations in the nktagpcommunity are that its insights could benefit the



design of more efficient network protocols. In our work, whiarovides positive feedback to these expectations, the
CNA-inspired metric helps the service migrate through tetvoerk both faster and towards better service locations.
In each service migration step, the metric serves two pagdsarstly, it identifies those nodes that contribute most
to the aggregate service access cost and pull the servibeimdirection; namely, nodes that hold a central position
within the network topology and/or route large amounts & ttemand for it. Secondly, it correctly projects the
attraction forces these nodes exert to the service uponutrent service location and guides the service towards
the optimal location.

We detail the metric and our algorithm, hereafter called RIASin Sections Ill and 1V, respectively, and evaluate
them extensively in Section V. When running over real-wdf topologies, the cDSMA achieves remarkably
high accuracy and fast convergence even whenltheedian problem iterations are solved locally with very few
nodes, less than ten. Moreover, cDSMA has excellent sdityadnnd robustness properties: its performance does not
change with the network size and diameter; and it persistedidous asymmetry levels in the spatial service demand
distribution across the network, implying robustness twise demand estimation inaccuracies across the network.
Compared with distributed local-search policies, where skrvice selects the next migration hop by iteratively
solving thel-median problem within the local neighborhood of its cutrlertation, cDSMA yields consistently
better service placements, which are not dependent on ¢la¢ida of the service generation. We outline a protocol
implementation for cDSMA and a rough analysis for its comjtjein Section VII. We summarize our findings,

discuss some practical aspects of our mechanism, and giessiible extensions to this work in Section IX.

Il. SERVICE PLACEMENT. A FACILITY LOCATION PROBLEM

The optimal placement of service facilities in some netwatriacture has been typically tackled as an instance of
the facility location problem [5]. Input to the problem isethopology of the network nodes that may host services
and/or network users. The objective is to place servicesway that minimizes the aggregate cost of accessing
them over all network users.

More precisely, the network topology is represented by adiranted connected grap&(V, E), whereV is
the set of nodes andl is the set of edges(links) connecting them. Without loss esfegality, we assume that all
links have a unit weight and thus the minimum cost péth, m) between nodes andm, corresponds to the
minimum hop count path linking andm. Each network node serves users that access the service with different
intensity(frequency), generating an effective demandor the service. When there akeservice facilities available,
the problem of their optimal placement in the network candrenfilated as the classidalmedianproblem; namely,
the setF of k nodes (F| = k) that are selected to host service facilities minimize thgregate service access

cost:

Cost(F) = Z w(n) - min{d(z;,n)} Q)

r;€F
ney

wheremin{d(z;,n)} denotes the distance between each nodend its closest service host node € F. In



this paper we focus our attention to the single service ifaciicenario,|7| = 1. Practically, service facilities
migrate across the whole network seeking their optimal eptaent without the possibility for replication. The
median formulation matches better the expectations abeut/ser-Generated Service paradigse,many different
services generated in various places in the network raiingll-scale interest so that replication of their fachti

be less attractive. The respective 1-median problem fatiord, minimizing the access cost of a service located at

nodek € V is given by:
Cost(F) = >_w(n) - d(k,n) 2)

ney
In general topologies, optimization problems such as liame@nd k-median, are NP-hatdrequiring global
information about the network topology and generated dehiaad [7]. Thus, so far the main bulk of relevant

theoretical work is in the field of approximation algorithmeghere various techniques have been applied [9].

A. Exploiting CNA to overcome limitations

We make use of Complex Network Analysis (CNA) to dramaticediduce the scale of the 1-median problem that
network nodes need to solve. We introduce a metric, calleigii®ed Conditional Betweenness Centrality (wCBC),
which draws on a known CNA metric (Betweenness Centralif])[and assesses the value of nodes as candidate
hosts of the service. The nodes with the highe6tBC values induce a small subgraph on the original network
graph, wherein the original optimization problem can bereglmore efficiently for the next-best service location
in the network. Besides identifying the highest-value reofte hosting the service, the metric directly lets us map
the demand of the rest of the network nodes on this subgraphinidduce our metric in Section Ill, whereas the
demand mapping process and the overall algorithm are détail Section 1V.

A similar decentralized approach to the service placemeolblpm was taken by Smaragdalas alin [11],
although they allow for service replication. Compared ta@ approach, the authors practically fix a-priori the
1-median subgraphs to thB-hop neighborhood of the current service locations. Iivelg, small values ofR,
in the order of one or two, ease information gathering butvsttown the migration process. We show later in
Section VI-D that this local-search approaako adds “noise” to the algorithm'’s effort to push the serviogdads
the optimal location in the network. As a result, the aldoritmay be trapped in locally anticipated as optimal,
yet globally suboptimal, locations. On the contrary, ourtnoeexploits CNA insights to naturally extract a more
informed 1-median subgraph and drive us faster towardspkienal service location. We elaborate on how the two

approaches relate in Section VI-D.

1. WEIGHTED CONDITIONAL BETWEENNESSCENTRALITY
Central to our distributed approach is the Weighted Conditional Betweenness CemtraliC BC) metric. It
originates from the well-known betweenness centralityrinetnd captures both topological and service demand
information for each node.

IWwhile in special cases like the tree topology with equal lim&ights, the 1-median may neéﬂ(\Eﬁ) time to solve (using exhaustive
search [7] or even faster for more efficient algorithms [#}pse problems are typically characterized by the comiomizty difficult case.



A. Capturing network topology: from BC to CBC

Betweenness centrality, one of the most frequently usedicagh CNA, reflects to what extent a node lies on
the shortest paths linking other nodes. ket denote the number of shortest paths between any two nodes
t in a connected grapty = (V, E). If o, (u) is the number of shortest paths passing through the noeé, then

the betweenness centralitpdex of nodeu is given by (3).

B =3 3 2 @)

BC(u) captures the ability of a node to control or assist the establishment of paths betwees péinodes. It is
an average value estimated over all network pairs. In eariek [12], we proposed Conditional BC (CBC), as a
way to capture the topological centrality of a random neknwode with respect to a specific notlevhich in our

context is a node visited by the service on its way towardsogptenal location. It is defined as

CBC(ujt) = Y 7si(v) (4)

seV,ut st
with o4 (s) = 0.
Note that the summation is over all node pairst] Vx € V destined at node rather than all possible pairs,
as in (3). Effectively, CBC assesses to what extent a nodets as ahortest path aggregatdowards the current

service locationt by enumerating the shortest pathsttmvolving « from all other network nodes.

B. Capturing service demand: from CBC to wCBC

In general, a high number of shortest paths through the nodees not necessarily mean that equally high
demand load stems from the sources of those paths. Natusaipeed to enhance the pure topology-awareC
metric in a way that it takes into account the service demaad will be eventually served by the shortest paths
routes towards the service location. To this end, we intcesieighted conditional betweenness centrality” BC),
where the shortest path ratio ef;(u) to o, in Eq. (4), is modulated by the demand load generated by eadé n

S.
Ost (u)
Ost

wCBC (u;t) = Z w(s) -

seV,u#t

()

Note thato,:(u) = o.; hence, for each network node its wCBC(u;t) value is lower bounded by its own
demandw(u).

ThereforeqwC BC' assesses to what extent a node can serdesand load concentratdowards a given service
location. It is straightforward to see that when a servicegsally requested by all nodes in the network (uniform

demand) thaevC BC metric degenerates to the CBC one, within a scale constant.

C. Metric computation for regular network topologies

Closed-form expressions fanCBC are not easy to obtain except for scenarios with uniform dehand

regular topologies. The following two Propositions pravithe closed-form expressions for CBi&.,wCBC for



w, =1, ¥Yn € V, in two instances of regular network topologies, the rind &me two-dimensional (2D) grid.
Proposition 3.1:1n a ring network of N nodes, the CBC value of a nodewith respect to another nodeare
given by:
[ d(u, )]t N =2k

CBCring(N) (u7t) = ?

(ML — d(u, )]t N=2k+1, keZ
where [z]T = maz(z,0) andd(u,t) is the minimum hop count distance between nodesd¢ along the ring.
Proposition 3.2: Consider aMxN rectangular grid network, where nodes are indexed inlirté tieir position
in the grid,i.e,node(i, j) is the node located at th&" row andj*"* column of the grid. The CBC value of node

u at position(a, b) with respect to node at position(k, ) is given by (6).

Nodes contributing
to the CBC(u;t) —— (i) = (kD) shortest paths through (a,b)
— (i,j) 2 (k1) shortest paths not including (a,b)

Fig. 1. Conditional Betweenness Centrality in regular togies.

Proof: The proof of the first proposition is straightforward. Thé&g@ne minimum hop count path between all
pairs of nodes in the ring. The only exception concerns nddés positions away the one from another in rings
with even number of nodes, where there are two shortest pathgyiven destination node the CBC(u, t) value
is only increased by those shortest paths that encompasstéhmediate node. Due to the ring symmetry, their
number only depends on the distances between nodewlt and decreases by one for each additional hop away
from t. Summing them over the respective half of the ring, yields rbsult.

For the 2D grid, the problem degenerates into the enumeraficshortest paths between two grid nodes. The
denominator of (6) expresses the number of shortest pathgee two arbitrary nodegow, column) coordinates
(i,7) and(k, 1), whereas the numerator of (6) equals the number of thoss gathg through a node with coordinates
(a,b). We then sum the ratios over all grid nodes with shortestypathode = (k,1) encompassing node= (a, b).

[ |

N Ib jl+la— 1\) (\l—bHIk—aI)

jai| |k—al
CBCyriam,n)(ust) ZZ (T Wi+l k—il==]b—j| +la—i|+]1—b]+|k—al } (6)
=1 j=1 \k—z|




IV. THE cDSM ALGORITHM DESCRIPTION

In this section we present our CNA-driven Disributed SesvMigration Algorithm for the service placement
process. The service migration to the optimal location m letwork evolves within a finite number of iterations,
as we show later in Section IV-B, through a path that contislyodecreases the aggregate cost of service access

over all network nodes.

A. Detailed algorithm description

A single algorithm iteration involves a number of discretigps. We discuss them below while providing pointers
to the algorithm’s pseudocode.

Step 1: Initialization The algorithm execution starts at the nodthat initially deploys the service. The cost of
the service placement at nodés assigned an infinite valugine 3) to secure the first algorithm iteratighine 11).
This step is only relevant to the first algorithm iteration.

Step 2: Metric computation and 1-median subgraph derivatiext, the computatichof wCBC(u; s) metric
takes place for every node in the network graptG(V, E). Nodes featuring the top% wCBC' values together
with the nodeHost currently hosting the service form the subgra@, ., (¢ enumerates the algorithm iterations),
over which the 1-median problem will be solvéldnes 4 — 5 and 14 — 15). Clearly, the size of this subgraph and
the complexity in the problem solution are directly affett®y the choice of the parameter We show in Section
V, that even with very smallv values, our algorithm yields solutions very close to therat.

Step 3: Mapping the demand of the remaining nodes on the aphgin this step, the service demand from
nodes inG \ GY,,, is mapped to the nodes of th@&;, ., subgraph that explicitly participate in themedian
problem solution. How this is done is described in detail écteon IV-C. For the moment, it suffices to say that
the demand factors)(n) in Eq. (2) areeffective demandsv.;f(n; Host), dependent on the current service host.
They include not only the demands of the nodes selected ipréagous step due to their highC'BC values but
also the demands of the remaining nodes that are not direatigidered in the 1-median problem formulation.

Step 4: 1-median problem solution and service migratiorhtortew host nodény centralized technique may be
used to solve this small-scale optimization problem. Sswiwely better algorithms have been designed during the
last few years [9] and one can seek for the best heuristicadethailable to maximize scalability. The optimization’s
outcome is the location of the candidate niest node, which results in minimum service access ¢o&t ost) 3
among the nodes of the current subgraph. We assign the valhésaost to the variabl€’,, ., and test whether
it is smaller thanC........;- AS long as the condition for cost decrease holds, the seiigibeing relocated to this
node, the algorithm iterates again through steps 2-4, amdehvice continues its progress towards the (globally)
lowest-cost location.

2For our simulation’s needs, this involves solving the alirp shortest path problem. Common algorithms, like Fidyatshall [13], may
need ever®(|V|3) time to solve, on &/(V, E) graph. Hence, foweigthedC' BC' computation we properly modified a scalable algorithm [14]

for betweenness centraljtyvith runtime O(|V'||E|). The cost introduced is low, as the length and number of attsht paths from a given
source to every other node, needed for our computation,tesrdmed inO(|E|) time [14].

3In case of multiple minimum-cost solutions within td& nodes, we choose randomly one of them.



Algorithm 1 cDSMA in G(V,E)
1. choose randomly node s

2. place SERVICFE Q s

3. Ccurrent — 0

4. for all u € G do compute wCBC(u; s)

5. G¢ — {a% of G with top wCBC values} U {s}
6. for all w € G2 do

7. compute Wpap(u;s)

8. Wess(U;S) «— Wmap(u;s) + w(u)

9. Host « 1-mediansolution in G¢

10. Cheqt «— C(Host), i+ 1

11. while Cheet < Cenrrent dO

12.  move SERVICE to Host

13. Ccurrent — Cnemt

14. for all u € G do compute wCBC(u; Host)
15, Gy, — {a% of G with top wCBC values} U {Host}
16. for all u € G, do

17. compute Wqp(u; Host)

18. Wetf(u; Host) «— Wyap(u; Host) + w(u)

19. NewHost « 1-mediansolution in G, .,

20. Host «— NewHost

21, Chext «— C(NewHost), i «+— i+ 1
22. end while

B. On the convergence of the proposed algorithm

In this paragraph we study the convergence of cDSMA, showliad) the migration process terminates after a
finite number of steps. The following lemma serves as theslfasithe proof of the convergence proposition.

Lemma 1:A service facility following the migration process of Algtirm 1 will visit at most one network node
twice.

Proof: Assume that the service, initially deployed at some node G reaches the nodee G twice. Right
after its first placement &t upon iteration, say; — 1 we solve the 1-median in the subgragf) that is formed
by the nodes with the top% wCBC(u;b) values. Let the corresponding cost @ When the service returns to
b at iteration, say; given that the network topology remains the same, the détéstic wCBC criterion of (5)
singles out the same subgraph with the one of the first visitys have thatz} = G{;, implying for the costs that
Ci = CJ; the cost-decreasing condition of cDSMA is then not fuléiliend, thus, the service locks at nodand
the migration process halts. [ ]

Proposition 4.1:cDSMA converges at some solution @(|V|) steps.

Proof: As stated above, the solution derived from cDSMA is either ¢fobally optimal (best case) or one
locally anticipated as lowest-cost solution. Since the bernof network nodes is finite, the migrating service will
-according toLemma 1 visit at most every node once and only one of them, twices TkesO(|V|+1) = O(|V|)

steps. [



C. Mapping the demand of remaining nodes

Besides being the basis for extracting the 1-median subgégp, ., in each algorithm iteration, thexC BC
metric also eases the mapping of the demand that the reseafigtwork nodes irG\G%;, ., induce on the 1-
median subgraph. This demand must be taken into account sdlging the 1-median problem. We do this by
modulating the originaluC' BC' metric in accordance with two observations.

Firstly, during the computation of the nodeCBC values, the demand of a nodein G\G%;, ., is taken into
account in all thez; ., nodes that lie on the shortest path(sydbwards the service host nodeSimply mapping
the demand ok on all those nodes inline with the originalC BC' metric, has two shortcomings: (a) when the
demand of heavy-hitter nodes is distributed among multioldes, any strong direction(gradient) of heavy demand
that would otherwise “pull” the service towards a certairedtion, tends to fade out; (b) the cumulative demand
that is mapped on ali%; ., nodes ends up exceeding considerably the real demand a psds for the service.
For example, in Fig. 2 let w(16)%; then naive reuse of theC BC values for service demand mapping would
result in nodesl1, 8 and 12 receiving 100%, 50% and 50% of the originaldemand, respectively. Hence, to
achieve accurate mapping, the influenceza$hould be “credited” only to the first%, . node encountered on
each shortest path from towards the service host. The set of all thesdry nodesv with this property forms a
subgraph ofG%;, .

Secondly, it happens frequently that the shortest pathgnating from the 1-median subgraph nodes include
further subgraph nodes. The demand of those nodes have tabbracted when computing the effective demand,
with which eachG%;, ., node participates in the solution of the 1-median problencesithey are accounted for
directly through the very same nodes that generates them.

Mathematically speaking, the weighign) in Eq. (2) can be regarded affective demands
Weysf(n; Host) = w(n) + Wmap(n; Host) (7)

that bring together two terms. The first one is the native dehfar the service coming from users that are served
by noden. The second term corresponds to the contribution of the agdé&\G,, ., (i.e.the non-shaded nodes

in Fig. 2), which is given by:

ol (n
Whnap(n;t) = > w(s) ;(t ) (8)
se{G\Gi,, ,} s
, B st
Ust(n) - Z ]l{n c SPst(j)ﬂn: argmin d(s,u)}
j=1 wESPgy(5)

where SP,;(j) is the set of shortest paths from nogdéo nodet.
Back to our example in Fig. 2, the nodes 15, 16 and17 will now contribute to thew,,.,(11; 7) value, whereas

the included inG%, nodel3, will not.



Fig. 2. The 1-median subgraph for an example network of 1%satth node 7 storing the service facilities in tHé& algorithm iteration.
There are two non-zero demand mapping terms,qap (8; 7) and wmap(11; 7).

V. EVALUATION METHODOLOGY

It should have become clear by this point that bothudt§@BC metric and the performance of cDSMA are heavily
dependent on two factors: the network topology and the serdemand distribution within the network. Their
combination may enforce or, on the contrary, suppress gts@nvice demand attractors and assist (resp. impede)
the progress of the service facilities towards their optilbeation in the network. In what follows, we study the
behavior of cDSMA over a broad set of scenarios that covetieffily the {net topology, demand distribution}
variation space.

1) Network topology:We consider both synthetic and realistic network topolsgighe two synthetic topologies
we experiment with are the Barabasi-Albert [15] and two-glisional rectangular grid graphs. The two types of
graph models bear very different and distinct structuralpprties. The B-A graphs form pure probabilistically
and can reproduce a highly skewed node degree distributianapproximates the power-law shape reported in
literature [16]. Grids, on the other hand, exhibit strictgular structure with constant node degree and diameter
that grows exponentially with the number of network nodese Bynthetic network topologies let us assess the
algorithm and highlight its behavior under certain extreyaepredictable operational conditions. Nevertheless, th
ultimate assessment of our algorithm is carried out ovdrwead ISP network topologies. The dataset we consider
[17] has been recently made publicly available [18], [18]nEtludes topology data from 850 distinct snapshots of
14 different AS topologies, corresponding to five Tier-1efilransit and four Stub ISPs. The data were collected
daily during the period 2004-08 with the help of a multicastdvering tool calleanrinfo. The tool uses IGMP [20]
messages to recursively probe all IPv4 multicast-enaleters and receive back all their multicast interfaces as
well as the IP addresses of their neighboring routers. Atcarse step, the borders between ASes are delimited
with application of two mapping mechanisms: firstly, an ¢PAS mapping for assigning a number to each AS

and, secondly, a router-to-AS mapping, via both probaluleEnd empirical rules, for assigning each router (having

10



multiple IP addresses) to the “correct” AS. The method caealier connections through L2 switches and turns out
to be providing an accurate view of the network topologycuinventing the complexity and inaccuracy of more
conventional measurement tools such as traceroute.

2) Service demand distributiorDur assessment, at first level, distinguishes between ramiémd non-uniform
demand scenarios. Uniform demand scenarios are far frolistieayet they let us study thexclusiveimpact of
network topology upon the behavior of the algorithm. On tbeteary, under non-uniform demand distributions,
we assess the algorithm under thienultaneousnfluence of network topologynd service demand dynamics.
Mathematically speaking, a Zipf distribution models thefprencew(n;s, N) of nodesn,n € N to a given

service

1/n®
Y 1/10

Practically, the distribution could correspond to the nalired request rate for a given service by each network

w(n;s,N) = )

node. Increasing the value of the parameatdérom 0 to oo, the distribution asymmetry grows from zero (uniform
demand) towards higher values.

At a second level, we consider two options as to how the nafoum service demand emerges spatially within
the network. In the default option, each node randomly geeerdemand according to the Zipf law. The alternative
is to introduce geographical correlation by concentratinges with high demand in the same network area. This
second scenario lends itself to modelling services witbrgfly local scope; whereas, the first one matches better
services that attract geographically broader interest.

3) Algorithm performance metricsWWe are concerned with two metrics when assessing the peafarenof
cDSMA. The first one relates to its accuracy and denotes tlgeedeof convergence of our heuristic solution to
the optimal one, as derived by using ideal global topologg demand information. It is defined as theerage
normalized excess cost,;,, and equals the ratio of the service access cost our algosithievesC,,(G,w),
over the cost achieved with the optimal soluti@h,,, (G, w), for given network topologyG and service demand

distributionw:
C1alg (O‘; G, w)

s O =G asGm)

] (10)

Clearly, 8,4 depends on the percentagef the network nodes participating in the solution. Gerlgréthe error
induced by our heuristic decreases for largianedian subgraphse.,greatero values. Closely related t6,;, and
its variation are the indices., corresponding to the minimum values @f where the access cost achieved with

our heuristic algorithm falls withiri00 - €% of the optimal.
ae = argmin {a|Bug(a) < (1+¢)} (11)
The second metric is thaigration hop counth,,,, which is generally a function of the percentagand reflects

how fast the algorithm converges to its (sub)optimal solutthe question of whether it does so has been answered

11
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Fig. 3. cDSMA accuracy for 10x10 nodes B-A graphs(left) amiig{right) as a function of the 1-median subgraph sizefoum service
demand distribution.

in Section IV. Smallerh,, values imply faster service deployment and less overheawvied to transport and
service set-up/shut-down tasks.

For any chosen configuration of the involved parameters, epeat 20 simulation runs to achieve statistical
significance. Typically, the results plotted hereafter @rerage values together with the 95% confidence intervals,

estimated over the 20 runs.

VI. SIMULATION RESULTS
A. Synthetic topologies: experiments under uniform demand

As already explained in Section V, these experiments detraiashow different topologies may facilitate or
encumber our algorithm. All nodes posing the same demaedopiimal service location coincides with the node
featuring the minimum reciprocal of closeness centrality

Figure 3 plots the average normalized excess gggtfor B-A and grid graphs of 100 nodes. Qualitatively, the
two plots are similar: the error induced by our heuristicrdases monotonically with the 1-median subgraph size.
However, both starting valueg,;,(0.1), and the required subgraph size for achieving optimal perdmce,a,
differ. The behavior of cDSMA on the B-A graph is better. Thygeegate service access cost increase is witfiin
of the optimal, even when we includ®% of network nodes in the 1-median problem solution. On thetreoy
reaching similar accuracy for the grid would require, onrage, no less that0% of the network nodes.

Both grids and B-A graphs have structured connectivity.éféheless, the existence of high-degree nodes, called
hubs, in B-A graphs, appears to ease more the algorithm tiger&lacing the service on, or nearby, hub nodes
suffices for getting a very good, even when suboptimal, eniytalready for small 1-median subgraphs. On the
contrary, grids exhibit more regular structure; all nodesehthe same degree and there is smaller variance in the
connectivity properties of neighboring nodes. Analyzing simulation runs, we found that the content migration
jumps within the grid are clearly shorter than in B-A graplsmany cases the service migrates to neighboring
nodes. Even worse, cDSMA gets more often trapped and tetesipaematurely in suboptimal locations. Said in
different way, the attraction force of the optimal locatioa.,the grid center node for odt and V, a neighborhood
around the center otherwise, is not impelling enough to thaimigrating service all the way to it except for large

enough 1-median subgraphs.
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TABLE |
AVERAGE NORMALIZED EXCESS COST AND HOPCOUNT FOB-A AND GRID NETWORKS: UNIFORM SERVICE DEMAND

B-A graph Grid network

Network size N||  B,14(0.1) hm(0.1)  Baig(0.4) hin(0.4) | Bag(0.1) hn(0.1)  Bag(0.4) R (0.4)

50 (25x2) 1.0453£0.0524  2.25-0.31 1.0125:-0.0186 1.9%0.28 | 1.0074£0.0071 1.460.35  1.0086:0.0058 1.16:0.22

100 (25x4) 1.0134+:0.0169  2.0€-0.32 1.0076-0.0164  2.08:0.00 | 1.0569+0.0333 1.36:0.33 1.0006-0.0012 1.26:0.29

200 (40x5) 1.0216+0.0327  2.060.00 1.0028:-0.0061 1.950.16 | 1.0636+0.0487 1.68:0.71 1.00130.0043  2.05:0.59
300 1.0125+0.0147  2.06:0.00 1.0032:0.0070  2.06:-0.00

This differentiation in the behavior of cDSMA, hence its foemance, over the two graphs is amplified when
we let the network size and diameter grow. Table | lists theuescy and migration hop count,,, as a function
of the network and 1-median subgraph si2éand «, respectively.

When compared with th&0x10 grid, cDSMA's trend to abort early the migration processyaiéteriorates with
the increase of network size and diameter—note that regtangrids feature larger diameter and, generally, longer
(shortest) paths than equal-size square grids. This isctedlen both the higheb,;, and the slightly increasing
yet overly low h,,, values in Table I. Moreover, there is significantly higheriaace in the convergence speed of
the algorithm that implies dependence on the service gigopraost,i.e.the starting point of the service migration
path. On the contrary, two remarks can be made as to how th&éD%erformance scales in B-A graphs: a)
its accuracy remains practically the same as the netwoek giiaws; and b) the network size does not affect the
convergence speed of the algorithm, which needs on avevagentgration hops to reach a host with very-close-
to-optimal access cost. In other words, even under the ardéale hypothesis of uniform service demand, the

algorithm exhibits attractive scalability properties wh@inning over B-A graphs.

B. Synthetic topologies: experiments under non-uniformatel

We repeat our experiments with B-A and grid graphs, only navimtroduce asymmetry in the service demand
distribution within the network. We consider and study sapely the two options described in V as to how this
asymmetry emergespatially across the network.

1) Spatially random demand distributiorhe service demand is distributed randomly in the netwarterkest
in the service may vary but is spread across the network naithsut any phenomena of spatial concentration.

The service demand asymmetry is modelled by Zipf distrangiof variable skewness parameter valses

TABLE Il
AVERAGE NORMALIZED EXCESS COST AND HOPCOUNT FOB-A AND GRID NETWORKS: NON UNIFORM SERVICE DEMAND(S=1)

B-A graph Grid network
Network size N Baig(0.1) hm(0.1) Baiq(0.4) him(0.4) Baiq(0.1) hm(0.1) Baig(0.4) him(0.4)

50(25x2) 1.0156+£0.0205  1.6€-0.48  1.0014-0.0038  1.83-0.35 | 1.0083:0.0068  1.5€-0.37  1.0062-0.0047  1.1€-0.22
10Q25x4) 1.0070£0.0143  2.15-0.35  1.0015-0.0034  1.9€-0.22 | 1.0553:0.0319  1.3%:0.35  1.0025:-0.0020  1.15-0.26
200 (40x5) 1.0016£0.0031  1.9€-0.22  1.00030.0007  2.03-0.16 | 1.0510+0.0346  1.4#40.73  1.0031#0.0047  1.9€-0.65
300 (60x5) 1.0029£0.0068  2.05-0.16 ~ 1.0006:-0.0000  2.06-0.00
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Fig. 4. cDSMA accuracy for 10x10 nodes B-A graphs(left) andg{right) as a function of the 1-median subgraph size:-moiform service
demand distributions(= 1).

Figure 4 plots the average normalized excess cosk fer 1. Again, the impact on the two types of synthetic
graphs is different. For B-A graphs, the already high acoyud cDSMA improves further. It lies within% of the
optimal already fore = 10% and N = 100 nodes and improves over the respective values under unéermice
demand for all network sizes. Overall, the demand asymnretignifies the existing attraction forces towards the
globally optimal service location, helping the algorithommhove away from locally optimal, yet globally suboptimal,
hosts. The convergence speed of cDSMA is practically theesamnetworks in the range of 100 to 300 nodes.

On the other hand, the algorithm performance over gridsnwsat invariable with many entries in Tables | and
Il remaining practically the same. In fact, grid-like topgles set a negative benchmark for the performance of
cDSMA requiring far more nodes within the 1-median subgrephield comparable accuracy with B-A graphs for
the same network size and service demand distributionsediyalently, for the same 1-median subgraph size, it
needs a significantly higher asymmetry in the service dendistdbution, as shown more clearly below.

2) Spatially correlated demand distributioThe service demand now exhibits spatial correlation. &stin the
service is concentrated in a particular graph neighborhasdhe case may be when the service has strongly local
scope.

We model these scenarios by inserting a cluster of nodes higin service demand in a random area within a
grid. The K cluster nodes collectively represent some percent&gef the total demand for the service, whereas
the otherN — K nodes share the remainiig00 — z)% of the demand. We call the ratity (100 — =) the demand
spatial contrastCy,. In 2D grids, clusters are formed by a cluster head node hegetith its fourl-hop (R = 1)

or twelve 1- and 2-hop (R = 2) neighbors. The contrast can then be written as:

K . K s
Oup(R, 5) = 2o w(nss, N) _ Dn_11/n (12)

N N
Zn:K+1 w(n;s, N) Zn:KJrl 1/ns

and the average normalized excess cost becomes a functhosttofy and the contrast value.

The values of3,;,(a, Csp) under spatially random and correlateél £ 1) distribution of demands are reported in
Table IIl for a10x10 grid topology. Having the top demand values stemming frorneréain network neighborhood
we actually “produce” a single pole of strong attraction floe migrating service. Our algorithm now follows the

demand gradient more effectively than before. As the péagenof the total demand held by the cluster nodes
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TABLE Il
AVERAGE NORMALIZED EXCESS COST UNDER SPATIALLY CORRELATEDBRVICE DEMAND

skewness || Csp(1,s) Baig(0.1) Baig(0.1,Csp)
1 0.786 1.03%0.027 1.016:0.023
2 8.540 1.003-0.006 1.6:0.0

grows larger, resulting in higher spatial contrast, theets even stronger driving the service firmly to the optimal
location.

It follows that R = 2 and higher service demand distribution asymmetrgnly sharpen the spatial demand
contrast, concentrating more the demand in space; naniEly, @& the service demand is spread acrto$siodes
for (s = 1, R = 2) and 89% across five nodes for £ 2, R = 1). The attractive forces applied on the migrating

service grow so that the algorithm finds easier its way towaneé optimal location.

C. Experiments on real-world network topologies

Real-world networks do not typically have the predictabieicture and properties of B-A graphs and grids
and may differ substantially the one from another. Nevédes®e we show below that insightful analogies can be
drawn between these networks and the B-A and grid topolagigarding the behavior of our service placement
mechanism.

The ISP topology dataset includes 264 Tier-1, 244 Transitf 842 stub ISP network topology files. They
represent snapshots of 14 different ISP network topolog&sneasured at different time epochs within the interval
2004-2008. We have focused on the larger Transit- and TikSPL datafiles, with topology sizes ranging from
100 to 1000 nodes, approximately. We chose to identify and primarilykvaith datasets, where the size of the
maximal connected component, to be denoted/iyC, approaches the full vertex set of the measured gfaph
The connected components for each topology are retrieveedhel well-known linear-time algorithm of Karp and
Tarjan [21]. Herein we present and discuss results from eesgptative subset of the datasets we experimented
with, as shown in IV. They correspond to snapshots of four-Tiand three Transit ISP networks and were chosen
so that there is adequate variance in size, diameter, amiectivity degree statistics.

Table V summarizes the performance of cDSMA over the realdvimpologies. The listed results include the
minimum number of nodek:?| required to achieve a solution that lies witl#r5% of the optimal and the average
migration hop count.,,, for different levels of asymmetry in the service demandritiation.

The main observation is that bothy ¢25 and |G?| show a remarkable insensitivity to both topological stuuet
and service demand dynamics. Although the considered Ig#dgies differ significantly in size and diameter, the
number of nodes we need to include in thenedian problem solution does not change. On the contresyna half
a dozen nodes suffices to get good accuracy even under unifenmand distribution, the least favorable scenario

for our algorithm as discussed in Sections VI-A and VI-B. &ukise, g 025 and |G| remain practically invariable

4Many of the original network topology files that have beereaskd miss some edges, resulting in more than one connextgzbents.
The measurement inaccuracies are mainly due to filteringriimg in the ISP borders or ISP hardware update
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TABLE IV

SELECTEDASES

Type Dataset id[| AS Number Name Extracted on

Tier-1 36 3549 Global Crossing 2006-05-03
35 -Il- -1l- 2006-07-13
33 2914 NTTC-Gin 2008-12-03
23 1239 Sprint 2008-09-30
21 1239 -Il- 2008-08-27
27 3356 Level-3 2004-09-24
13 -Il- -1l- 2005-03-17

Transit 46 3292 TDC 2008-05-01
41 680 DFN-IPX-Win 2006-05-03
40 786 JanetUK 2008-07-01

with the demand distribution skewness. Although for largalues ofs, few nodes exhibit asymmetrically large
demand values and become stronger attractors for the #lggrihe added value for the algorithm accuracy is
negligible.

This two-way insensitivity of our algorithm bears two sificant implications for its more practical implementa-
tion aspects. Firstly, the computational complexity whelvisag instances of the 1-median problem can be negligible
and scales well with the size and diameter of the networkoisdy, the algorithm performance is robust to possibly
inaccurate estimates of the service demand each node poses.

A last remark is appropriate with respect to the topologstalicture of these real-world topologies. The equally
well algorithm behavior under uniform demand distribut{en= 0) suggests that there is already adequate structure
in the network topology. As the probability distribution thfe connectivity degree in these networks suggests (see
Fig. 5), there are high-degree nodes and considerablencaria the connectedness properties of nodes across the
network. In fact, the high-degree nodes serve in a way simdlghe high-degree nodes in B-A graphs; they are
easily “identifiable” by our algorithm as low-cost hosts fitie migrating service and, even for small 1-median

subgraph sizes, their attraction forces are strong encugiate a cost-effective service migration path.

TABLE V
MEAN VALUE OF ae FOR VARIOUS DATASETS UNDER DIFFERENT DEMAND DISTRIBUTIONS

s=0 s=1 s=2
Type Datasetid mCC nodes Diameter  <Degreg> «g.025 MG @0.025 ledh @0.025 NG
Tier-1 36 76 10 3.71 0.0474-0.001 4 0.04+0.002 4 0.046+0.001 4
35 100 9 3.78 0.045+0.002 5 0.045+0.001 5 0.043+0.001 5
33 180 11 3.53 0.0244+-0.002 5 0.022+0.002 4 0.019+-0.002 4
23 184 13 3.06 0.019+-0.002 4 0.018+0.002 4 0.014-0.002 4
21 216 12 3.07 0.016+0.002 4 0.016+0.002 4 0.0144+0.003 4
27 339 24 3.98 0.018+0.002 7 0.01A40.002 6 0.0144+0.003 5
13 378 25 4.49 0.012+-0.002 5 0.012+0.002 5 0.01140.002 5
Transit 46 71 9 3.30 0.033+0.003 3 0.0240.004 2 0.026+0.003 2
41 253 14 2.62 0.019+-0.003 5 0.015+0.003 4 0.015+0.003 4
40 336 14 2.69 0.012+-0.003 5 0.012+0.002 5 0.013+0.002 5
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Fig. 5. Degree distributions of the ISP topology snapshots

D. cDSMA vs. locality-oriented service migration

The way cDSMA determines the service migration path cledifierentiates from typical “local-search” ap-
proaches. Local-search solutions such as the R-ball ttieurg11], for example, restrica-priori their search for a
better service host to the neighborhood of the current eeraication. On the contrary, cDSMA focuses its search
for the next service host in certain directions. Nodes lyaegoss a (shortest) path, which serves many requests for
a service, exhibit relatively highvC BC values. The resulting 1-median subgraph is spatially dtest across that
path and therefore oversteps the local neighborhood ‘draf'ri

To compare the above two approaches, we have implementedadityeOriented Migration heuristic, hereafter

abbreviated to LOM. In LOM we solve the 1-median problem witthe direct neighborhood ak hops around
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the current host and apply the same demand mapping mechéiMsD) to capture the demand load from nodes
lying further thank hops away from the current service host. The comparisoneofwlo approaches for each ISP
topology snapshot in Table VI proceeds as follows. We firstegate asymmetric service demand (Zipf distribution
with s = 1) across the network. We compute the globally optimal serviost node and we select a fixed set of
service generation nodes, At.,, hops away from the optimal service location. We then cateutlae values of.,,
and (3., metrics® for the two approaches, cDSMA and LOM. For cDSMA, we have Betgarameten = 3%,

meaning that the 1-median subgraph size ranges from 6 to d@srfor the networks listed in Table VI.

TABLE VI
CONVERGENCE SPEED AND ACCURACY COMPARISON BETWEENOM AND CDSMA ON REALISTIC TOPOLOGIES

Dataset 23 Dataset 33 Dataset 27 Dataset 13

Dyen LOM cDSMA LOM cDSMA LOM cDSMA LOM cDSMA
N Baig hm | Baig(3%) hm Balg hm | Baig(3%) hm Baig hm | Baig(3%) hm Balg hm | Baig(3%)

3 1 1.1050 | 2 1 1 1.0308 | 2 1 1 11109 | 1 1.0057 1 11054 | 1 1

4 1 1.1275| 3 1 1 1.3206 | 2 1 1 1.2523 | 1 1.0057 1 12312 | 1 1

5 1 1.1632 | 2 1 1 1.2800 | 1 1.2800 2 11109 | 1 1 1 1.0434 | 2 1

7 1 1.6060 | 2 1 3 1.0308 | 1 1.0308 3 11763 | 1 1 1 14202 | 1 1

10 - - - - - - - - 1 1.7094 | 2 1 1 1.4604 | 2 1
13 - - - - - - - - 2 1.8579 | 1 1.0057 3 1.6887 | 1 1.1054

Our expectation before the experiments was that the LOMistaumould be characterized by overly higher
number of migration hops since the latter is lower boundedlhy, /R when the service reaches the globally
optimal location. Nevertheless, and interestingly enoubke LOM approach combines high excess costs with
generally small number of migration hops, irrespective h# service generation location and for all topologies.
Selecting “blindly” the R-hop neighbors of the current service host as future catelidasts, LOM effectively
introduces noise to the mechanism’s effort to detect thé-efbsctive service migration direction. With LOM the
nodes in the 1-median subgraph are spread more unidiratiiaround the service host and the demand mapping
process projects more uniformly the demand contributiohthe remaining nodes on them. Consequently, the
migrating service gets easily trapped in some local minimwinich forces the migration process to stop too early
to achieve an efficient solution. This resembles the behafithe cDSMA in grids under uniform demand. There
it was the topology of the network that induced a more locadddian subgraph and attenuated the attraction force
towards the optimal. With LOM, this locality is inherentijnposed a-priori by the method, with similarly negative
results.

On the other hand, the cDSMA heuristic seeks to choose thé fappropriate” candidate hosts, capable of
leading the service fast to preferable/cost-minimizingglions, no matter what the shape/radius of the emerging
G' neighborhood would be. Whereas, in a couple of cases thhtdmgroaches are trapped to a suboptimal place,
e.g., Dataset 33 anf),.,,=7, LOM needs three hops to get there, whereas cDSMA abdss @fie hop.

This capability of cDSMA to make longer migration hops andealerate its convergence to the (sub)optimal

service location has another positive effect: the migratimp-count remains largely independent of the service

5The void entries are due to the fact that the most distant twdee global minimum location, lies at some distance smélien theDge,,
value; a piece of information not captured by the diametéuesa

18



generation host. This means that the mechanism does nat ades according to their proximity to the service
demand and/or network topology hot spots, inducing a lessndtic yet welcome notion of fairness in the

performance different network users get.

VIl. A PROTOCOL IMPLEMENTATION FOR ®SMA

We now sketch a possible protocol implementation for cDSMAt trespects the constraints of self-organizing
networks. It draws on information locally available at netl nodes and distributes the computational load and
decision-making task among the nodes on the service nogragtath. In the same time, it keeps information
dissemination overhead through messages propagatingeimetwork to minimum. We present the proposed
implementation in a step-by-step fashion together with wghoanalysis of time and message complexity:

Service host advertisemerEvery time the services carries out a migration hop, as chbgean iteration of
the cDSMA, the new service host initiates a service adwartent phase to inform all network nodes about the
current service location. This task may be carried out by effigient flooding scheme requirin@(| E|) messages
andO(D) time, whereD is the network diameter.

Computation of wCBC metricOur ongoing experiments with real-world ISP topologies gagj high rank
correlation of the betweenness metrics (Section 1ll) witleit counterparts measured in tlego-networksof
nodes [22]. These values can be computed locally by indalidodes, assuming they are aware of their neighbors’
service demands. Both egec BC values computed i (d2,,,.,.), (whered,,.. is network’s maximum node degree)
and individual service demands are then communicated (i) time) to the current service h8swith dedicated
or in-band signaling TheseO(|V|) in number demand messages should include a field where aliietliate
nodes on the shortest path to the service host will be redorde

Identification of topwC' BC nodes and mapping the residual demand on th&he current service host collects
the messages and identifies the t0p-BC nodes,i.e.determines the>%, .. Monitoring the incoming demand
messages, the host extracts all available shortest patbsrénom any network node towards it and can compute
the wo,qp(n; Host) term of the demand mapping formula (see Section IV). The estinge processing of the node
sequence on each incoming demand message gdds-|V'|) time (wherep is the maximum number of shorthest
paths between all node pairs).

Solution of the 1-median problem within th&; ., subgraph The service host notifies each of the the topBC
nodes with unicast messages of which other nodes (co-glagee included in th&r?, ., and queries them for
their pairwise distances. Each node determines its disttm¢he other co-players via a mechanism such as the
pi ng utility (O(a? - |V|?) steps,0(a? - |[V|?) messages), and communicates them (Wit - |V|) messages) to
the host. With the pairwise distances@f; ., nodes andu. ¢ (n; Host) at hand, the host is capable to solve the

reduced 1-median problem and determine the next-bestsehist.

6The service may carry along its way the initial demand distion collected once at the generation node; this way oerlpahd-update
messages need to be propagated.

7Alternatively, demands could be directly measured by theen service host if the estimation delays can be tolerated
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The centralized brute-force solution of the problem by algirsuper-node entity would require: a) collecting
information about the global network topology and demarstrifiution; b) solving an instance of the all-pairs
shortest paths problem, which requir@g|V'|?) time (e.g,using the Floyd-Warshall algorithm); c) exhaustively
enumerating all|V’| possible service locations and comparing the costs relateshch one of them, involving
O(|V|) multiplications, additions, and comparisons. Thereftine, overall complexity would b&(|V|?). For the
cDSMA technique each host needéa?-|V|?) time to determine the optimal location within the respextubgraph
(of sizea|V|). The full migration process includés,, («) such computations resulting @(h,,, («) - a?-|V|?) time
complexity, wherea << 1. However, for typical network sizes the constahts(«) and « drastically affect the
emerging cost; our experiments (Section VI) suggest treatytpically involved valuesife..« = 3% andh,, (a) =~ 3)

lead to an apparently beneficial cost reduction of one or meaders of magnitude.

VIIl. RELATED WORK

The problem of service placement has been predominandietleas an instance of the broader family of (metric)
facility location (FL) problems, which have found many difént applications in areas as diverse as transportation
networks and distributed computing. (Un)Capacitated Fhbfams is probably the most popular problem variant,
where the objective is to minimize the combined cost of opgra facility and serving its clients and the number
of facilities is not a priori bounded. The problem we addresdead is an instance of k-mediah,= 1 in our
case, problems, where no opening cost exists and the apwahfacilities cannot exceel. Both problems are
NP-hard for general topologies [5], [7]; thus, various apgmations commonly requiring exact knowledge about
their inputs, have been proposed to address them [9], [23].

The proposed approaches are typically categorized toalizetd and distributed. The applicability of centralized
solutions to large-scale data networks is severely underthby the need for centralized decision-making and
collection of global information about service demand aagotogy. In particular when this information varies
dynamically, as with mobile networks, distributed solasdecome mandatory and have recently received renewed
attention [24].

One recently initiated research thread relates to approximability of distributed approaches to the facility
location problem. Moscibroda and Wattenhofer in [25] drawaoprimal-dual approach earlier devised by Jain and
Vazirani in [6], to derive a distributed algorithm that tesdoff the approximation ratio with the communication
overhead under the assumption@flogn) bits message size, wherethe number of clients. More recently, Pandit
and Pemmaraju have derived an alterative distributed igthgorthat compares favorably with the one in [25] in
resolving the same trade-off [26].

Although the approximability studies can provide provabteinds for the run time and the obtainable quality
of the solutions, they are typically outperformed by lesghamatically rigorous yet practical heuristic solutions.
Common to most of them is the servioggration from the generator host towards its optimal location thioag
number of locally-determined hops that delineate a costedsing path. What changes is the way decisions are

made. Oikonomotet alin [27] exploit the shortest-path tree structures that aduced on the network graph
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by the routing protocol operation to estimate upper boumdgte aggregate cost in case service migrates at the
1-hop neighbors. Migration hops are therefore one physiogl long and this decelerates the migration process,
especially in larger networks. Our algorithm resolves mefficiently the trade-off between convergence speed
and accuracy; in fact, cDSMA maintains consistently highvewgence speed over the real-world topologies while
achieving very-close-to-optimal placements.

Even closer to our work is the upcoming paper of Smaragdetka. [11]. They reduce the original k-median
problem in multiple smaller-scale 1-median problems sbwéthin an area of-hopsfrom the current location of
each service facility. Compared to cDSMA, the area over ity search for candidate next service hosts and
upon which they map demand from the “outer” nodes isrtwp neighbourhood of the current service location.
In VI-D we have discussed in detail how cDSMA compares withnailar, local-search oriented approach.

Finally, cDSMA is an instance of a mechanism, where insifftuism Complex Network Theory help improve the
performance of a network operationefe: service migration and optimal placement) significantlyoTmore such
examples have been reported in the area of Delay Toleramtddet, where CNA has inspired the derivation of new
routing protocols that, when correctly tuned, can improeefgrmance significantly over more naive approaches

[28], [29].
IX. DISCUSSIONCONCLUSIONS

Networked communication becomes more and more user-ede#ifter the success of user-generated content,
user-oriented service creation emerges as a new paradamwithlet individual users generate and make available
services at minimum programming effort. Scalable disteduservice migration mechanisms will be key to the
successful proliferation of the paradigm.

We have mimicked earlier research work in treating the seryilacement problem in the general context of
facility location problems. We have departed from it in eifpthg complex network analysis for coming up with
a scalable distributed service migration mechanism. Wiodiiced a metric, weighted Conditional Betweeness
Centrality wC BC) that captures the topological centrality and demand aggi@n capacity of individual nodes.
The metric is used to select a small subset of significant siéatesolving the 1-median problem as well as easily
map the demand of the remaining nodes on this subset. Thiesdacilities migrate in the network towards the
(sub)optimal location along a cost-decreasing path détexiteratively at the few intermediate service host nodes

Both the network topology and spatial dynamics of serviamaled affect the accuracy and the convergence speed
of the algorithm, giving rise to stronger/lighter attractiforces that drag the migrating service facilities tovgard
the optimal location. In general, the higher the asymmaetrgither of the two, the better the performance of the
algorithm. The exhaustive evaluation of our algorithm oal+#&orld topologies suggests that very good accuracy
can be obtained when solving the 1-median problem with a sargll number, in the order of ten, of nodes with
the highestvC' BC scores. The result is insensitive to the network size anehelier and the asymmetry of demand
distribution, hinting that real-world topologies have agh asymmetry to yield good performance of the algorithm.

Moreover, the algorithm outperforms locality-orientedvége migration and its accuracy and convergence speed
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are not dependent on the position of the service generation.

The proposed mechanism is highly decentralized; all nedeslidates to host a service share the decision-
making process for optimally placing the service in the mekw It is also scalable in that it copes with the
computational burden related to the solution of thmedian problem; this may become a difficult task for large-
scale networks, especially when changes in the service mitroharacteristics call for its repeated execution.
Nevertheless, topological and demand information stiddseto propagate in the network. For small-size networks,
topological information may become available through theration of a link-state routing protocol that distributes
and uses global topology information. For larger-scalavogts, one way to acquire topology information would
be through the deployment of some source-routing or paitelsing protocol that carries information about the
path it traverses on its headers. Information about thedatén services, on the other hand, may need more effort.
In face of the recognized limitations posed by the need foure plistributed (as well as self-organizing) solution
we have moved forward to the proposal of a practical impleaten (Section VII) of cDSMA. Drawing on the
ego-networkconcept [22], our implementation seeks to utilize only lanformation to assess the potential of each
node to participate in the current small-scale optimizatie briefly presented the computational benefits of such
an approach in Section VII; the evaluation of the scheme ligesti to our future work.

Our (so far) problem formulation and the” BC' metric we introduced for harnessing the computational éuiaf
the 1-median problem solution assume that the network exeramesnum hop count routing. Although minimum
hop count routing is both simple and popular, network tradfigineering requires more elaborate routing solutions
such as load-balancing/load adaptive routing [30]. We a¢a@éneralize our treatment of the service migration
problem to address these cases. First of all, the (condijidretweenness centrality factor in the” BC' metric
definition is inherently flexible in that it considers shatt@aths. Different routing metrics can be accommodated
through changing the context of (shortest) path. For exampk could consider weighted graphs, where link
weights may represent link capacities or propagation delAymore substantial change in the metric would be
to replace the shortest-path betweenness centrality wtighnative BC' definitions: therandom-walk betweeness
centrality [31], which would resemble more a probabilistic, traffic demd oblivious routing implementation, or
the k-betweenness centralif32], which is closer to some short of multipath routing, mveit does not enforce
independent, link/node disjoint paths. On the other haméctommodate other-than-min-hop-count routing in the

content access leg, we would need a fundamental adaptdtitve @-median problem formulation.
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