
34

Scalable Don’t-Care-Based Logic Optimization and Resynthesis

ALAN MISHCHENKO and ROBERT BRAYTON, University of California, Berkeley
JIE-HONG ROLAND JIANG, National Taiwan University
STEPHEN JANG, Xilinx Inc.

We describe an optimization method for combinational and sequential logic networks, with emphasis on
scalability. The proposed resynthesis (a) is capable of substantial logic restructuring, (b) is customizable to
solve a variety of optimization tasks, and (c) has reasonable runtime on industrial designs. The approach
uses don’t-cares computed for a window surrounding a node and can take into account external don’t-cares
(e.g., unreachable states). It uses a SAT solver for all aspects of Boolean manipulation: computing don’t-cares
for a node in the window, and deriving a new Boolean function of the node after resubstitution. Experimental
results on 6-input LUT networks after a high effort synthesis show substantial reductions in area and delay.
When applied to 20 large academic benchmarks, the LUT counts and logic levels are reduced by 45.0% and
12.2%, respectively. The longest runtime for synthesis and mapping is about two minutes. When applied to
a set of 14 industrial benchmarks ranging up to 83K 6-LUTs, the LUT counts and logic levels are reduced
by 11.8% and 16.5%, respectively. The longest runtime is about 30 minutes.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1 [Integrated
Circuits]: Types and Design Styles—Gate arrays

General Terms: Algorithms, Performance, Design, Experimentation

Additional Key Words and Phrases: FPGA, don’t-cares, resynthesis, Boolean satisfiability

ACM Reference Format:
Mishchenko, A., Brayton, R., Jiang, J.-H. R., and Jang, S. 2011. Scalable don’t-care-based logic optimization
and resynthesis. ACM Trans. Reconfig. Technol. Syst. 4, 4, Article 34 (December 2011), 23 pages.
DOI = 10.1145/2068716.2068720 http://doi.acm.org/10.1145/2068716.2068720

1. INTRODUCTION

The sizes of industrial FPGAs have grown significantly in the last several years. The
Virtex-5 FPGA family [Xilinx 2011] contains up to 207K 6-LUTs. The Stratix IV family
[Altera 2011] contains up to 212K Adaptive Logic Modules (ALMs). It is expected that
the capacity of FPGAs will continue to grow in the coming years. As a result, scalability
is becoming a challenge in the design flow, and in particular, in logic synthesis.

Traditional optimizations of Boolean networks using don’t-cares (SDC, ODC, EXDC)
are based on logic minimization packages, such as Espresso, and on logic represen-
tations, such as SOPs and BDDs. Logic restructuring with Boolean resubstitution is

S. Jang is currently affiliated with Agate Logic.
This work was supported in part by SRC contracts 1361.001 and 1444.001, NSF grant CCF-0702668 entitled
“Sequentially Transparent Synthesis”, and the California Micro Program with industrial sponsors Actel,
Altera, Atrenta, Calypto, IBM, Intel, Intrinsity, Magma, Mentor Graphics, Synopsys, Synplicity (Synopsys),
Tabula, Verific, and Xilinx.
Authors’ addresses: A. Mishchenko (corresponding author) and R. Brayton, Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720; email:
alanmi@eecs.berkeley.edu; J.-H. R. Jiang, Department of Electrical Engineering, National Taiwan Univer-
sity, Taipei, Taiwan 10617; S. Jang, Agate Logic Inc., 1237 East Argues Ave., Sunnyvale, CA 94085.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1936-7406/2011/12-ART34 $10.00
DOI 10.1145/2068716.2068720 http://doi.acm.org/10.1145/2068716.2068720

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:2 A. Mishchenko et al.

traditionally done by modifying the set of fanins of a node under Satisfiability Don’t-
Cares (SDCs). If External Don’t-Cares (EXDCs) are present, they can enhance the effect
of SDCs. EXDCs are typically represented by BDDs or by a separate Boolean network
in terms of the input variables. These methods are not scalable for large designs and
therefore rarely used.

We give a method that avoids these nonscalable techniques. Scalability is achieved by:

—optimizing a node in a local window as in Mishchenko et al. [2006b],
—extracting and representing EXDCs in terms of clauses on k-cuts in an underlying

AIG of the network [Case et al. 2008], and
—avoiding SOPs and BDDs, and instead using SAT and interpolation[McMillan et al.

2003].

Several preliminary aspects of this work appeared earlier in the following publica-
tions: don’t-care computation [Mishchenko et al. 2005], computation of sequential
don’t-cares [Case et al. 2008], SAT-based resubstitution [Mishchenko et al. 2006], and
resubstitution with don’t-cares [Mishchenko et al. 2009].

The current work differs as follows. The algorithms for window computation have
been further improved and made more scalable, compared to Mishchenko et al. [2005].
The use of Boolean satisfiability for resynthesis [Mishchenko et al. 2009] has been
perfected by utilizing the interpolation procedure, which allows the SAT solver to use
don’t-cares without explicitly computing them. Another practical innovation is uni-
form handling of combinational and sequential don’t-cares, compared to Mishchenko
et al. [2005] and Case et al. [2008]. This is achieved by flexibly adjusting the window
boundary to fit the care clauses precomputed for the network.

These ideas are implemented in the system, ABC [Berkeley 2011], as command mfs.
For sequential networks, care sets characterizing the reachable state space (comple-
ment of EXDCs) are extracted directly in terms of clauses on k-cuts of the AIG. These
clauses restrict the states to an overapproximation of the reachable states. The methods
are shown experimentally to be scalable and effective.

The rest of the article is organized as follows. Section 2 describes some background.
Section 3 describes the method for extracting external care sets in terms of k-clauses.
Section 4 discusses optimization based on windowing, SAT solving, interpolation, and
use of care clauses. Section 5 reviews relevant previous work. Section 6 reports exper-
imental results. Section 7 concludes the article and outlines future work.

2. BACKGROUND

2.1. Networks and Nodes

A Boolean network is a Directed Acyclic Graph (DAG) with nodes corresponding to
logic gates and directed edges corresponding to wires connecting the gates. The terms
Boolean network and circuit are used interchangeably.

A node has zero or more fanins, that is, nodes that are driving this node, and zero or
more fanouts, that is, nodes driven by this node. The Primary Inputs (PIs) are nodes
without fanins. The Primary Outputs (POs) are a subset of the nodes of the network.
The Transitive FanIn (TFI) of a node includes the node, its fanins, the fanins of the
fanins, etc., until the PIs are reached. The Transitive FanOut (TFO) of a node includes
the node, its fanouts, the fanouts of the fanouts, etc., until the POs are reached. If
the network is sequential, it contains registers whose inputs/outputs are treated as
additional POs/PIs.

A combinational network can be expressed as an And-Inverter Graph (AIG),
composed of two-input ANDs and inverters represented as complemented attributes
on the edges. Optimizations of this article are applicable to both AIGs and general-case
logic networks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:3

A cut C of node n, called the root, is a set of nodes, called leaves, such that each path
from a PI to n passes through at least one leaf. A cut is K-feasible if its cardinality does
not exceed K. A cut is dominated if there is another cut of the same node, contained,
set-theoretically, in the given cut. A fanin (fanout) cone of node n is the subset of the
nodes of the network reachable through the fanin (fanout) edges from n.

2.2. Don’t-Cares and Resubstitution

Internal flexibilities of a node arise because of limited controllability and observability
of the node. Noncontrollability occurs because some combinations of values are never
produced at the fanins. Nonobservability occurs because the node’s effect on the POs is
blocked under some combination of the PI values. Examples can be found in Mishchenko
et al. [2005].

These internal flexibilities result in don’t-cares at the node n. They can be represented
by a Boolean function whose inputs are the fanins of the node and whose output is 1
when the value produced by the node does not affect the functionality of the network.
The complement of this function gives the care set.

Given a network with PIs x and PO functions {zi(x)}, the care set Cn(x) of a node n
is a Boolean function of the PIs

Cn(x)
∑

i

[zi(x) ⊕ z′
i(x)],

where z′
i(x) are the POs in a copy of the network but with node n complemented

[Mishchenko et al. 2005].
Traditionally, subsets of don’t-cares are derived and used to optimize a node [Savoj

et al. 1992; Mishchenko et al. 2005]. This optimization may involve minimizing the
node’s function in isolation from other nodes, or expressing the node in terms of a
different set of fanins. The former transformation is known as don’t-care-based op-
timization; the latter is resubstitution. The potential new fanins of the node are its
resubstitution candidates. A set of resubstitution candidates is feasible if the node can
be reexpressed using the new fanins without changing the functionality of the network.

A necessary and sufficient condition for the existence of resubstitution is given in
Mishchenko et al. [2006b, Theorem 5.1].

THEOREM 2.2.1. There exists a function h(g) of functions, {gi(x)}, such that C(x) ⇒
[f (x) = h(g(x))] if and only if there is no minterm pair (x1, x2), such that f (x1) �= f (x2)
while gj(x1) = gj(x2), for all j, where C(x1) ∧ C(x2) = 1.

In the preceding formulation, minterm stands for a vector of assignments for all
variables. Informally, resubstitution exists if and only if, on the care set, the capability of
the set of functions {gi(x)} to distinguish minterms is no less than that of function f (x).

2.3. Optimization with Don’t-Cares

Computation of don’t-cares involves exploring fanin and fanout cones, but if the net-
work is large, it is infeasible to do this while considering the whole network as the
context of each node. Therefore computation for a node is limited to a local neighbor-
hood of the node, called a window. The node to be optimized is called the pivot and
the scope of a window containing the pivot is controlled by user-specified parameters,
for example, the number of fanin and fanout levels spanned, the number of inputs,
outputs, and internal nodes of the window.

When a don’t-care is computed for a node, it should be used immediately and the
network updated before optimizing another node. This avoids don’t-care incompatibility
issues arising when don’t-cares are computed for several nodes before they are used.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:4 A. Mishchenko et al.

These window-based methods use ODCs and SDCs, extracted from the window. The
use of EXDCs with window methods is problematic because they are usually expressed
in terms of the PIs of the network, and for each window, they must be projected to the
window’s PIs. Typically EXDCs are hard to represent and generally hard to project to
a window. Therefore, the use of EXDCs has been seen as not scalable, except for small
circuits. In Section 4.3, we describe a new scalable method for computing and using
information about EXDCs, appropriate for window-based optimization.

2.4. Interpolation

Given Boolean functions, (A(x, y), B(y, z)), such that A(x, y) ∧ B(y, z) = 0, and (x, y, z)
is a partition of the variables, an interpolant is a Boolean function, I(y), such that
A(x, y) ⊆ I(y) ⊆ B(y, z). If A(x, y) and B(y, z) are sets of clauses, then their conjunction
is an unsatisfiable SAT instance, and an interpolant can be computed from a proof of
unsatisfiability using the algorithm in McMillan et al. [2003, Definition 2].

A(x, y) can be interpreted as the onset of a function, B(y, z) as the offset, and
A(x, y) ∧ B(y, z) as the don’t-care set. Thus I(y) can be seen as an optimized version of
A(x, y) where the don’t-cares are used somehow, for example, I is only a function of the
variables y.

3. EXTRACTING EXTERNAL CARE CLAUSES

In this section, we give an overview of how we obtain information about EXDCs,
represented in terms of a set of care k-clauses, whose conjunction overapproximates
the reachable state space of a sequential circuit. This is done by induction and is based
on ideas detailed in Case et al. [2008]. Once extracted, the set of clauses can be stored
and later used by the ABC command mfs. This algorithm is described in Section 4.2.

We compute a set of clauses on a set of k-cuts of an AIG representing the sequential
circuit, as an inductive invariant. Previous methods obtain external don’t-cares by
computing the set (or subset) of unreachable states characterized by a function of the
register outputs. To use these as well as SDCs and ODCs in a scalable way, the circuit
is temporarily restricted to a window around a node to be simplified and the EXDCs
must be projected onto a set of nodes or inputs of the window being used. Thus, the
useful parts of the unreachable set are those which have nontrivial such projections.
In contrast, we do not compute the set of unreachable states, but directly compute a
set of its projections onto various cuts of the AIG.

These projections are computed by induction [Bjesse et al. 2000], which is one of the
most practical methods for characterizing an approximate set of reachable states. The
computation of such sets is applicable to large designs whose size and logic complexity
would cause other methods (such as BDD-based reachability) to fail.

An invariant is inductive if it satisfies two conditions: base case, that is, it holds in
the initial state, and inductive case, that is, if it holds in a state, then it holds in all
states reachable from that state in one transition. Induction is scalable because both
the base and inductive cases can be formulated as incremental instances of Boolean
satisfiability (SAT), which can be solved efficiently using modern SAT solvers [Een
et al. 2003].

In our method, the invariant is a set of clauses, in which a group of variables par-
ticipating in a clause is derived using an efficient k-cut computation method adopted
from technology mapping [Chen et al. 2004, Pan et al. 1998]. It avoids exhaustive k-cut
enumeration and computes only a small subset of useful cuts using priority heuristics
similar to those in Mishchenko et al. [2007b].

An initial set of candidate clauses is detected using simulation. Two types of random
simulation are used: combinational and sequential. Sequential simulation starts at the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:5

initial state and only visits reachable states from there. Minterms at the inputs of a
k-cut that appear under combinational simulation and do not appear under sequential
simulation are recorded. Then, a candidate clause is derived as the complement of such
a minterm, provided that is satisfies the initial state of the circuit. The starting set of
candidate clauses is iteratively refined using SAT-based induction, throwing out those
clauses that do not hold inductively. The greatest fixed-point of this computation yields
an inductive invariant (the conjunction of the remaining clauses) and represents an
overapproximation to the reachable state set.

To make this computation efficient, a flexible framework heuristically trades the
number and expressiveness of the clauses for computation time. Invariant sets can be
proved in batches, each of which successively tightens the already computed invariant.
The process is stopped when a resource limit is reached.

Scalability is achieved by using a heuristic for candidate clause generation and filter-
ing. This counts the number of times N a minterm appears in combinational simulation
but never in sequential simulation. Such minterms are more likely excluded from se-
quential simulation because they characterize unreachable states. The minterms are
prioritized according to N and the top M (user specified) are selected and complemented
to obtain the initial set of candidate clauses. Inductive proofs composed of such sets
can be processed efficiently by partitioning the clauses and solving their logic cones in
parallel without sacrificing the completeness of the result. A similar approach was used
in Case et al. [2006]. In typical runs, several thousand clauses are selected initially
with only a few hundred ending up in the invariant.

4. OPTIMIZATION AND RESYNTHESIS ALGORITHM

During optimization, the nodes of a mapped circuit are visited and optimized one at
a time. Since the optimization order appears (experimentally) to be unimportant for
large circuits, we use a topological order because it is simpler to compute.

Figure 1 shows pseudocode of our node optimization procedure based on structural
analysis (windowing), satisfiability, SAT solving, and interpolation. It uses two win-
dows: an outer window to provide the environment, from which cares are extracted (or
represented) for the inner window (explained in detail in Section 4.3).

The parameters used by this procedure include the following:

—the number of fanin/fanout levels of the inner and outer windows to be used,
—the limit on PIs and internal nodes of the inner window,
—the largest number of Boolean divisors to collect,
—the runtime limit for the don’t-care computation,
—the number of random patterns to simulate,
—the simulation success rate determining when random simulation is replaced by

constrained guided simulation performed by the SAT solver,
—the SAT solver runtime and conflict limits,
—the resubstitution objective function based on the goals of resynthesis (e.g., area,

delay, power).

The following subsections provide details on the theory and implementation of each
part of the preceding resynthesis procedure, applied to the pivot node of the window
(node).

4.1. Windowing

This subsection describes a windowing algorithm and its use. The procedure is the
same for the construction of both the inner and outer windows, but the parameters
are different.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:6 A. Mishchenko et al.

Fig. 1. Don’t-care-based optimization of a node.

Figure 2 summarizes a windowing procedure taking the pivot node (node) and two
parameters (tfi level max, tfo level max), which determine the maximum number of
TFI and TFO levels spanned by the window.

First, the TFI cone of the pivot is computed using a reverse topological traversal,
reaching for several levels towards the PIs. The PIs of the window are detected as
the nodes that are not in this cone but have fanouts in it. Next, the TFO cone of
the pivot is computed by a topological traversal reaching for several levels towards
the POs. If the TFO cone is empty (for example, if the pivot is a PO), the procedure

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:7

Fig. 2. Improved windowing algorithm.

returns the window composed of nodes found on the paths between the pivot and the
PIs.

If the TFO cone is not empty, the POs of the cone are detected as the nodes that
are in the cone but have fanouts outside of it. Next, a reverse topological traversal
is performed from the window POs towards the window PIs while skipping the paths
through the pivot. This traversal is useful to detect reconvergent paths between the
window POs and window PIs that do not include the pivot node. The scope of this
traversal is made local by finding the lowest level of the window PIs and not traversing
below that level.

Since some nodes in the TFO cone may have no path to any of the window PIs,
these nodes are removed from the TFO cone because they cannot produce observability
don’t-cares. Since the TFO cone may have changed, the window POs are recomputed.
Finally, all nodes on the paths from the updated window POs to the window PIs are
collected and returned as the window. This traversal augments the set of the window
PIs with those fanins of the collected nodes that are not on the paths to the window PIs.

4.2. Computing the Care Set for an Inner Window

The configuration shown in Figure 3 has two windows: an outer window containing
an inner window. The inner window contains the pivot node f (y). In this subsection,
we consider the outer window with PIs x and the POs z and the inputs s to the inner

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:8 A. Mishchenko et al.

z

y

s

x

f

care
clause

care
clause

care
clause

Outer window

Inner window

Fig. 3. The inner and outer windows for node f.

()iz x ()iz x′

x x

s s

O(x)

f(x) ()f x

W W’

Fig. 4. Miter for care set computation.

window. We use these to extract a care set for the inner window in terms of its inputs
s. The care clauses shown in Figure 3 are additional constraints on the satisfiable
assignments of the SAT problem, which correspond to the care minterms. The more
powerful are these constraints, the more don’t-cares are computed.

SAT and random simulation are used in the care set computation. The care set for
f in the s-space is extracted from this window. We first describe the case where there
are no external care clauses. A miter is formed as shown in Figure 4, where the inner
window is shown as a circle and the function f is viewed as a global function of the outer
window PIs, x. When a 1 is asserted at the output of the miter O(x), a solution of the
SAT problem corresponding to this miter gives a satisfying assignment for all network
signals. The values of variables s (the PIs of the inner window) in this assignment form
a care set minterm, ms, in the s-space. This is because, for the corresponding mx of the
assignment, at least one pair of POs, (zi(mx), z′

i(mx)), has opposite values and thus we
care about the output of f.

All such care set minterms, ms, are collected by enumerating the satisfying assign-
ments of the SAT problem where the variables s are the projection variables.

When there are care clauses, we look for those whose support variables are all
contained in the outer window. Such clauses are shown as curvy lines in Figure 3. If
any are found, they are added to the set of clauses generated for the outer windows in
both copies, as shown in Figure 4, to form the SAT instance. Optionally, if there are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:9

Fig. 5. Pseudocode of SAT-based care computation.

care clauses with some variables outside of the outer window, the outer window can be
expanded to include them as PIs.

The SAT-based care computation is summarized in Figure 5. The top-level procedure
CompleteCare takes inner window N and its context W (outer window). Procedure
ConstructMiter applies structural hashing to the miter of the two copies of W (W and
W ′, as shown in Figure 4). The resulting compacted AIG G is constructed in one DFS
traversal of the nodes in the miter, without actual duplication.

For efficiency, random simulation is used to derive part of the care set, F1. The CNF
P is the conjunction of clauses derived from G and the complement of F1. The CNF
is conjoined with the care clauses falling within W and W ′ obtained by the procedure
CareClauses(). Finally, a 1 is asserted at the PO of the miter.

The all-SAT solver SatSolutions enumerates through the remaining satisfying solu-
tions, F2, of the care set. In practice, it often happens that the SAT problem has no
solution (F2 = 0), but SAT is still needed to prove the completeness of the care set
derived by random simulation.

Since this approach enumerates through the satisfying assignments that represent
s-minterms of the inner window PIs, |s| should be limited by roughly 10 inputs or
less. The size of |x| is less important. To make the approach appropriate for networks
with individual nodes with large fanins, such nodes should be decomposed first. The
implementation of the SAT solver should be further modified to return incomplete
satisfying assignments corresponding to cubes rather than minterms of s.

Once the care minterms of the inner window PIs have been found, the outer window
can be ignored.

4.3. Using Don’t-Care Set for Node Minimization

The complete don’t-care set computed for the outer window can be used to optimize
the inner window, by applying them as constraints in SAT solving. Alternatively, if the
inner window is a node, the don’t-cares explicitly computed, as shown in Section 4.2,
can be used to optimize the node directly. In this subsection, we describe the use of
bidecomposition [Mishchenko et al. 2001] for the direct optimization of the node.

In this work, the nodes of the network correspond to LUTs after technology mapping.
The complexity measure of the node’s function is the number of AIG nodes in its local
function. The proposed optimization of the node consists in converting its local function
into a truth table, and subjecting it to a decomposition, which may result in a different
AIG. If the resulting AIG is smaller than the original one, the representation of the local
function is updated. If not, the node is left unchanged, and the computation moves on to
the next node. The optimization potential of this transformation is enhanced through
the use of don’t-cares computed as shown before, and bidecomposition.

Bidecomposition [Mishchenko et al. 2001] is a Boolean decomposition algorithm
applied to an incompletely specified function represented as a truth table, resulting

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:10 A. Mishchenko et al.

Table I. Checking Resubstitution Using Simulation

ab̄c f Set 1 Set 2
g1 = āb g2 = ab̄c g3 = a + b g4 = bc

000 0 0 0 0 0
001 0 0 0 0 0
010 1 1 0 1 0
011 1 1 0 1 1
100 0 0 0 1 0
101 1 0 1 1 0
110 0 0 0 1 0
111 0 0 0 1 1

in a multilevel representation of the function using two-input gates (AND, OR, and
XOR) and MUXes, all of which can be represented as an AIG. The algorithm is called
bidecomposition because it proceeds by recursively dividing an incompletely specified
function into two logic blocks feeding into a two-input gate realizing the function. The
advantages of bidecomposition over other algorithms are the following.

—It efficiently utilizes both the external and the internally generated don’t-cares. The
don’t-cares are propagated recursively as the computation proceeds, and the resulting
completely specified function is guaranteed to agree with the initial incompletely
specified function.

—It detects logic sharing across the components and allows for minimizing area of the
resulting decompositions.

—It allows for creating well-balanced multilevel structures, which leads to delay
minimization.

The last two observations are especially important when bidecomposition is used in
the inner-loop of an interactive logic optimization, as is the case in the proposed work.

This way of using explicitly computed don’t-cares to optimize the node is imple-
mented in command mfs –r in ABC. Refer to the experimental results section to see
the contribution of this technique to the flow based on the implicit use of don’t-cares.

4.4. Candidate Divisors and Resubstitutions

At this stage, we have the pivot node f (y), an inner window containing node f and
with inputs s, and a characterization of a care set C(s). The idea is to reexpress f (y) as
h(g), where g = {gj(s)}. The gj(s) are a subset of a set of nodes called candidate Boolean
divisors of f. These are nodes already existing in the inner window (called “window”
now) that can be used as inputs to a new function that will replace f. Note that the
current inputs y of f (y) are included in the candidate set. To collect the candidates,
first the window PIs, s, are divided into: (a) those in the TFI cone of the pivot node,
and (b) the remainder. All nodes on paths between the pivot and the PIs of type (a) are
added to the set of candidates, excluding the node itself and any node in the fanout
cone of the pivot. Second, other nodes of the window are added if their structural
support has no window PIs of type (b). A resource limit is used to control the number
of collected candidate divisors. In most cases, collecting up to 100 candidate divisors
works well in practice, while adding only about 5% to the resynthesis runtime.

The following example from Mishchenko et al. [2006b] illustrates the use of simu-
lation for filtering resubstitution candidates. Consider function f = (a ⊕ b)(b ∨ c) and
two sets of candidate functions: (g1 = āb, g2 = ab̄c) and (g3 = a ∨ b, g4 = bc). Table I
shows the truth tables of all functions. The set (g3, g4) is not a valid resubstitution
candidate set for f because minterm pair (101, 110), which can be found by simulation,
is distinguished by f but not distinguished by (g3, g4). However, the set (g1, g2) satisfies

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:11

s1

f g1 g2 g3

1 1

0

01

fg3g2g1 C

s2

BA

C

Fig. 6. Miter for checking resubstitution using SAT.

the condition of Theorem 2.2.1 because all the minterm pairs distinguished by f are
also distinguished by g1 or g2.

4.5. Checking Resubstitution Using SAT

Simulation only filters out some resubstitution sets while the remaining ones have
to be checked. Checking a candidate resubstitution set is done by generating a SAT
instance which reflects the conditions of Theorem 2.2.1.

Figure 6 shows the circuit representation of the SAT instance. The left and right
parts of the figure contain structurally identical logic cones for: (1) the care set C, (2)
the node’s function f, and (3) candidate divisors {gi} expressed using variable sets s1
and s2, respectively. Assignments of variables s1 and s2 represent two minterms. The
circuitry in the middle expresses that all the functions {gi} are equal for these two
minterms. The output of f is asserted to 1 on the left and 0 on the right, meaning that
f takes different values for this pair of minterms. Finally, both the left and right care
sets C are set to 1 to restrict both minterms to be in the care set.

It should be noted that this procedure does not extract the care set C(s), as described
in Section 4.2. Instead, the care set is represented as miter C, shown in Figure 4. This
miter is added to both sides of Figure 6, depending on both s1 and s2.

If the SAT instance is satisfiable, then resubstitution with the given functions {gi}
in the resubstitution set does not exist and is discarded. The counter-example derived
by the SAT solver is used to filter the remaining candidates. If the SAT instance is
unsatisfiable, the resubstitution exists and a dependency function h(g) can be derived,
as shown next.

4.6. Deriving a Dependency Function by Interpolation

The intuition behind the use of interpolation is that it implicitly uses the flexibility
and derives a dependency function that can be used to replace the original one. The
optimality of this function is not important as long as it fits into one LUT, which is
achieved constructively by limiting the number of considered divisors.

We seek a “dependency” function h(g), such that C(s) ⇒ [h(g(s)) ≡ f (s)], to express
f using candidates {gi}. The computation of h(g) can be done using SOPs [Savoj et al.
1992], BDDs [Kravets et al. 2004], SPFDs [Cong et al. 2002], or by enumerating satis-
fying assignments of a SAT problem [Mishchenko et al. 2005]. We follow the approach
of Lee et al. [2007] based on interpolation (see Section 2.4). The advantage is that h(g)
is computed as a byproduct of the resubstitution feasibility check (see Section 4.4).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:12 A. Mishchenko et al.

To compute a function h(g), the clauses of the SAT instance are divided into subsets
A(x, y) and B(y, z) derived from the two parts of the circuit separated by the dashed
line, as shown in Figure 6. In this case, the common variables, y, of the interpolant are
the outputs of functions gi. They constitute the support of the resulting dependency
function.

The proof of unsatisfiability needed for interpolation is generated, as shown in
Goldberg et al. [2003]. For this, the SAT solver [Een et al. 2003] is minimally modified
(by adding exactly five lines of code) to save both the original problem clauses and
the learned clauses derived by the solver during the proof of unsatisfiability. The last
clause derived is the empty clause, which is also added to the set of saved clauses.

The interpolation computation works on the set of all clauses, partitioned into three
subsets: clauses of A(x,y), clauses of B(y,z), and the learned clauses. It considers the
learned clauses in their order of generation during the proof of unsatisfiability. For
each learned clause, a fragment of a resolution proof is computed and converted into
an interpolant on-the-fly. The interpolant of the last (empty) clause is returned.

Since for most applications (for example, netlist rewiring) the support of the depen-
dency function is small, the interpolant can be computed using truth tables. This is in
contrast to the general case where the interpolant is constructed as a multilevel circuit.
The previous approach is efficient for typical SAT instances encountered in checking
resubstitution. In our experiments, the runtime of interpolation did not exceed 5% of
the total runtime.

4.7. Maintaining the Care Clauses

As the circuit is restructured, some nodes are removed and new nodes may appear.
When the care clauses were derived, it was with reference to a particular circuit, so
the clauses may refer to nodes that have been removed. It might be useful to update
the clause set to refer to existing clauses. This can be done by taking each clause that
refers to a nonexisting variable, and for each missing variable finding a cut in terms
of existing variables. Then compute the preimage of the clause minterm (complement
of the old clause) in terms of existing variables. This gives possibly a set of minterms.
However, each one is a minterm that can’t appear when the state space is restricted to
the reachable state set. This is because if that minterm did appear, then the original
minterm would also appear. For each of the minterms in this preimage, complement
this and add the resulting clause to the care clauses, while removing the old clause. In
this way no information is lost about the set of reachable states.

This same computation can be used to project more don’t-care information into a
window. For example, suppose the set of nodes of a care clause is not in the outer
window but a common cut of these nodes is in the outer window. In this case, we can
compute the preimage of the complement of this clause and derive a set of equivalent
clauses used in computing the care set of the window.

4.8. Resynthesis Heuristics

These heuristics express the goal of resynthesis in terms of the type of resubstitutions
attempted. Before resynthesis begins, the network is scanned to find: (a) the set of
nodes that will be targeted by resubstitution, and (b) the priority of those nodes. The
targeted nodes are considered in the order of their priority. For each target, a window
is computed and a set of candidate divisors is collected (within resource limits). The
candidate divisors are the nodes whose support is a subset of the inner window PIs
and (if increased delay is of concern) whose arrival times do not exceed the required
time of the targeted node minus the estimated delay of the new function at the node
after resubstitution. Next, the resubstitution candidates of the window are processed
as shown in Figure 1.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:13

The following paragraphs discuss several types of resynthesis.
Area minimization. For this, the network is scanned to find the node having the

largest MFFC and a fanout of 1. Such a node has a good potential for area saving if the
function of its fanout can be expressed without this node.

Edge count minimization. When minimizing the total number of edges, any fanin of
a node can be targeted. If the node’s function can be expressed without this fanin, one
edge is saved.

Delay minimization. This is done by detecting timing-critical edges. For level-driven
optimization, an edge is critical if: (1) both the source and sink nodes are critical, and
(2) the difference of the logic levels of source and sink nodes is one. A node is critical
if at least one of its fanin edges is critical. The priority of an edge depends on the
number of critical paths it is on. Each critical edge is targeted for resubstitution by
rewiring.

4.9. Specializing SAT for Don’t-Care Computation

Runtime profiling has shown that the initial steps of resynthesis, namely, determin-
ing the node to be resynthesized and computing its window, are relatively fast. Most
of the runtime is spent in setting up and running the SAT problem. This runtime
includes:

—Duplicating the window for the purpose of SAT solving. This is not an exact copy of
the window but rather a miter, as shown in Figure 4 and Figure 6.

—Optionally synthesizing the logic of the window using fast logic synthesis, such as
AIG rewriting [Mishchenko et al. 2006a].

—Converting the synthesized logic of the window into CNF using one of the CNF
generation algorithms.

—Running an off-the-shelf SAT solver, such as MiniSat [Een et al. 2003], on the CNF
to prove it UNSAT, or to derive a sequence of counter-examples for don’t-care com-
putation.

The preceding steps are performed for every resynthesized node, which takes a substan-
tial runtime for large designs. Meanwhile it was found that most of the intermediate
SAT problems are relatively easy and can be solved after less than 100 conflicts.

To reduce the runtime of our implementation spent in SAT solving, we intend to de-
velop a specialized circuit-based SAT solver which works directly on the circuit struc-
ture representing the underlying problem, without the need to create a miter, derive
CNF, and call MiniSat. A similar solver has been used in another project, resulting in a
10x speedup. The improvement is possible because of several simplifying assumptions
that hold for the case of multiple, incremental, relatively easy SAT problems.

—The logic cone given to the solver is typically small (up to 500 AIG nodes).
—The expected number of conflicts is low (up to 100 conflicts).
—Most of the problems are satisfiable (true about 95% of problems in this work).

A prototype of the circuit-based SAT solver shows that the runtime can be substantially
reduced, compared to MinSat that was used to collect experimental results included
in this article. This new solver, when properly integrated, can potentially make the
proposed resynthesis practical for much larger designs.

Next we describe several salient features of the circuit-based SAT solver.

—The solver works directly on the AIG data structure. For this, each node is enhanced
with two bit-flags: one is used to label the node that already has a value while the
other is used to remember this value (0 or 1).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:14 A. Mishchenko et al.

—The solver uses minimalistic additional data structures. Besides the AIG, it main-
tains two arrays during SAT solving: the propagation queue and the justification
queue. The propagation queue remembers a sequence of assignments made to the
nodes so far. The justification queue at any time contains the set of AND nodes whose
output is assigned 0 while both inputs are unassigned. The values of these nodes
have to be justified for an assignment to be satisfiable.

—The SAT solver is called for the output of the miter and proceeds recursively towards
the inputs. If constraint propagation leads to a conflict, UNSAT is returned. If the
justification queue is empty, SAT is returned and the propagation queue is used to
find a satisfying assignment of the primary inputs.

—The recursive procedure splits around a decision variable. If both branches return
UNSAT, the result is UNSAT. If at least one of the branches is SAT, the result is SAT.
If the conflict limit is reached, the procedure returns UNDECIDED.

—Decision heuristics are very simple, such as pick the last node in the topological order
among the nodes that are unassigned in the TFI of the assigned nodes.

—Learned clauses are recorded, used for constraint propagation, and recycled when
the solver moves on to a new part of the circuit. Nonchronological backtracking is
implemented as a byproduct of conflict analysis and clause recording.

5. PREVIOUS WORK

Technology-independent optimization and postmapping resynthesis of Boolean net-
works using internal flexibilities have long histories [Muroga et al. 1989; Savoj et al.
1992; Mishchenko et al. 2005; Kravets et al. 2004; Chang et al. 2007] to mention a
few publications. Traditional don’t-care-based optimization [Savoj et al. 1992] is part
of the high-effort logic optimization flow in SIS [Sentovich et al. 1992]. This optimiza-
tion plays an important role in reducing area by minimizing the number of Factored
Form (FF) literals before technology mapping. Its main drawback is poor scalability
and excessive runtime. To cope with these problems, several window-based approaches
for don’t-care computation have been proposed [Mishchenko et al. 2005; Saluja et al.
2004].

Both traditional and the newer algorithms for don’t-care-based optimization com-
pute don’t-cares before using them. This may explain long runtimes of these algo-
rithms when applied to large industrial designs, even if windowing is used. A notable
exception is the SAT-based approach [McMillan et al. 2005], which optimized nodes
“in-place” without explicitly computing don’t-cares. However, unlike Savoj et al. [1992]
and Kravets et al. [2004], that work does not allow for resubstitution. As a result, the
optimization space is limited to the current node boundaries. Another recent method
[Lee et al. 2007] performs efficient SAT-based resubstitution but does not consider
don’t-cares, which may limit its optimization potential.

Some recent papers [Zhu et al. 2006; Plaza et al. 2007] propose optimization for
And-Inverter Graphs (AIGs) using the notion of equivalence under don’t-cares. These
approaches are not applicable to postmapping resynthesis. They are also limited be-
cause they can optimize an AIG node only if there is another node with a similar logic
function that can replace the given node.

It should be noted that some approaches to resynthesis [Chen et al. 1992] achieve
sizeable reduction of the network without exploiting don’t-cares, by precomputing
all resynthesis possibilities and solving a maximum-independent set problem to
perform as many resynthesis moves as possible. Compared to incremental greedy
approaches based on don’t-cares, this approach may have scalability issues due
to the need to represent information about resynthesis possibilities for the whole
network.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:15

6. EXPERIMENTAL RESULTS

SAT-based resynthesis is implemented in ABC [Berkeley 2011] as command mfs, which
currently performs area and edge count minimization. The SAT solver used is a mod-
ified version of MiniSat-C v1.14.1 [Een et al. 2003]. The algorithm is applicable to
a mapped network and attempts resubstitution for each gate or LUT in the netlist.
Experiments targeting 6-LUT implementations were run on an Intel Xeon 2-CPU
4-core computer with 8Gb of RAM. The external don’t-cares were not used. The re-
sulting networks were checked by a combinational equivalence checker (command
dcec) [Mishchenko et al. 2006c] and a sequential equivalence checker (command dsec)
[Mishchenko et al. 2009; Mishchenko et al. 2008b] in ABC.

The following ABC commands are included in the scripts used to collect experimental
results targeting area minimization.

—resyn is a logic synthesis script that performs 5 iterations of AIG rewriting
[Mishchenko et al. 2006a];

—dc2 is a logic synthesis script that performs 10 iterations of AIG rewriting;
—dch is a logic synthesis script that accumulates structural choices; it runs resyn

followed by dc2 and collects three snapshots of the network: the original, the inter-
mediate one saved after resyn, and the final;

—if is an FPGA mapper which uses priority cuts [Mishchenko et al. 2007b], delay-
optimal mapping, fine-tuned area recovery, and the capacity to map a subject graph
with structural choices. The following mapper settings were used: at most 12 6-
input priority cuts are computed for each node; five iterations of area recovery are
performed, three with area flow and two with exact local area;

—mfs is the new resynthesis command of this article;
—mfs –r is the new command that uses don’t-cares to optimize the node [Mishchenko

et al. 2005].

The benchmarks used were 20 large public and 15 industrial benchmarks. The public
ones are from the MCNC and ISCAS’89 suites used in previous work on FPGA map-
ping [Chen et al. 2004; Mishchenko et al. 2007a].1 The results for these benchmarks are
shown in Table II.2 The results for the 15 industrial benchmarks are shown in Table III.

Tables II and III list results at the end of five different runs.

—Section “Baseline” corresponds to a typical run of tech-independent synthesis
[Mishchenko et al. 2006a] followed by technology mapping. The other flows are com-
pared to these results. To make the comparison more fair, the commands (dc2 –l;
dc2 –l; if –C 12) are run four times to ensure that a strong optimization was ob-
tained. All subsequent flows start the baseline results.

—Section “Choices” corresponds to four iterations of mapping with structural choices
(st; dch; if –C 12) [Mishchenko et al. 2007a] and picking the best result after any
iteration.

—Section “Mfs” corresponds to four iterations of technology mapping with structural
choices, interleaved with the proposed resub-based resynthesis (st; dch; if –C 12; mfs
–W 4 –M 5000) and picking the best result after any iteration.

—Section “MfsR” corresponds to four iterations of technology mapping with structural
choices, interleaved with the proposed don’t-care-based node optimization (st; dch;
if –C 12; mfs –r; st; if –C 12) and picking the best result after any iteration. The
command mfs –r uses the don’t-cares created from the window around the pivot node

1Circuit s298 was replaced by i10 because it contains only 24 6-LUTs.
2A similar version of these experimental results appeared in Mishchenko et al. [2008] to show the orthogonal
nature of the optimization method reported in that paper.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:16 A. Mishchenko et al.

Ta
bl

e
II.

T
he

R
es

ul
ts

of
R

es
yn

th
es

is
af

te
r

Te
ch

no
lo

gy
M

ap
pi

ng
(K

=
6)

fo
r

A
ca

de
m

ic
B

en
ch

m
ar

ks

N
am

e
S

ta
ti

st
ic

s
B

as
el

in
e

C
h

oi
ce

s
M

fs
M

fs
R

M
fs

+M
fs

R
P

I
P

O
F

F
L

U
T

LV
T

L
U

T
LV

T
L

U
T

LV
T

L
U

T
LV

T
L

U
T

LV
T

al
u

4
14

8
0

81
0

5
1.

28
77

3
5

1.
86

50
6

5
10

.3
4

51
4

5
10

.2
9

43
3

5
18

.7
9

ap
ex

2
39

3
0

86
4

6
1.

42
86

7
6

4.
26

64
0

6
22

.3
9

74
1

6
21

.2
9

65
0

6
43

.6
3

ap
ex

4
9

19
0

76
7

5
1.

16
81

6
5

1.
83

77
6

5
11

.3
6

78
4

5
12

.7
79

1
5

23
.6

1
bi

gk
ey

26
3

19
7

22
4

73
4

3
2.

07
67

7
3

2.
26

49
9

3
3.

38
49

5
3

4.
15

48
5

3
4.

51
cl

m
a

38
3

82
33

28
30

10
5.

51
27

49
9

11
.5

4
85

6
7

97
.4

4
10

79
7

48
.6

1
60

9
7

11
8.

07
de

s
25

6
24

5
0

91
6

4
1.

99
86

5
4

1.
91

55
9

4
6.

47
64

5
4

7.
46

55
8

4
11

.5
4

di
ff

eq
64

39
37

7
68

4
7

0.
91

64
9

7
0.

17
64

5
7

0.
64

64
9

7
0.

17
64

8
7

6.
55

ds
ip

22
8

19
7

22
4

68
0

3
1.

33
68

1
3

0.
19

68
1

3
0.

18
68

1
3

0.
18

68
1

3
0.

18
el

li
pt

ic
13

1
11

4
11

22
18

70
10

2.
56

17
67

10
0.

48
17

65
10

2.
82

17
54

10
8.

33
17

67
10

0.
47

ex
10

10
10

10
0

26
05

6
4.

63
27

48
6

13
.7

1
16

49
6

82
.5

7
13

75
6

40
.6

6
12

50
6

97
.5

7
ex

5p
8

63
0

53
3

5
0.

99
55

1
4

1.
30

13
1

3
4.

86
12

6
3

1.
97

10
5

3
4.

30
fr

is
c

20
11

6
88

6
17

50
12

3.
45

17
59

11
5.

94
17

26
11

22
.3

4
17

25
10

16
.2

17
17

10
30

.2
3

i1
0

25
7

22
4

0
58

0
9

1.
14

58
2

8
1.

33
53

0
8

5.
08

55
8

8
1.

73
55

8
8

11
.6

4
m

is
ex

3
14

14
0

70
1

5
1.

21
66

1
5

1.
90

37
2

5
9.

24
50

7
4

7.
62

36
7

5
14

.4
9

pd
c

16
40

0
21

82
6

4.
72

21
34

6
13

.8
9

14
0

5
16

.6
2

18
5

5
10

.2
4

16
6

4
22

.0
6

s3
84

17
28

10
6

16
36

22
57

6
3.

77
22

73
6

0.
67

22
02

6
12

.7
1

22
30

6
9.

60
22

03
6

35
.7

5
s3

85
84

39
30

4
12

60
21

56
6

4.
13

21
35

6
4.

06
20

74
5

11
.2

3
20

55
5

12
.7

8
20

44
5

18
.1

se
q

41
35

0
75

5
5

1.
38

76
5

5
3.

22
56

5
5

11
.6

2
65

7
5

10
.5

4
54

8
5

19
.0

sp
la

16
46

0
14

49
6

3.
22

13
84

6
8.

5
17

0
4

17
.1

1
16

2
4

5.
58

13
5

4
15

.5
3

ts
en

g
53

12
3

38
5

70
8

7
0.

79
65

0
7

0.
74

65
1

6
2.

10
65

0
6

3.
27

64
9

6
5.

26
G

M
ea

n
11

03
5.

92
1.

98
10

84
5.

76
2.

08
64

0
5.

36
7.

83
67

5
5.

27
6.

06
60

7
5.

27
11

.8
8

R
at

io
1

1
1

1
0.

98
2

0.
97

4
1.

05
2

0.
58

1
0.

90
5

3.
96

2
0.

61
2

0.
89

1
3.

06
3

0.
55

1
0.

89
1

6.
00

7
R

at
io

2
1

1
1

0.
59

1
0.

92
9

3.
76

7
0.

62
3

0.
91

5
2.

91
2

0.
56

1
0.

91
5

5.
71

1
R

at
io

3
1

1
1

1.
05

5
0.

98
4

0.
77

3
0.

94
8

0.
98

4
1.

51
6

R
at

io
4

1
1

1
0.

89
9

1.
00

0
1.

96
1

T
h

e
fo

ll
ow

in
g

re
su

lt
s

ex
cl

u
de

th
e

fi
ve

ou
tl

ie
r

ex
am

pl
es

G
M

ea
n

96
4.

44
5.

76
1.

67
94

2.
05

5.
69

1.
35

79
3.

39
5.

56
5.

28
83

8.
0

5.
44

4.
86

78
4.

93
5.

52
8.

93
R

at
io

1
1

1
1

0.
97

7
0.

98
6

0.
81

1
0.

82
3

0.
96

5
3.

16
1

0.
86

9
0.

94
4

2.
91

1
0.

81
4

0.
95

8
5.

35
2

R
at

io
2

1
1

1
0.

84
2

0.
97

8
3.

89
6

0.
89

0
0.

95
7

3.
58

8
0.

83
3

0.
97

2
6.

59
7

R
at

io
3

1
1

1
1.

05
6

0.
97

9
0.

92
1

0.
98

9
0.

99
4

1.
69

3
R

at
io

4
1

1
1

0.
93

7
1.

01
5

1.
83

9

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:17

Ta
bl

e
III

.T
he

R
es

ul
ts

of
R

es
yn

th
es

is
af

te
r

Te
ch

no
lo

gy
M

ap
pi

ng
(K

=
6)

fo
r

In
du

st
ria

lB
en

ch
m

ar
ks

N
am

e
S

ta
ti

st
ic

s
B

as
el

in
e

C
h

oi
ce

s
M

fs
M

fs
R

M
fs

+M
fs

R
P

I
P

O
F

F
L

U
T

LV
T

L
U

T
LV

T
L

U
T

LV
T

L
U

T
LV

T
L

U
T

LV
T

D
1

30
32

98
5

16
61

6
3.

1
15

66
5

4.
4

14
76

5
10

.4
14

56
5

10
.3

14
55

5
15

.7
D

2
99

20
4

11
86

25
18

5
4.

6
23

56
5

5.
1

21
90

5
14

.2
21

52
5

14
.4

21
22

5
21

.3
D

3
67

90
13

50
33

94
16

7.
5

32
31

16
12

.3
29

73
14

74
.2

30
51

13
38

.8
29

40
13

84
.4

D
4

12
9

35
7

14
55

34
53

10
6.

6
33

93
8

8.
8

30
84

7
27

.7
31

23
7

26
.7

30
71

7
47

.8
D

5
11

2
48

0
34

39
11

13
5

9
22

.9
11

30
1

8
48

.6
10

72
8

8
19

8.
8

10
87

1
8

15
0.

0
10

62
1

8
30

7.
6

D
6

10
71

10
69

58
67

11
79

7
8

26
.8

11
43

9
8

34
.8

10
87

7
7

99
.7

10
80

2
7

10
4.

8
10

63
2

7
16

7.
0

D
7

11
34

39
65

83
71

15
32

7
12

35
.7

14
57

2
12

51
.8

13
98

7
11

90
.8

13
80

3
12

86
.1

13
70

8
12

12
0.

8
D

8
21

0
29

9
66

62
16

71
9

12
43

.9
15

97
5

11
66

.0
14

82
2

10
20

8.
3

14
87

0
10

15
7.

8
14

50
4

10
30

1.
7

D
9

10
69

74
7

86
89

22
04

9
6

52
.0

20
87

1
5

80
.9

19
13

5
5

19
2.

7
18

92
2

5
15

8.
9

18
76

8
5

33
9.

6
D

10
14

25
49

91
26

70
5

44
39

3
11

97
.0

41
91

0
10

15
0.

0
39

16
1

9
30

7.
2

40
13

8
7

18
9.

2
39

64
0

7
42

4.
0

D
11

78
1

55
63

16
20

5
51

56
9

10
14

1.
9

49
50

6
10

16
2.

8
46

25
8

9
88

1.
1

46
23

5
9

74
2.

9
45

28
8

9
17

52
.7

D
12

25
61

95
86

23
61

2
52

46
2

9
12

6.
0

49
26

6
9

16
0.

0
46

69
5

9
29

3.
3

46
25

2
9

29
7.

3
45

94
5

9
43

0.
3

D
13

47
25

16
65

7
43

30
9

74
72

3
12

17
2.

8
70

82
7

11
27

6.
9

66
51

5
10

56
3.

5
66

17
5

10
47

0.
1

65
21

2
10

74
3.

0
D

14
24

18
60

00
34

83
4

78
35

9
20

23
6.

5
72

48
7

19
33

7.
5

68
07

3
17

94
5.

8
67

92
3

17
80

5.
4

67
23

5
17

13
97

.7
D

15
88

79
52

33
4

41
52

1
12

67
57

11
22

3.
2

12
28

63
11

32
5.

5
11

70
56

11
62

2.
8

11
68

21
8

59
1.

7
11

61
74

8
89

0.
0

G
M

ea
n

17
14

2
9.

84
38

.4
0

16
37

9
9.

19
55

.4
2

15
34

4
8.

59
15

2.
9

15
34

1
8.

28
12

9.
6

15
12

0
8.

28
22

9.
3

R
at

io
1

1
1

1
0.

95
5

0.
93

4
1.

44
3

0.
89

5
0.

87
4

3.
98

3
0.

89
5

0.
84

3.
37

7
0.

88
2

0.
84

2
5.

97
1

R
at

io
2

1
1

1
0.

93
7

0.
93

5
2.

76
0

0.
93

7
0.

90
1

2.
34

0
0.

92
3

0.
90

1
4.

13
8

R
at

io
3

1
1

1
1.

00
0

0.
96

4
0.

84
8

0.
98

5
0.

96
4

1.
49

9
R

at
io

4
1

1
1

0.
98

6
1.

00
0

1.
76

8

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:18 A. Mishchenko et al.

to perform bidecomposition for each mapped LUT. After running mfs –r the internal
AIG size has been reduced. To observe the improvement, we need to run technology
mapping (if –C 12) one more time.

—Section “Mfs+MfsR” corresponds to four iterations of technology mapping with struc-
tural choices, interleaved with the proposed don’t-care-based node optimization and
don’t-care-based resubstitution (st; dch; if –C 12; mfs –r; st; if –C 12; mfs –W 4
–M 5000) and picking the best result after any iteration.

The tables contain the number of primary inputs (column “PIs”), primary outputs
(column “POs”), registers (column “Reg”), area calculated as the number of 6-LUTs
(columns “LUT”), the depth of the 6-LUT network (columns “LV”), and the total runtime
of the specific flow in seconds (columns “T”). The ratios in the tables are the geometric
averages of the corresponding ratios reported in the columns.

The results listed in Tables II and III show that, compared to the baseline synthesis
and mapping, the iterative mapping with structural choices reduces area and depth
by 1.8% and 2.6% (for academic benchmarks) and by 4.5% and 6.6% (for industrial
benchmarks). The improvement is likely due to repeated recomputation of structural
choices by applying logic synthesis to the previously mapped network. When the re-
sulting subject graph with choices is mapped again, those structures tend to be selected
that offer an improvement, compared to the previous mapping. Several iterations of
this evolutionary process find good structures for the selected LUT size and delay
constraints.

Table II and III lead to the following observations.

—When the proposed don’t-care-based resynthesis (“mfs”) is included in the iteration,
the area and depth are additionally reduced by 40.9% and 7.1% (for academic bench-
marks) and by 6.7% and 6.5% (for industrial benchmarks).

—Without the five outlier circuits discussed shortly, the additional reduction for aca-
demic benchmarks is 15.8% in area and 2.2% in depth. The results excluding the
outliers are shown at the bottom of Table II. The results demonstrate that iterating
optimization with choices and “mfs” leads to a more substantial improvement than
optimization with choices only (column “Choices”). This improvement is likely be-
cause “mfs” allows for a deeper restructuring of the subject graph that is particularly
favorable for area minimization.

—When the proposed don’t-care-based node optimization (“mfs –r”) is included in the
iteration, the area and depth are additionally reduced by 37.7% and 8.5% (for aca-
demic benchmarks) and by 6.3% and 9.1% (for industrial benchmarks). Without the
five outlier circuits discussed shortly, the additional reduction for academic bench-
marks is 11.0% in area and 4.3% in depth.

—When both methods, “mfs” and “mfs –r” are used in the iteration, the area and depth
are additionally reduced by 43.8% and 8.5% (for academic benchmarks) and by 7.7%
and 9.9% (for industrial benchmarks). Without the five outlier circuits discussed
shortly, the additional reduction for academic benchmarks is 16.7% in area and 2.8%
in depth. This means that the combining of the two methods can outperform either
“mfs” or “mfs –r” alone.

It was observed that 5 “outlier” circuits in Table II (clma, ex1010, ex5p, pdc, spla)
were reduced more substantially than other circuits in the set. These are the circuits
originating from PLA descriptions. It is likely that the logic synthesis tool used to
generate multilevel representations of these circuits did a poor job of extracting shared
logic among the outputs of the PLA. This resulted in highly suboptimal logic structures,
which introduced heavy structural bias into technology mapping. It is interesting to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:19

note that mapping with structural choices produced much smaller improvements than
the proposed resubstitution and/or node optimization of this article. This is because the
tech-independent synthesis and mapping with choices rely on local transforms and so
they are still subject to structural bias, albeit less so than mapping without structural
choices.

Applying resynthesis to these outlier benchmarks as part of the iterative synthesis
and mapping led to dramatic improvements in both area and delay (about 5x in area
and 20% in delay). This surprising result was thoroughly verified and proved correct.
It shows that the proposed SAT-based resubstitution can cope with a substantial struc-
tural bias and gradually derive a new logic structure that is more suitable for 6-LUT
mapping.

It was noted that some of the academic benchmarks in Table II have don’t-cares in
their original PLA descriptions. It is not known whether the don’t-cares were used
during multilevel synthesis that produces the circuits. In any case, they were not
available during mapping and resynthesis, which worked on multilevel circuits without
don’t-cares generated by another tool.

Typically, reducing logic depth could be achieved by collapsing a LUT into its fanout.
As a result, the average fanout will be increased which is detrimental to placement
and routing due to congestion. In this section, we further investigate this. Table IV
gives additional details on the quality of the optimization for the same 20 academic
benchmarks. Reported are the edge count (Columns “EC”), the average fanin (Columns
“AFI”), and the average fanout (Columns “AFO”).

Table IV leads to several observations: When the proposed don’t-care-based resynthe-
sis (“Mfs”) is included in the iteration, the edge count and average fanout are reduced
by 41.0% and 0.6%. The overall conclusion is that the LUT count reduction does not
cause edge count and fanout penalties.

The place-and-route experiment reported in Table V compares the results shown
in Tables II produced by VPR [Betz et al. 1999] for 20 academic benchmarks. The
following steps were performed: clock signal was added for all sequential circuits, the
6-LUT architecture was created using the 4-LUT architecture file, the CLB is assumed
to contain one 6-LUT, and the T-VPack tool was used to preprocess all the netlists.
VPR was run to find the minimum routing channel width using 10 different random
seeks. The values of critical path (in nanoseconds), total wire-length, and minimum
channel width reported in Table V as columns “CP”, “TWL”, and “MCW”, respectively,
are geometric averages over the 10 different runs for each benchmark.

Table V leads to the following observations. When comparing “Mfs+MfsR” against
“Mfs”, the former is 2.0%, 6.2%, and 0.003% better in terms of critical delay, total
wire-length, and minimum channel width, respectively.

7. CONCLUSIONS AND FUTURE WORK

The article proposes an integrated SAT-based logic optimization methodology useful
as part of tech-independent synthesis and as a new postmapping resynthesis. The
algorithms used in the integrated solution were selected based on their scalability and
efficient implementation. They include improved algorithms for structural analysis
(windowing), simulation, and new ways of exploiting don’t-cares.

A SAT solver was used to perform all aspects of Boolean functions manipulation
during resynthesis. In particular, it was shown how an optimized implementation of a
node can be computed directly using interpolation, without first explicitly computing a
don’t-care set and then minimizing the logic function with this don’t-care.

Future work will include fine-tuning resynthesis to focus on delay, power, placement,
and other cost functions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:20 A. Mishchenko et al.

Ta
bl

e
IV

.D
et

ai
le

d
S

ta
tis

tic
s

of
th

e
R

es
ul

ts
of

R
es

yn
th

es
is

af
te

r
Te

ch
no

lo
gy

M
ap

pi
ng

(K
=

6)
fo

r
A

ca
de

m
ic

B
en

ch
m

ar
ks

N
am

e
B

as
el

in
e

C
h

oi
ce

s
M

fs
M

fs
R

M
fs

+M
fs

R
E

C
A

F
I

A
F

O
E

C
A

F
I

A
F

O
E

C
A

F
I

A
F

O
E

C
A

F
I

A
F

O
E

C
A

F
I

A
F

O
al

u
4

37
28

2.
22

4.
60

36
20

1.
88

4.
66

23
24

1.
95

4.
62

24
42

2.
06

4.
55

20
70

1.
97

4.
52

ap
ex

2
39

34
2.

72
4.

55
39

27
2.

74
4.

57
29

51
2.

84
4.

65
35

66
2.

71
4.

55
31

63
2.

62
4.

68
ap

ex
4

36
42

3.
63

4.
75

37
95

3.
66

4.
67

36
40

3.
54

4.
72

38
37

3.
55

4.
68

38
21

3.
55

4.
74

bi
gk

ey
39

27
1.

95
4.

45
33

63
1.

94
4.

14
25

95
1.

73
4.

19
24

63
1.

70
4.

00
25

34
1.

70
3.

86
cl

m
a

12
36

4
3.

28
4.

37
12

26
5

3.
38

4.
46

35
49

2.
95

4.
43

48
10

3.
05

4.
43

26
07

2.
84

4.
28

de
s

45
35

2.
89

4.
86

41
70

2.
77

4.
75

26
05

2.
68

4.
68

31
08

2.
56

4.
69

26
48

2.
47

4.
54

di
ff

eq
31

26
2.

13
4.

55
30

08
2.

07
4.

57
29

85
2.

18
4.

63
30

08
2.

18
4.

63
28

97
2.

26
4.

40
ds

ip
31

82
2.

52
3.

87
31

84
2.

52
3.

87
31

84
2.

02
3.

87
31

84
2.

02
3.

87
31

84
2.

02
3.

87
el

li
pt

ic
82

95
2.

16
4.

44
79

51
2.

16
4.

44
79

36
2.

28
4.

50
80

20
2.

22
4.

32
79

51
2.

36
4.

44
ex

10
10

12
42

5
4.

27
4.

77
13

28
2

4.
10

4.
79

75
50

3.
74

4.
89

69
08

3.
82

4.
90

63
23

3.
75

4.
93

ex
5p

25
08

3.
38

4.
67

25
26

3.
03

4.
63

54
0

2.
15

4.
25

57
9

2.
19

4.
61

45
9

2.
10

4.
34

fr
is

c
77

29
2.

97
4.

41
77

58
2.

96
4.

46
76

34
2.

96
4.

45
82

29
2.

96
4.

48
83

06
2.

99
4.

51
i1

0
24

91
2.

78
4.

23
24

57
2.

81
4.

20
22

77
2.

78
4.

25
24

07
2.

78
4.

26
24

19
2.

82
4.

24
m

is
ex

3
32

98
2.

40
4.

70
30

79
2.

56
4.

64
17

15
2.

37
4.

67
24

60
1.

92
4.

78
17

80
2.

45
4.

72
pd

c
10

03
3

3.
66

4.
60

99
22

3.
64

4.
70

61
8

2.
50

4.
52

87
7

2.
64

4.
56

79
5

2.
82

4.
71

s3
84

17
10

31
5

2.
03

3.
84

10
22

8
2.

13
3.

91
10

05
7

2.
07

3.
91

10
19

0
2.

10
3.

85
10

03
8

2.
09

3.
89

s3
85

84
96

28
1.

77
4.

10
95

00
1.

80
4.

15
92

18
1.

71
4.

09
92

45
1.

71
4.

14
92

12
1.

71
4.

13
se

q
34

57
2.

63
4.

58
35

31
2.

74
4.

58
26

18
2.

68
4.

68
31

56
2.

68
4.

60
26

27
2.

72
4.

72
sp

la
67

24
3.

76
4.

64
65

24
3.

75
4.

71
71

6
2.

75
4.

40
75

9
2.

57
4.

44
59

6
2.

78
4.

37
ts

en
g

26
33

2.
14

3.
67

23
97

2.
27

3.
71

24
11

2.
32

3.
70

25
63

2.
09

3.
75

24
44

2.
09

3.
70

G
M

ea
n

50
52

2.
68

4.
42

49
37

2.
67

4.
42

28
68

2.
46

4.
39

31
52

2.
42

4.
39

28
09

2.
45

4.
37

R
at

io
1

1
1

1
0.

97
7

0.
99

4
1.

00
0

0.
56

8
0.

91
5

0.
99

4
0.

62
4

0.
90

1
0.

99
4

0.
55

6
0.

91
3

0.
98

8
R

at
io

2
1

1
1

0.
58

1
0.

92
1

0.
99

4
0.

63
8

0.
90

6
0.

99
4

0.
56

9
0.

91
9

0.
98

8
R

at
io

3
1

1
1

1.
09

9
0.

98
4

1.
00

0
0.

97
9

0.
99

8
0.

99
4

R
at

io
4

1
1

1
0.

89
1

1.
01

4
0.

99
4

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:21

Ta
bl

e
V.

T
he

R
es

ul
ts

of
P

la
ce

-a
nd

-R
ou

te
fo

r
A

ca
de

m
ic

C
irc

ui
ts

U
si

ng
V

P
R

N
am

e
B

as
el

in
e

C
h

oi
ce

s
M

fs
M

fs
R

M
fs

+M
fs

R
C

P
W

L
M

C
W

C
P

W
L

M
C

W
C

P
W

L
M

C
W

C
P

W
L

M
C

W
C

P
W

L
M

C
W

al
u

4
11

8.
09

14
29

5
11

.7
9

12
1.

30
13

54
3

11
.6

9
97

.0
2

80
60

10
.2

9
10

1.
98

82
20

10
.1

0
86

.4
3

60
42

9.
10

ap
ex

2
11

7.
17

18
03

7
13

.4
9

11
5.

10
17

18
7

12
.8

9
10

4.
44

12
29

2
12

.1
0

11
0.

09
15

25
5

13
.0

0
10

3.
69

13
39

4
13

.0
0

ap
ex

4
14

7.
87

17
63

3
15

.2
0

15
5.

48
18

53
5

14
.9

0
14

6.
13

17
55

7
14

.9
0

15
0.

05
17

52
6

14
.5

9
15

0.
86

18
59

5
15

.0
0

bi
gk

ey
22

7.
62

11
37

9
5.

89
19

9.
57

93
80

5.
89

17
2.

17
68

08
5.

00
17

9.
52

74
19

5.
00

19
1.

96
69

43
5.

00
cl

m
a

21
8.

96
53

57
3

13
.2

9
21

3.
91

52
95

8
13

.0
0

10
8.

80
13

69
4

11
.1

9
12

1.
42

18
31

2
11

.9
0

69
.8

1
55

95
9.

29
de

s
22

2.
68

20
09

7
8.

08
20

1.
22

18
90

0
7.

48
20

2.
88

13
92

5
6.

99
24

6.
71

14
29

0
7.

29
22

4.
59

13
69

9
6.

99
di

ff
eq

88
.5

3
71

44
7.

58
79

.3
9

67
85

7.
38

85
.8

3
67

63
7.

38
79

.3
9

67
85

7.
38

93
.4

0
68

56
7.

58
ds

ip
16

8.
87

89
86

6.
00

21
3.

64
90

99
5.

19
21

3.
64

90
99

5.
19

21
3.

64
90

99
5.

19
21

3.
64

90
99

5.
19

el
li

pt
ic

21
2.

60
24

03
8

9.
59

20
4.

02
23

15
4

9.
29

21
9.

11
22

94
4

9.
19

20
0.

86
23

89
7

9.
59

20
4.

61
22

54
4

9.
59

ex
10

10
30

8.
17

82
37

2
20

.2
0

32
3.

36
83

40
8

19
.3

9
23

7.
34

43
89

6
17

.0
0

21
0.

72
36

18
5

16
.2

9
20

4.
14

33
90

3
16

.9
9

ex
5p

11
6.

27
10

24
5

12
.1

9
10

8.
63

10
17

7
12

.0
0

42
.4

4
13

91
6.

00
42

.3
4

14
46

6.
09

35
.9

8
10

66
5.

38
fr

is
c

22
3.

82
29

49
8

11
.0

0
22

0.
47

28
97

8
11

.0
0

21
0.

82
29

09
4

11
.0

0
21

0.
60

30
08

8
11

.2
9

21
0.

06
30

26
9

11
.4

9
i1

0
20

6.
86

15
45

9
7.

07
18

8.
10

15
04

1
7.

48
19

0.
57

15
04

9
7.

29
19

7.
11

14
51

9
7.

27
21

6.
01

15
21

3
7.

57
m

is
ex

3
11

0.
52

12
45

2
11

.3
9

10
9.

31
11

22
0

11
.0

0
79

.1
5

57
18

9.
79

88
.9

7
74

37
9.

19
81

.6
8

59
75

9.
90

pd
c

26
2.

15
59

18
4

18
.2

0
26

7.
90

55
29

9
17

.1
0

66
.4

2
16

17
7.

00
78

.6
6

23
56

7.
58

68
.3

4
18

21
7.

00
s3

84
17

79
.9

0
27

29
1

7.
09

79
.5

6
27

16
3

7.
09

77
.8

8
27

00
5

7.
00

83
.1

7
27

14
4

7.
48

78
.6

4
26

67
8

7.
19

s3
85

84
12

0.
16

24
76

4
8.

19
13

9.
53

24
40

7
8.

00
11

7.
20

23
71

6
7.

89
11

4.
45

23
63

1
7.

89
11

3.
09

23
44

0
8.

00
se

q
11

9.
51

15
81

7
13

.5
9

12
0.

95
15

65
7

13
.1

0
10

6.
53

10
75

1
12

.1
0

11
2.

94
13

19
5

12
.9

0
10

3.
78

11
01

9
12

.5
9

sp
la

20
4.

36
31

55
9

14
.1

0
19

2.
14

29
68

4
14

.2
0

49
.4

6
20

52
7.

00
45

.6
7

18
67

7.
00

48
.8

6
18

60
7.

00
ts

en
g

93
.9

6
61

42
6.

38
85

.4
7

55
42

6.
00

84
.5

5
56

64
6.

00
85

.9
3

59
73

6.
58

91
.6

7
56

61
6.

38
G

M
ea

n
15

6.
37

19
28

3
10

.3
2

15
4.

58
18

52
7

10
.0

2
11

6.
03

97
72

8.
51

11
9.

24
10

44
3

8.
69

11
3.

58
90

89
8.

50
R

at
io

1
1

1
1

0.
98

9
0.

96
1

0.
97

1
0.

74
2

0.
50

7
0.

82
5

0.
76

3
0.

54
2

0.
84

2
0.

72
6

0.
47

1
0.

82
3

R
at

io
2

1
1

1
0.

75
1

0.
52

7
0.

85
0

0.
77

1
0.

56
4

0.
86

7
0.

73
5

0.
49

1
0.

84
8

R
at

io
3

1
1

1
1.

02
8

1.
06

9
1.

02
1

0.
97

9
0.

93
0

0.
99

8
R

at
io

4
1

1
1

0.
95

3
0.

87
0

0.
97

8
T

h
e

fo
ll

ow
in

g
re

su
lt

s
ex

cl
u

de
th

e
fi

ve
ou

tl
ie

r
ex

am
pl

es
G

M
ea

n
14

1.
46

15
31

5
9.

05
14

0.
08

14
65

1
8.

78
13

0.
52

12
31

5
8.

39
13

4.
65

13
08

5
8.

56
13

3.
31

12
27

4
8.

53
R

at
io

1
1

1
1

0.
99

0
0.

95
7

0.
97

0
0.

92
3

0.
80

4
0.

92
7

0.
95

2
0.

85
4

0.
94

6
0.

94
2

0.
80

1
0.

94
3

R
at

io
2

1
1

1
0.

93
2

0.
84

1
0.

95
5

0.
96

1
0.

89
3

0.
97

5
0.

95
2

0.
83

8
0.

97
2

R
at

io
3

1
1

1
1.

03
2

1.
06

3
1.

02
0

1.
02

1
0.

99
7

1.
01

7
R

at
io

4
1

1
1

0.
99

0
0.

93
8

0.
99

7

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

34:22 A. Mishchenko et al.

ACKNOWLEDGMENTS

We acknowledge the help of Zile Wei in running the place-and-route experiments in Table V of this article.
We thank the anonymous reviewers for their helpful comments.

REFERENCES

ALTERA CORP. 2011. Altera Stratix IV FPGA family overview. http://www.altera.com/products/devices/stratix-
fpgas/stratix-iv/overview/stxiv-overview.html.

BERKELEY VERIFICATION AND SYNTHESIS RESEARCH GROUP (BVSRG). 2011. ABC: A system for sequential synthesis
and verification, release 80802. http://www.eecs.berkeley.edu/∼alanmi/abc/.

BETZ, V., ROSE, J., AND MARQUARDT, A. 1999. Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers.

BJESSE, P. AND CLAESSEN, K. 2000. SAT-Based verification without state space traversal. In Proceedings of the
International Conference on Formal Methods in Computer-Aided Design (FMCAD’00). Lecture Notes in
Computer Science, vol. 1954, Springer, 372–389.

CASE, M. L., MISHCHENKO, A., AND BRAYTON, R. K. 2006. Inductively finding a reachable state space over-
approximation. In Proceedings of the International Workshop on Logic and Synthesis (IWLS’06). 172–
179. http://www.eecs.berkeley.edu/∼alanmi/publications/2006/iwls06 inv.pdf.

CASE, M. L., MISHCHENKO, A., AND BRAYTON, R. K. 2008. Cut-Based inductive invariant computation. In Pro-
ceedings of the International Workshop on Logic and Synthesis (IWLS’08). 253–258. http://www.eecs.
berkeley.edu/∼alanmi/publications/2008/iwls08 ind.pdf.

CHANG, K.-H., MARKOV, I. L., AND BERTACCO, V. 2007. Fixing design errors with counterexamples and resyn-
thesis. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’07).
944–949.

CHEN, K.-C. AND CONG, J. 1992. Maximal reduction of lookup-table-based FPGAs. In Proceedings of the Design
Automation and Test in Europe Conference (DATE’92). 224–229.

CHEN, D. AND CONG, J. 2004. DAOmap: A depth-optimal area optimization mapping algorithm for FPGA
designs. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’04). 752–
757.

CONG, J., LIN, Y., AND LONG, W. 2002. SPFD-Based global rewiring. In Proceedings of the International Sym-
posium on Field Programmable Gate Arrays (FPGA’02). 77–84.

EEN, E. AND SÖRENSSON, N. 2003. An extensible SAT-solver. In Proceedings of the SAT’03 Conference.
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/.

GOLDBERG, E. AND NOVIKOV, Y. 2003. Verification of proofs of unsatisfiability for CNF formulas. In Proceedings
of the Design Automation and Test in Europe Conference (DATE’03). 886–891.

KRAVETS, V. N. AND KUDVA, P. 2004. Implicit enumeration of structural changes in circuit Optimization. In
Proceedings of the Design Automation Conference (DAC’04). 438–441.

LEE, C.-C., JIANG, J.-H. R., HUANG, C.-Y., AND MISHCHENKO, A. 2007. Scalable exploration of functional
dependency by interpolation and incremental SAT solving. In Proceedings of the International
Conference on Computer Aided Design (ICCAD’07). 227–233. http://www.eecs.berkeley.edu/∼alanmi/
publications/2007/iccad07 fd.pdf.

MCMILLAN, K. L. 2003. Interpolation and SAT-based model checking. In Proceedings of the International
Conference on Computer-Aided Verification (CAV’03). Lecture Notes in Computer Science, vol. 2725,
Springer, 1–13.

MCMILLAN, K. 2005. Don’t-Care computation using k-clause approximation. In Proceedings of the Interna-
tional Workshop on Logic and Synthesis (IWLS’05). 153–160.

MISHCHENKO, A., STEINBACH, B., AND PERKOWSKI, M. A. 2001. An algorithm for bi-decomposition of logic func-
tions. In Proceedings of the Design Automation Conference (DAC’01). 103–108.

MISHCHENKO, A. AND BRAYTON, R. 2005. SAT-Based complete don’t-care computation for network optimiza-
tion. In Proceedings of the Design Automation and Test in Europe Conference (DATE’05). 418–423.
http://www.eecs.berkeley.edu/∼alanmi/publications/2005/ date05 satdc.pdf.

MISHCHENKO, A. AND BRAYTON, R. 2006. Scalable logic synthesis using a simple circuit structure. In Pro-
ceedings of the International Workshop on Logic and Synthesis (IWLS’06). 15–22. http://www.eecs.
berkeley.edu/∼alanmi/publications/2006/iwls06 sls.pdf.

MISHCHENKO, A., CHATTERJEE, S., AND BRAYTON, R. 2006a. DAG-Aware AIG rewriting: A fresh look at com-
binational logic synthesis. In Proceedings of the Design Automation Conference (DAC’06). 532–536.
http://www.eecs.berkeley.edu/∼alanmi/publications/2006/dac06 rwr.pdf.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

Scalable Don’t-Care-Based Logic Optimization and Resynthesis 34:23

MISHCHENKO, A., ZHANG, J. S., SINHA, S., BURCH, J. R., BRAYTON, R., AND CHRZANOWSKA-JESKE, M. 2006b. Using
simulation and satisfiability to compute flexibilities in Boolean networks. IEEE Trans. Comput. Aid.
Des. 25, 5, 743–755. http://www.eecs.berkeley.edu/∼alanmi/publications/2005/tcad05 s&s.pdf.

MISHCHENKO, A., CHATTERJEE, S., BRAYTON, R., AND EEN, E. 2006C. Improvements to combinational equivalence
checking. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’06). 836–
843. http://www.eecs.berkeley.edu/∼alanmi/publications/2006/iccad06 cec.pdf.

MISHCHENKO, A., CHATTERJEE, S., AND BRAYTON, R. 2007a. Improvements to technology mapping for LUT-
based FPGAs. IEEE Trans. Comput. Aid. Des. 26, 2, 240–253. http://www.eecs.berkeley.edu/∼alanmi/
publications/2006/tcad06 map.pdf.

MISHCHENKO, A., CHO, S., CHATTERJEE, S., AND BRAYTON, R. 2007b. Combinational and sequential mapping with
priority cuts. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’07).
http://www.eecs.berkeley.edu/∼alanmi/publications/2007/iccad07 map.pdf.

MISHCHENKO, A., BRAYTON, R., AND CHATTERJEE, S. 2008a. Boolean factoring and decomposition of logic net-
works. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’08). 38–44.
http://www.eecs.berkeley.edu/∼alanmi/publications/2008/iccad08 lp.pdf.

MISHCHENKO, A., BRAYTON, R., JIANG, J.-H. R., AND JANG, S. 2009. Scalable don’t care based logic optimization
and resynthesis. In Proceedings of the International Symposium on Field Programmable Gate Arrays
(FPGA’09). 151–160. http://www.eecs.berkeley.edu/∼alanmi/ publications/2009/fpga09 mfs.pdf.

MISHCHENKO, A., CASE, M. L., BRAYTON, R., AND JANG, S. 2008b. Scalable and scalably-verifiable sequential
synthesis. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’08). 234–
241.

MUROGA, S., KAMBAYASHI, Y., LAI, H. C., AND CULLINEY, J. N. 1989. The transduction method- Design of logic
networks based on permissible functions. IEEE Trans. Comput. 38, 10, 1404–1424.

PAN, P. AND LIN, C.-C. 1998. A new retiming-based technology mapping algorithm for LUT- based FPGAs. In
Proceedings of the International Symposium on Field Programmable Gate Arrays (FPGA’98). 35–42.

PLAZA, S., CHANG, K.-H., MARKOV, I. L., AND BERTACCO, V. 2007. Node mergers in the presence of don’t cares. In
Proceedings of the Asia South Pacific Design Automation Conference (ASP-DAC’07). 414–419.

SALUJA, N. AND KHATRI, S. P. 2004. A robust algorithm for approximate compatible observability don’t care
(CODC) computation. In Proceedings of the Design Automation Conference (DAC’04). 422–427.

SAVOJ, H. 1992. Don’t cares in multi-level network optimization. Ph.D. dissertation, University of California,
Berkeley.

SENTOVICH, E., SINGH, K. J., LAVAGNO, L., MOON, C., MURGAI, R., ET AL. 1992. SIS: A system for sequential circuit
synthesis. Tech. rep. UCB/ERI, M92/41, ERL, Department of EECS, University of California, Berkeley.

XILINX CORP. 2011. Xilinx Virtex-5 product table. http://www.xilinx.com/products/silicon solutions/fpgas/
virtex/virtex5/v5product table.pdf.

YANG, Y.-S., SINHA, S., VENERIS, A., AND BRAYTON, R. 2007. Automating logic rectification by approximate SPFDs.
In Proceedings of the Asia South Pacific Design Automation Conference (ASP-DAC’07).

ZHU, Q., KITCHEN, N., KUEHLMANN, A., AND SANGIOVANNI-VINCENTELLI, A. L. 2006. SAT sweeping with local
observability don’t-cares. In Proceedings of the Design Automation Conference (DAC’06). 229–234.

Received May 2009; revised August 2009; accepted November 2010

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 4, Article 34, Publication date: December 2011.

