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Abstract—The COVID-19 global outbreak represents the
most significant epidemic event since the 1918 influenza pan-
demic. Simulations have played a crucial role in supporting
COVID-19 planning and response efforts. Developing scal-
able workflows to provide policymakers quick responses to
important questions pertaining to logistics, resource alloca-
tion, epidemic forecasts and intervention analysis remains a
challenging computational problem. In this work, we present
scalable high performance computing-enabled workflows for
COVID-19 pandemic planning and response. The scalability
of our methodology allows us to run fine-grained simulations
daily, and to generate county-level forecasts and other counter-
factual analysis for each of the 50 states (and DC), 3140 counties
across the USA. Our workflows use a hybrid cloud/cluster
system utilizing a combination of local and remote cluster
computing facilities, and using over 20,000 CPU cores running
for 6–9 hours every day to meet this objective. Our state
(Virginia), state hospital network, our university, the DOD and
the CDC use our models to guide their COVID-19 planning and
response efforts. We began executing these pipelines March 25,
2020, and have delivered and briefed weekly updates to these
stakeholders for over 30 weeks without interruption.

Keywords-COVID-19, Epidemic Modeling, HPC Workflow
Development

I. INTRODUCTION

COVID-19 represents the first pandemic since the 2009

H1N1 outbreak and is the worst pandemic on record since

the 1918 pandemic. Since February 2020, the pandemic has

had a severe economic, social, and health impact. Accord-

ing to the International Monetary Fund (IMF), the global

economic burden for COVID-19 will likely be 9+ trillion

US dollars. More than 30 million confirmed infections

and 1 million deaths have been reported globally, with

very different epidemic dynamic trajectories and mortality

witnessed across various countries. Europe and the United

States (US) are seeing a resurgence of cases and the situation

is unlikely to get better anytime soon.

Epidemiological models and workflows comprising of

these models can help provide insight into the spatiotemporal

dynamics of epidemics by: (i) forecasting the epidemic’s

future course, (ii) guiding allocation of scarce resources

and assessing depletion of current resources, (iii) inferring

disease parameters that allow researchers to make better

recommendations and (iv) providing insight into the effec-

tiveness of different interventions. Individual behavior and

public policies are critical influencers for controlling epi-

demics, and computational simulations can be powerful tools

for understanding which behaviors and policies are likely to

be effective. Our studies have used meta-population models,

as well as detailed agent-based models. The network-based

models consider epidemic spread on an undirected social

interaction network G(V,E) over a population V , where

each edge e = (u, v) ∈ E implies that individuals (also

referred to as nodes) u, v ∈ V interact [16], [34]1.

Our contributions and significance. In this paper, we de-

scribe a novel high performance computing (HPC) approach

for executing epidemiological workflows that can support

planning and response to pandemics such as COVID-19. Our

approach is unique: (i) it uses detailed agent-based models

as well as meta-population models to simulate epidemic

dynamics over realistic representations of national-scale

social contact networks, (ii) it splits the workflow across

two supercomputing clusters due to resource constraints,

and (iii) it is used to support near real-time response

efforts. The workflows are comprised of a complex series

of data ingestion, simulation and analytics steps. Details

of how EpiHiper, the agent-based discrete time simulator

for infectious disease spread used in this work, and other

such networked agent-based modeling frameworks work are

described in companion publications and are not the focus

of this paper. However, the basic approach presented here

can be used for other agent models and other synthetic

social contact networks. We focus here on three epidemic

workflows: (i) calibration of the models using county-level

incidence data, (ii) predicting daily county-level incidence

values for time periods covering two weeks to a few months

and (iii) counter-factual analysis of various policy decisions

during the ongoing pandemic. Key steps in all of the

workflows include (i) a data-driven algorithm that integrates

county-level incidence data, as well as individual behavioral

representations and public policies, to calibrate the models

and project incidence going forward; (ii) realistic individual-

1This is an extended version of the paper with the same title that was
published at the 35th IEEE International Parallel and Distributed Processing
Symposium.
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Figure 1. Combined workflow: This diagram illustrates the complete
timeline of our process, from model configuration through intervention
analysis.

level social contact networks and HPC agent-based models

to produce highly resolved outcomes (at the individual and

family levels); and (iii) analytics that combine the simu-

lation output, surveillance data and detailed synthetic data

to support policy assessment. The workflows are executed

in real time, meaning that the pipeline produces epidemic

predictions every week that we share with federal and

state authorities. Splitting and orchestration of workflows

across two supercomputing systems that are geographically

separated requires careful analysis of the workload and

practical constraints.

We demonstrate our results by showing how our epi-

demiological workflows can be used to support a national

COVID-19 response. Our pipeline typically runs 5,000–

17,900 simulations per night, covering the entire US network

which is comprised of about 300 million nodes and 7.9

billion edges partitioned across all 50 states and Washington

DC. The simulations yield ensemble models for prediction

of epidemic incidence curves at the US county level (3140

counties). These results are the first of their kind reported in

the literature for national-scale US networks. The workflow

is orchestrated between home and remote super-computing

clusters; 20,000 cores of the remote super-computing cluster

are dedicated each night for completing our complex cali-

bration and prediction tasks.

We are the lead modeling group supporting our state’s

(Virginia) COVID-19 response. We have provided uninter-

rupted weekly projections and analytical products to the

analysts and senior officials of the state hospital referral

regions (HRR) and local universities (including our univer-

sity) since March 25, 2020.2. We also provide our weekly

forecasts to the Centers for Disease Control and Prevention

(CDC), and our analytical products to the Department of

Defense (DoD). Our results demonstrate that real-time, data-

driven high resolution epidemics science at a national scale

2More details on how our models are used can be found at: https:
//www.vdh.virginia.gov/coronavirus/category/covid-19/model

Figure 2. Timeline of tasks involving human efforts. It shows the schedule
of the sequence of tasks over multiple days for a complete calibration-
prediction cycle. The orange boxes are automated.

is indeed possible3.

Overview. The epidemiological pipeline workflows are

shown in Figures 1, 3, 5 and 4. Each workflow is split

between a local cluster (Rivanna HPC Facility at University

of Virginia) and a remote super-computing cluster (Bridges

HPC Facility at Pittsburgh Supercomputing Center). Our

workflows support our vision of HPC-oriented, real-time

epidemic science, and are carefully organized to conform

to the following set of practical constraints. (i) Our access

to the remote super-computing cluster is limited, so it is

not available to us 24/7. We note that the level of access

provided to us is very generous — we have had exclusive

access to the cluster, with over 20,000 cores, for 10 hours a

day (from 10 pm to 8 am) for over 4 months. (ii) Purchased

datasets and tools are maintained on our home cluster;

these items are not ported to the remote super-computing

cluster due to time and licensing requirements. (iii) Analysts

have more consistent access to and control over the home

cluster, so the workflows are split between the two sites. The

workflows are also designed to provide a level of resiliency

and task parallelization: we use the local cluster during the

day, and use the remote super-computing cluster at night.

Figure 2 shows the timeline of tasks involving human efforts.

The overall workflow differs based on the specific kind of

problem addressed, but all of them consist of the following

significant sub-components: (i) generation of national-scale

synthetic social contact networks, (ii) agent-based and meta-

population models that can scale to large systems, (iii)

3More information about our work can be found at https://
biocomplexity.virginia.edu/project/covid-19-pandemic-response
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Workflow # Cells # States # Replicates # Simulations Raw

Output

Summ.

Output

Economic 12 51 15 9180 3.0TB 5.0GB

Prediction 12 51 15 9180 1.0TB 2.5GB

Calibration 300 51 1 15300 5.0TB 4.0GB

Table I
REPRESENTATIVE EXAMPLES OF INDIVIDUAL WORKFLOWS, THEIR

SCALE, AND SIZE OF RAW AND SUMMARIZED DATA GENERATED BY

THEM.

Figure 3. Economic workflow: Economic workflow is used for computing
the medical costs incurred due to the pandemic. The models and details of
this can be found in [9]. [1] Incidence data includes about 3000 counties
× over 200 days of entries. [2] An example factorial design has (2 VHI
compliances × 3 lockdown durations × 2 lockdown compliances) × 51
states × 15 replicates = 9180 simulation instances. [3] Size of individual
level output data: 12 cells × 51 states × 15 replicates × multi-million state
transitions = multi-billion entries, about 3TB. [4] Size of aggregate output
data: 12 cells × 51 states × 15 replicates × 365 days × 90 health states
× 3 counts = about 1 billion entries, 2.5GB. Size of synthetic data: 300
million × 8 = 2.5 billion entries.

methods for calibrating and producing ensemble models,

(iv) tools for assembling the input data and distributing this

dataset on cluster nodes, and (v) tools for post-processing

the output data so that summary data can be sent back to

the home cluster for further analysis.

Each of our workflows represent an interesting mix of data

and compute intensive steps and thus crucially need HPC

resources. Table I summarizes some of the key numbers for

case studies we have described to illustrate the workflows.

The partitioning of tasks and specific computation is care-

fully managed to reduce the amount of data transfer between

the two clusters and achieve a near real-time response. Our

paper advances the use of parallel and distributed computing

in this important area – to the best of our knowledge this is

the first time two HPC resources have been used in this

manner to support near real-time epidemic planning and

response.

II. DESCRIPTION OF THE WORKFLOWS

Figure 1 describes the overall workflow and how it is

orchestrated across the two systems. Here we discuss three

Figure 4. Calibration workflow: [1] Incidence data includes about 3000
counties × over 200 days of entries. [2] An example of calibration design
has 300 cells × 51 states × 1 replicates = 15300 simulation instances. [3]
Size of individual level output data: 300 cells × 51 states × 1 replicates
× multi-million state transitions = multi-billion entries, about 5TB. [4]
Calibration uses aggregate data of size: 300 cells × 51 states × 1 replicates
× 365 days × 90 health states × 3 counts = about 1.5 billion entries, 4GB.

specific epidemiological workflows that are described in

Figures 3, 4 and 5. Figure 2 shows the timeline of tasks

involving human effort.

Counter-factual analysis workflow (Figure 3). Counter-

factual analysis refers to the study of outcomes under

various posted scenarios. The range of scenarios considered

reflect the possible trajectory of the epidemic and is not

known in advance. Our counter-factual analysis usually

comprises various lockdown policies, compliances, and non-

pharmaceutical interventions. The system is calibrated to

reflect the current conditions on the ground. Usually such

an analysis entails running a large factorial design and

then computing certain outcomes that combine the output

of the simulations and detailed synthetic social network,

demographic and socio-economic data.

Calibration workflow (Figure 4). Calibration refers to find-

ing plausible configuration(s) that produce simulation output

similar to observed ground truth. Generally, such parameter

searches are carried out by first defining a parameter space

consisting of plausible parameter values, then evaluating

the closeness of the simulation output to the ground truth

at various points in that parameter space. However, when

running the simulation is expensive, an emulator can be

used in place of the actual simulation inside a calibration

loop. An emulator is a statistical model that maps the input

to the output of the simulation; it is cheap to run, and

offers a way to quantify uncertainty for a deterministic

system. To calibrate EpiHiper, a Gaussian Process [43], [46]

emulator is used inside a Bayesian calibration framework for

multivariate output [18], [29] to produce a set of plausible

parameter configurations conditioned on the ground truth

and associated uncertainty on the future predictions. The

calibration task is carried out using the GPMSA framework

[23] in Matlab. The calibration workflow typically resumes
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Figure 5. Prediction workflow: [1] An example design has (3 partial
reopening levels × 4 contact tracing compliances) × 51 states × 15
replicates = 9180 simulation instances. [2] Size of transmission tree data:
12 cells × 51 states × 15 replicates × 1 million transmissions = 9 billion
entries, about 1TB. [3] Size of summary data: 12 cells × 51 states × 15
replicates × 365 days × 90 health states × 3 counts = about 1 billion
entries, 2.5GB.

when ground truth data is updated or when we want to

improve our predictions with a more appropriate parameter

space or better-modeled mitigations. The calibration may

reuse the existing model configurations, or generate new

configurations as simulated by EpiHiper. This can vary

by state. After simulation and aggregation, the time series

of simulated case counts is compared to the ground truth

with the aforementioned Bayesian approach to generate

configurations for the prediction workflow.

Prediction workflow (Figure 5). To make predictions, we

run simulations using the model configurations generated

from the calibration workflow, and aggregate individual-

level output to obtain future counts for various forecast-

ing targets (e.g. confirmed cases, hospitalizations, deaths)

at various spatial resolution (state or county level) with

different temporal horizons (from one week to five months

ahead) depending on the objective. The ensemble of the

model configurations and the simulation output provides

uncertainty quantification on the predictions. The prediction

workflow typically resumes when the calibration workflow

generates a set of model configurations, which are simulated

by EpiHiper. The output is aggregated and analyzed by

public health domain experts to identify inconsistencies

(which may then trigger the calibration workflow again).

If the predictions are deemed reasonable, we expand the

configurations with a few possible future what-if scenarios

(e.g. what if the stay-at-home order is lifted earlier; what if

the mitigation compliance rate increases; what if testing and

contact tracing are improved). Then simulations are run for

the expanded configurations, and the results are combined

with the as-is predictions.

III. DESCRIPTION OF HARDWARE, SOFTWARE AND

DATA

In this section, we describe the individual components

of the overall workflow: (i) the underlying hardware, (ii)

the software components used, and (iii) data used as input

and generated as output. As mentioned earlier, the hardware

consists of a home cluster and a remote super-computing

cluster. Our typical workflow depicting the sequence of

computations and data transfers between the two clusters

are described in Figure 1, and described in more detail in

the following section. The workflow relies on two important

datasets as inputs: (i) the synthetic population and associated

social contact network for the US, and (ii) COVID-19

specific disease parameters. Ranges for these parameters are

based on best estimates from COVID-19 literature. The final

component of the pipeline is the simulation-based models.

Although we use meta-population models in addition to

agent-based models, we will focus here on the agent-based

models due to the significant computing challenges they

pose.

Home cluster and remote super-computing cluster. Our

methodology makes use of two computing clusters, which

we refer to as the home cluster and the remote super-

computing cluster. The home cluster refers to the computing

cluster available at the author’s home institution, Rivanna

HPC Facility at University of Virginia. The home cluster is

modest-sized relative to the significantly more powerful re-

mote super-computing cluster, Bridges HPC Facility at Pitts-

burgh Supercomputing Center. The actual simulation runs

are executed on the remote super-computing cluster. We find

this distinction to be fairly typical and important, as most

institutions do not have a super-computing facility available

on their local premises, and researchers/practitioners often

run the less compute-intensive parts of their workflows on

their local systems, while running more computationally

heavy tasks at dedicated super-computing facilities. Making

this distinction explicit allows us to formally take into

consideration issues arising from these kind of setups.

Note that commercial cloud computing platforms, such

as Amazon EC2 and Google Cloud Platform, also provide

services to make it relatively easy to set up computing

clusters with software stacks mimicking those of HPC and

super-computing facilities. Hence, this logical separation of

“home cluster” and “remote super-computing cluster” is

also relevant for institutions making use of hybrid cloud

infrastructures, where a small local compute cluster is used

alongside off-premises, cloud-based systems.

Input Data: Synthetic populations and contact networks.

Our epidemic computational models depend upon detailed

synthetic populations and contact networks to support accu-

rate and realistic simulations. Such data is prepared for each

state, see Figure 6 for a summary of node and edge counts

by US state.

For each population, data is supplied as a comma-

separated values (CSV) file containing the traits of each

synthetic person. Whereas particular sets of traits may

vary across simulations, typical choices for the US include
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Figure 6. The diagram shows the number of nodes and edges in the contact network for each U.S. state as used in the simulations.

household ID, age and age group, gender, county code, and

the latitude and longitude of home locations. For design

reasons, but also to avoid the cost of parsing and reading

files from the file system during simulations, the population

data is loaded into a PostgreSQL4 database server. All

simulations access the population data by communicating

with the database server at run-time.

The agent-based models use dynamic contact networks to

encode interactions between persons during simulations. The

initial dynamic contact network in EpiHiper is generated

statically. However, during the course of the simulation,

each edge in the contact network can be turned on and off

dynamically as required in response to, for example, social

distancing interventions. Like the person data, the contact

network of each population is supplied to the simulations

as one CSV file. Each edge in the contact network includes

the identifiers of the two persons in contact, and is anno-

tated by the start time and duration of the interaction, in

addition to the context in which the persons meet (home,

work, shopping, other, school, college, and religion). These

contexts may not be the same for both persons, however;

for example, if one person is at the store, their context

may be shopping, while the grocer they came in contact

with would be working. Due to the large size of the contact

networks, the network is partitioned between different MPI

processes at the beginning of the simulation run. The overall

objective is to split the contact network such that each

partition contains approximately the same number of edges,

while, at the same time, ensuring that all incoming edges

of any given node are in the same partition. In the current

implementation, we utilize a simple algorithm to partition

edges: given a partition, continue to allocate nodes to that

partition until the number of incoming edges is greater than

a threshold (E/P + ǫ) where E is the number of edges, P
is the number of partitions, and ǫ is the tolerance factor.

Note that even a simple partitioning scheme (such as the one

described) takes a significant amount of compute time. This

4https://www.postgresql.org/

is why we use our current (simple) algorithm rather than one

that is more sophisticated or optimal. We can also cache the

result of the partitioning computation on disk, which saves

time on future runs.

Input Data to simulation: Disease progression param-

eters and parameter configurations. The disease model

used for this work is shown in Figure 12 in the extended

version of this paper (see footnote 2, page 1) and depicts

the transmission of COVID-19 through interactions between

individuals, and the subsequent disease progression of an

infected individual. As shown in Figures 4 and 5, both

calibration and prediction workflows start by generating sim-

ulation configurations, also known as cells. For calibration

workflows, a larger number of cells are created, each with

smaller numbers of replicates relative to routine prediction

workflows, in order to explore the model configuration

state space. For prediction workflows, however, a much

smaller number of cells are generated which are based on

the most likely model configurations from the calibration

phase, each with a relatively larger number of replicates.

The model configurations specify which populations and

contact networks to use, as well as the disease parameters,

interventions, initializations, and the number of days to

simulate.

Input data to calibration. For calibrations, we use con-

firmed cases from multiple data sources5 6 7 as our ground

truth dataset. The ground truth data has county-level daily

confirmed case counts starting from January 21, 2020, for

over 3000 counties (as of April 22, 2020, there were 2772

counties with case counts greater than zero).

Simulation-based models. EpiHiper is an agent-based dis-

crete time simulation model for infectious disease spread

in a social contact network. It is implemented as a paral-

lel codeset in C++/MPI. It computes probabilistic disease

transmission between nodes (representing individuals) in a

5https://github.com/nytimes/covid-19-data
6https://nssac.bii.virginia.edu/covid-19/dashboard/
7https://coronavirus.jhu.edu/map.html
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network of edges (representing interactions between individ-

uals), as well as the disease progression within each infected

individual. It is based on the synthetic populations, accessi-

ble to the simulations via a database launched at run-time,

and the synthetic contact network, partitioned pre-simulation

and loaded into memory of the allocated processing units in

order to support scalability. The simulation keeps track of

the health state of each individual at each tick (the temporal

resolution, set to one day in this case).

Output data: dendograms and summary information.

EpiHiper produces state transitions of all persons during the

simulation. Each line of the output file written by EpiHiper

includes the tick of the transition event, the identifier of the

person, their exit state, and the identifier of the person caus-

ing the state transition in the case of disease transmission.

The size of the output depends on the total number of ticks,

overall epidemic size (number of infected persons), as well

as the complexity of the finite state machine. Dendograms

are part of this output, which are transmission trees rooted

at initial infections.

From the individual-level output data, we can aggregate

simulation results to the county level for different health

states, and use the summary data for calibration and pre-

diction. For example, the time series of daily cumulative

counts of symptomatic cases at the state or county level are

compared to the ground truth data as part of our calibration,

and daily counts of symptomatic cases, hospitalizations,

ventilations, and deaths are used in our predictions.

IV. ORCHESTRATION OF THE WORKFLOWS

Structure of simulation jobs. The software stack on the

remote super-computing cluster uses the Slurm scheduler

for scheduling jobs, and Intel MPI for distributed communi-

cation. PostgreSQL servers are utilized to run the population

databases. The number of processes to use per compute

node is predetermined statically based on the configuration

of individual compute nodes on the cluster. Furthermore,

as described earlier, the population networks are partitioned

statically beforehand, and they also determine the number of

compute nodes/processes that will be utilized when running

simulation jobs that use them. For simulations sharing a

given user population, a single PostgreSQL server is started

on a compute node and made available. The simulations

use them to load population information at run-time. The

data transfer between the home cluster and remote super-

computing cluster utilizes the Globus platform8.

Every 24 hours, simulations are generated and executed

to support the decision-making processes of policymakers.

The process begins with the generation of the simulation

configurations. The nature of the configurations generated

depends on whether the calibration or prediction workflows

are to be executed. Calibration workflows typically generate

8https://www.globus.org/

a large number of different model configurations to explore

the space of the configurations. Prediction workflows, how-

ever, typically have a smaller set of model configurations,

each replicated multiple times.

Once the configurations are generated, their transfer from

the home cluster to the remote super-computing cluster

is started manually using the Globus platform. Once the

configurations are copied over, the population databases

are started, one per population. To speed up the start of

the population databases, snapshots of the databases are

generated when the populations are initially created, and

these snapshots are instantiated at run-time. Next, scripts

are used to submit Slurm job arrays, which are scheduled

to run using the heuristic scheduling strategy discussed

above. Once simulation jobs have completed, the summary

of simulation outputs are generated and transferred back to

the home cluster using the Globus platform.

V. MAPPING AND SCHEDULING JOBS ON PSC MACHINES

Mapping our workflows on the remote supercomputing

cluster is an important component. First, recall that the

overall efficiency of the workflow is measured as time to

complete the workflow rather than a single replicate of a

single cell. Abstractly, our workflows can be thought of

as large scale hierarchical statistical experimental designs.

Each workflow is comprised of 51 regions (50 states and

DC), and each region is then comprised of a number of cells

that each denotes one combination of various parameters

used to study a given problem. Each cell is further comprised

of a number of replicates. Together, this represents a 3-

level hierarchy: regions-cells-replicates. Each cell for a given

region uses exactly the same input data; thus, we view our

atomic jobs as 〈cell, region〉. For certain workflows, it is

more convenient and efficient from a scheduling perspective

to group several cells into one to create jobs of appropriate

sizes.

In general, the running time for a single replicate for

〈cell, region〉 is not fixed; this is due to (i) randomness

within the computation, (ii) triggered interventions that can,

at certain times, cause new calculations to be spawned

based on the epidemic, (iii) number of processors assigned

to the replicate and (iv) machine-specific randomness due

to processors’ computation, access to the database etc.

Nevertheless, by running the replicate several times we can

obtain a reasonable bound on these times. For the workflows

considered, we fixed the number of processors assigned to

each 〈cell, region〉. We state the mapping problem in two

stages:

The workflow mapping problem (WMP). We are given

a set of 〈cell, region〉 tasks, denoted by task T [r, c]. We

assume that we know a bound tl(T [c, r]) and tr(T [c, r])
denoting the lower and upper bound on the time to com-

plete task T [c, r] using p(T [c, r]) processing units. We

use t(T [c, r, ]) to denote the empirical mean running time
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obtained by running the computation several times and will

use this for the rest of the paper. We assume p(T [c, r]) is

known a priori. The problem is assigning an order to these

tasks, then supplying this ordered set to the Slurm scheduler

in such a way that minimizes the overall completion time

of all tasks.

WMP is NP-hard. This can be seen by reducing the 2D

Bin packing problem to the WMP problem: Rectangles

become tasks: their width becomes p(T [c, r]) and their

height is running time t(T [c, r]). This reduction is useful

and this correspondence also leads to natural heuristics for

the problem discussed later in this section.

Database Access Constraints. There is one additional

constraint that needs to be taken care of which makes the

problem computationally challenging. The constraint relates

to database access. Recall that each task needs access to

the input synthetic network. The number of simultaneous

connections to the database are upper bounded for technol-

ogy and efficiency reasons. We can capture this by using

a compatibility graph. Usually compatibility constraints for

tasks are captured as a coloring problem: we have a node

for each task, and two tasks u and v have an edge iff they

cannot be scheduled at the same time. A valid coloring

captures a feasible schedule. In our case, the problem is

more challenging and can be best described as a new kind

of vertex coloring problem, which we will call a relaxed col-

oring problem (r-relaxed-coloring): We are given a graph

G(V,E). Edges represent conflicts, and vertices represent

tasks. We are given a number r. The (r-relaxed-coloring)

is to assign a color to each node in the graph (such a graph

would be constructed for each region separately) such that if

a node v gets color c[v] then no more than r of its neighbors

can get the color c[v]. If r = 1, we get the classical coloring

problem and thus all the hardness results hold for the relaxed

coloring problem as well.

The DB-access constrained workflow mapping problem

(DB-WMP). DB-WMP is a constrained version of the WMP

wherein the number of tasks that can be scheduled simul-

taneously is bounded. Thus the general DB-WMP problem

can be thought of as 2D Bin packing with an interesting

compatibility constraint.

Our Mapping heuristic (MAP). Our mapping heuristic

is based on a few simplifying assumptions and exploit-

ing the problem structure. Assumption 1: We assume that

all tasks for a given region take the same amount of

time which is t(T [c, r]), in other words ∀ci, t(T [ci, r]) =
t(T [c, r]). Assumption 2: All tasks have to be scheduled

non-preemptively. Assumption 3: The number of connections

that can be made by tasks corresponding to a region r is

bounded by B(T [r]) (i.e. it is not dependent on the cell).

Assumption 4: For each region, all the tasks T [ci, r] require

the same number of threads for simplicity and are denoted

by dt(T [c, r]), thus
∑

c dt(T [c, r]) > B(T [r]). Our heuristic

is motivated by the non-decreasing first fit heuristic. Recall

the task of this heuristic is to provide the Slurm scheduler

an ordering and chunking of tasks. Slurm further does a

certain amount of real-time optimization. It comprises of

the following steps:

Step 1. Split the overall database so that we have one

database per region. For various system-level reasons and

from the standpoint of human productivity, each such

database occupies one node of the system. Thus, all tasks

corresponding to a given region can access the region-

specific database. Access by each region can now be done

in parallel with no constraints beyond the fact that we

have a constraint on the total number of processors. Let

T [r] = ∪cT [c, r] denote the set of tasks for region r. The

above decomposition makes the coloring problem easy. We

now have r subsets — one subset per region. There is no

edge between the subset, and the graph within each subset is

a complete graph. All tasks for a given region r thus belong

to a Region set RS(r).
Step 2. Organize the tasks in non-increasing order by time

needed to complete the computation. The time is directly

correlated with the size of the network for each cell. Using

an idea motivated by the 2D Bin packing methods, we

use a level-oriented approach [11], [12], [47], [55]. Think

of processors on the X-axis and time on the Y-axis. The

tasks are mapped from left to right (in terms of available

processors), in rows forming levels. Within the same level,

all tasks are packed so that their bottoms align. The first level

is the bottom of the strip and subsequent levels are defined

by the time taken of the slowest task on the previous level.

Step 3. We considered two different mapping algorithms:

The Next-Fit Decreasing time with database constraints

(NFDT-DC) algorithm assigns the next task T [c, r] (in non-

increasing time) on the current level if T [c, r] fits and

database access constraints are satisfied. Otherwise, the

current level is ”closed” and a new level is created. The

First fit decreasing time with database access constraint

(FFDT-DC) algorithm schedules the next task in non-

increasing order of time, until either the database access

constraint for the region is violated, or, if no level can

accommodate the task, a new level is started.

Without the database constraints, the NFDT-DC and

FFDT-DC algorithms have worst-case performance guar-

antees of 2 and 17/10 respectively. Let EC denote the

empirical efficiency of our method. This is computed as the

ratio of the total time used by all processors as they were

computing divided by the product of the total processors

and the time when the last task was completed. As the next

section discusses, our algorithms do quite well; the FFDT-

DC ordering achieves a very high system utilization.

VI. PERFORMANCE ANALYSIS

Runtime performance of EpiHiper. Figure 7 (top) shows

that EpiHiper’s running time increases linearly with its
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Figure 7. (top) Running time of EpiHiper on networks of different
sizes given 40 processing units. (middle) As the number of processing
units increase, the corresponding improvement in the performance of the
simulations illustrates the strong scaling results of EpiHiper. Beyond
some point, which varies with the problem size, the benefit of using
more resources starts to diminish. (bottom) Running time of EpiHiper
varies with different interventions in the simulation. Simulations with more
interventions, or with more complex interventions, take more time.

input size. On the other hand, Figure 7 (middle) shows

how increasing the number of processing units for three

medium-to-large networks can significantly improve simu-

lation performance. The improvement in the performance,

however, starts to decrease beyond a certain number of

processing units due to increasing communication costs be-

tween processes. It may even become slower with too many

processes. In Figure 7 (bottom), we show that EpiHiper’s

running time depends also on the interventions implemented

in the simulation. In the base case, the simulation has

implemented VHI (voluntary home isolation), SC (school

Remote Super-Computing

Cluster

Home Cluster

# Allocated nodes 720 50

# CPUs/node 2 2

# Cores/CPU 14 20

RAM per node 128GB (DDR4) 384GB (DDR4)

CPU Intel Haswell E5-2695 v3 Intel Xeon Gold 6148

Network Intel Omnipath-1 Mellanox ConnectX-5

Filesystem Lustre Lustre

Size of user traits and contact networks 2TB (one time)

Size of daily simulation configurations 100MB–8.7GB (per day)

Size of raw simulation outputs generated 20GB–3.5TB (per day)

Size of summarized outputs 120MB–70GB (per day)

Table II
CONFIGURATION OF THE REMOTE SUPER-COMPUTING CLUSTER

(BRIDGES HPC FACILITY AT PITTSBURGH SUPERCOMPUTING CENTER)
AND HOME CLUSTER (RIVANNA HPC FACILITY AT UNIVERSITY OF

VIRGINIA), ALONG WITH DATA GENERATED AND MOVED ACROSS

THEM.

closure), and SH (stay-at-home). When we add more inter-

ventions to the simulation, the running time increases. The

simpler interventions RO (partial reopening), which extends

SH, and TA (testing and isolating asymptomatic cases),

which extends VHI, increase running time marginally. The

more complex interventions PS (pulsing shutdown), which

repeatedly alternates SH and RO, and D1CT (distance-1

contact tracing and isolating), which affects many more

nodes and edges, significantly increase the running time.

The most complex intervention we have implemented so far,

D2CT (distance-2 contact tracing and isolating), increases

the running time by almost 300% from the base case.

Scheduling and partitioning simulation jobs. The primary

purpose of the workflow presented in this paper is to serve

the needs of policymakers by providing them with timely

predictions of disease progression that incorporates the most

recent data. To serve this purpose, we face a high throughput

problem where we have to maximize the number of simula-

tion jobs we can execute in order to generate calibration

and projection results. We are given two constraints (i)
limited compute time (10:00pm - 8:00am), and (ii) limited

number of compute nodes as described in (Table II). The job

scheduling strategy presented in the previous section focuses

on timeliness, that is, reducing the time span required to

execute a given set of jobs on the compute cluster.

The minimal memory requirement per job is given by

the size of the contact network which is stored in memory

during runtime. Furthermore, the memory requirements may

increase due to the complexity of interventions performed

in a scenario. Our experience is that in nearly all cases, the

additional memory is proportional to the network size. For

simplicity, we therefore divided the 51 regions (networks)

into 3 categories: small (2 compute nodes), medium (4), and

large (6). With these assignments, we were able to guarantee

that the jobs have sufficient memory to complete even the
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Figure 8. Variance in runtime for EpiHiper simulations for different US states, across different cells or simulation configurations.
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Figure 9. Utilization of compute resources on remote super computing
clusters for different days of workflows. The left figure shows utilization
for the days when all 50 states and DC were simulated, while the right

figure shows utilization for days when only different cells for the state of
Virginia were simulated.

complex intervention scenarios. We intentionally avoided

using partial nodes in order to limit problems caused by

competing memory requirements of different jobs running

on the same node. By consistently using the maximum

number of cores available per node, we ensure that the

available compute resources are fully utilized.

Furthermore, we chose to create static network partitions

in order to save compute time, since partitioning the network

to binary chunks for California alone would take over one

hour. The time for partitioning a network is larger than the

typical run time for a simulation run, which usually requires

between 100 to 300 time steps of about 3 seconds each for

a network the size of California (Figure 7 (left)). We chose

not to assign additional resources, since Figure 7 (right)

shows that increasing the number of compute nodes for

a single simulation gives diminishing returns in terms of

runtime; due to that, the cost of messaging negates any gains

obtained from using more compute power. After the general

categorization of all jobs into the 3 categories above, we are

faced with maximizing the number of simulations we are

able to run within our time window. Every night, we have

a varying number N jobs to run, and face the challenge of

scheduling them efficiently.

While supercomputing facilities can grant access to a

large amount of resources, access to these resources come

at a large cost, either for the users who are paying for the
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Figure 10. Changes in memory required for different cells for VA (left)
and US states (right) at different timesteps. In the left figure, every line
corresponds to a different cell or simulation configuration generated for the
state of Virginia, and shows the mean memory required (across replicates).
In the right figure, every line corresponds to a different US state, and shows
shows the mean memory required (across cells).

resources directly or for the taxpayer in case of publicly

funded research. Thus one important metric to consider for

the scheduling problem is the issue of resource utilization.

Figure 9 shows the resource utilizations for our workflows,

in terms of percent of CPU hours allocated that were actually

used. The Figure 9 (left) shows the distribution of utilizations

of 9 workflow runs which simulated all 51 regions, while

Figure 9 (right) shows the same for 24 workflow runs that

simulated multiple configurations for the state of Virginia.

In the case of all state workflows, we have a median

utilization of 96.698% while the same for Virginia-only

workflows is 95.534%. Note that the above results are for the

scheduling configuration (FFDT-DC) where the largest jobs

were scheduled first. Our initial workflow runs without this

scheduling scheme (NFDT-DC) led to utilization numbers

between 44.237% and 55.579% for the all-state case.

Runtime performance of simulation ensembles on remote

system. Here we present the runtime characteristics of

the simulations. Figure 8 shows the variance in runtime

(across compute nodes) for the 50 US states and DC for

a single representative day of simulation. To understand

the dynamic nature of the total memory required for the

different EpiHiper simulations, we plot the total memory

required for different cells, and US states in Figure 10.

Figure 8 shows that runtimes of simulations are dependent
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on intervention scenarios and is strongly correlated to the

network size. The memory increase during the simulation in

Figure 10 is due to the intervention scheduled at fixed time

points. Figure 10 (left) shows that memory requirements in

the same scenario may depend on the compliance of nodes

with the interventions, i.e., higher compliance and, therefore,

more scheduled changes to the system state require more

memory. Finally, Figure 10 (right) shows that the final

memory requirements are strongly correlated with the initial

requirements, i.e., the network size.

VII. ILLUSTRATIVE CASE STUDIES

In this section, we discuss three case studies: (i) medical

cost of the pandemic illustrated in Figure 3, (ii) forecasting

workflow illustrated in Figure 5 and (iii) calibration work-

flow illustrated in Figure 4. The second and third workflows

are discussed in the Appendix F.

The workflows selected illustrate a range of tasks under-

taken using the two supercomputing clusters.

Case study: Medical costs of COVID-19. In this study,

we estimate the medical costs of COVID-19 in the US.

The overall impact also includes the cascading effect to

the Gross Domestic Product (GDP), which can be analyzed

by an input-output or general equilibrium model. Since the

purpose is to demonstrate the workflow, we will focus on

the medical cost estimating.

The medical costs include costs incurred by COVID-19

patients for medical attention, hospitalization, ventilator sup-

port, etc. For each patient, the total costs depend on the dis-

ease severity. We consider a calibrated (towards R0 = 2.5)

disease model with different scenarios with respect to NPI

(non-pharmaceutical intervention) duration and compliance.

For each scenario in our factorial design of 12 cells, we run

simulations with 15 replicates for each of the 51 regions

(50 states and DC), with county-level seeding derived from

county-level confirmed case counts. The simulation outputs

individual-level data on who are infected, receiving medical

attention, hospitalized, and/or on ventilator support each day.

The aggregate data is used to compute the total medical costs

for each scenario. The details of the study are described

in [9]. The workflow for our economic impact analysis

consists of the following steps: (i) On the local or remote

cluster, calibrate the disease model towards R0 = 2.5.

(ii) On the local cluster, prepare simulation configuration

files for a factorial design of different NPI durations and

compliance; get the most recent county-level confirmed case

counts and use them to prepare county-level seeding. (iii)

Send the disease model, seeding, and configuration files to

the remote cluster. (iv) On the remote cluster, create database

jobs and simulation jobs, use our scheduling heuristic to

submit jobs, and run post-simulation data aggregation. (v)

Transfer aggregate simulation data to the local cluster. On

the local cluster, run the economic impact model to estimate

medical costs.

VIII. RELATED WORK

Over the last decade, there has been substantial interest

in developing scalable solutions to support various epi-

demiological tasks. This includes: planning and counterfac-

tual analysis, forecasting, and various resource optimization

problems. There has also been interest in developing web-

based tools to support these tasks. The models used in

these papers often range from simple statistical models to

compartmental models. Due to space considerations, we only

highlight a few important papers here.

Agent-based models in epidemic sciences can be traced

back to the earlier work on human immunodeficiency virus

(HIV), although the models were largely focused on the

structural analysis of small networks; see [16], [21], [24].

The use of the models was largely restricted to modeling

studies. Recent papers that aim to scale these simulations to

the national level include [5], [42].

In [3], [14] the authors report on the development of web-

based systems to carry out large computational experiments

in support of epidemic planning. See [15], [26], [40] for

other related efforts.

Researchers have also created data-driven pipelines to

support epidemic forecasting. CDC runs an annual challenge

in this area for studying influenza. Several important ad-

vances have been made to improve the overall forecasts;

most of the work in this space is either statistical time

series models or simple compartmental mass action models;

see [44], [48]. Operational agent-based models for epidemic

forecasting have not yet been reported on. Recently there

have also been a lot of community-wide efforts related to

COVID-199 10 11; our group submits forecasts to a number

of these efforts.

Developing scalable pipelines and workflows for HPC

tasks involving large datasets has also been well-studied

in literature [19], [27], [33], [41]. For example, the au-

thors of [19] present a technique for building scalable

workflows for analyzing large volumes of satellite imagery

data, while [33] present a system for analyzing workflows

related to weather-sensing data. Other studies have presented

generalized methodologies for building scalable workflows

for tasks requiring HPC platforms [7], [27].

Recently there has been a flurry of papers on developing

agent-based and equation-based models for planning and

response to the COVID-19 pandemic; see [1], [2], [10], [20],

[22], [30], [31], [36], [45], [54] The present paper does not

focus on our agent-based models — they are covered in a

companion paper.

Our primary focus is on creating scalable HPC-oriented

workflows to support a range of epidemiologically rele-

vant tasks in real-time. Our work shows how two large

9https://github.com/ihmeuw/covid-model-seiir-pipeline
10https://covid-19.bsvgateway.org/
11https://reichlab.io/
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supercomputing clusters have been used to meet that goal,

and is a step towards demonstrating the use of hybrid

supercomputing cloud technology for epidemic science. The

resulting challenges are unique, and form an important data-

driven simulation platform.

IX. CONCLUSION

We describe how we have developed high performance

computing-oriented epidemic workflows in order to support

the planning and response to pandemics such as COVID-19.

Our workflows are unique in their use of two geographically

separated supercomputing clusters. The workflows are also

unique from the standpoint of executing large data-intensive

steps that incorporate daily county-level surveillance and

policy data, national and highly resolved agent-based simu-

lations of epidemic processes, and post-simulation analytics

for projections and counter-factual analysis. The work arose

in response to requests from federal and state agencies

to support their work on COVID-19 planning, and, using

this approach, we have been able to provide uninterrupted

support for over 30 weeks. This was accomplished in record

time – we began this effort in early March after access to

such machines was made possible by the HPC Consortium.

We were provided with unprecedented support by Bridges

HPC Facility at Pittsburgh Supercomputing Center. Our re-

sults demonstrate that real-time data-driven high resolution

epidemics science at national scale is possible. COVID-19

is not over; we are witnessing a second, or possibly third,

wave. The tools we have developed will assist policymakers

in developing and evaluating new intervention measures, and

will hopefully help prevent COVID-19 from becoming an

even larger-scale outbreak.
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Figure 11. An example showing the stochastic disease propagation in a
social network and the effect of interventions.

APPENDIX A.

NETWORKED EPIDEMIOLOGY

In this paper, we will focus on networked models, which

consider epidemic spread on an undirected social interaction

network G(V,E) over a population V , where each edge

e = (u, v) ∈ E implies that individuals (also referred to

as nodes) u, v ∈ V interact. The specific form of interac-

tion depends on the disease being modeled; e.g. sexually

transmitted diseases require physical sexual contact, while

influenza-like illnesses require physical proximity. Let N(v)
denote the set of neighbors of v. In its simplest form, the

SIR model on the graph G is a dynamical process in which

each node is in one of S (susceptible), I (infected) or R (re-

covered) disease states. Infection can potentially spread from

u to v along edge e = (u, v) with a probability of β(e, t) at

time instant t after u becomes infected, conditional on node

v remaining uninfected until time t — this is a discrete

version of the rate of infection for the ordinary differential

equation (ODE) model discussed earlier. We let I(t) denote

the set of nodes that become infected at time t. The (random)

subset of edges on which the infections spread represents a

disease outcome, and is referred to as a dendogram. This

dynamical system starts with a configuration in which there

are one or more nodes in state I and reaches a fixed point

in which all nodes are in states S or R. Some of the key

challenges are: characterizing the evolution of |I(t)| with

time (i.e., the epicurve) as a function of the disease model

parameters and network structure; predicting the size of the

peak, i.e., maxt |I(t)| and its timing; and how to reduce the

outbreak size Σt|I(t)| by identifying effective interventions,

such as vaccinating nodes (which can be modeled as node

deletions), and social distancing between nodes (which can

be modeled as edge deletions).

In Figure 11, we illustrate random disease propagation in

Figure 12. The COVID-19 Disease Model. This disease progression model
is represented as a probabilistic timed transition system (PTTS): the state
transitions are probabilistic, and, in many cases, are timed, i.e. transition
after a given time period.

a network and effects of interventions with three trajectories

of disease evolution in a small contact network. The small

network represents daily contacts between five people in a

workplace or a school classroom. They are colored for their

health states: susceptible-green, infectious-red, recovered-

yellow. Infections start from A, which in one scenario infects

B and E, in another scenario infects B only. In the former

scenario, B infects D; then D either chooses to stay and

infects C (so all five people have been infected in this

trajectory), or chooses to go home for isolation (so avoids

transmitting the disease to C). In the latter scenario, B infects

D and E; while C decides to get vaccinated and avoids being

infected.

APPENDIX B.

THE DISEASE MODEL PARAMETERS

The within-host disease transmission model is shown in

Figure 12. Transmission occurs when an individual in one

of the states Susceptible or RX Failure comes in contact with

an individual in the states Presymptomatic, Symptomatic, or

Asymptomatic. The individual transmissions are governed by

the parameters in Table IV. Progression from one disease

state to the next is governed by the parameters in Table III

APPENDIX C.

GENERATING SYNTHETIC POPULATIONS AND NETWORKS

A synthetic population of a region may be regarded

as a digital twin of the real population of the region.

Here we provide a compact summary of the model and

methodology behind constructing synthetic populations and

their contact networks in the case of the US, see [38] for

details. These populations and networks are central to the

EpiHiper simulation model.

To construct a population for a geographic region R (e.g.,

Virginia), we first choose a collection of person attributes

from a set D (e.g., age, gender, and employment status) and

a set TA of activity types (e.g., Home, Work, Shopping,

Other, School). The precise choices of D and TA are

guided by the particular scenarios or analyses the population
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Age

Progression Attribute 0-4 5-17 18-49 50-64 65+

Exposed - Asympt prob 0.35

Exposed - Asympt dt-mean 5

Exposed - Asympt dt-std dev 1

Asympt - Recovered prob 1

Asympt - Recovered dt-mean 5

Asympt - Recovered dt-std dev 1

Exposed - Presympt prob 0.65

Exposed - Presympt dt-fixed 1

Presympt - Sympt prob 0.65

Presympt - Sympt dt-fixed 1

Sympt - Attd prob 0.9594 0.9894 0.9594 0.912 0.788

Sympt - Attd dt-discrete 1:0.175, 2:0.175, 3:0.1, 4:0.1, 5:0.1, 6:0.1,

7:0.1, 8:0.05, 9:0.05, 10:0.05

Attd - Recovered prob 1

Attd - Recovered dt-mean 5

Attd - Recovered dt-std dev 1

Sympt - Attd(D) prob 0.0006 0.0006 0.0006 0.003 0.017

Sympt - Attd(D) dt-fixed 2

Attd(D) - Hosp(D) prob 0.95

Attd(D) - Hosp(D) dt-fixed 2

Hosp(D) - Vent(D) prob 0.06 0.06 0.06 0.15 0.225

Hosp(D) - Vent(D) dt-fixed 2

Vent(D) - Death prob 1

Vent(D) - Death dt-fixed 4

Hosp(D) - Death prob 0.94 0.94 0.94 0.85 0.775

Hosp(D) - Death dt-fixed 6

Attd(D) - Death prob 0.05

Attd(D) - Death dt-fixed 8

Sympt - Attd(H) prob 0.04 0.01 0.04 0.085 0.195

Sympt - Attd(H) dt-fixed 1

Attd(H) - Hosp prob 1

Attd(H) - Hosp dt-mean 5 5 5 5.3 4.2

Attd(H) - Hosp dt-std dev 4.6 4.6 4.6 5.2 5.2

Hosp - Recovered prob, 0.2

Hosp - Recovered dt-mean 3.1 3.1 3.1 7.8 6.5

Hosp - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9

Hosp - Vent prob 0.06 0.06 0.06 0.15 0.225

Hosp - Vent dt-mean 1

Hosp - Vent dt-std dev 0.2

Vent - Recovered prob 1

Vent - Recovered dt-mean 2.1 2.1 2.1 6.8 5.5

Vent - Recovered dt-std dev 3.7 3.7 3.7 6.3 4.9

Table III
DISEASE PROGRESSION PARAMETERS AS GIVEN BY THE CDC

DOCUMENT [8]. ONE VALUE PER LINE APPLIES TO ALL AGE GROUPS.
ABBREVIATIONS: PROB: PROBABILITY, DT: DWELL TIME, ATTD:

ATTENDED, HOSP: HOSPITALIZED, VENT: VENTILATED, (D):
RESULTING IN DEATH, (H): RESULTING IN HOSPITALIZATION

will serve. Described at a high level, we (i) construct people

and places, (ii) assign activity sequences to people, (iii)
map each activity for each person to a location (including

the time of the visit), and (iv) from this, we derive a contact

network using co-occupancy to infer edges. The construction

is broken down in a sequence of steps outlined in the

State Attribute Value

transmissability 0.18

Presymptomatic infectivity 0.8

Symptomatic infectivity 1.0

Asymptomatic infectivity 1.0

Susceptible susceptibility 1.0

RX Failure susceptibility 1.0

Table IV
DISEASE TRANSMISSION PARAMETERS

Figure 13. Time series of county-level cumulative confirmed cases of
COVID-19 in California. Each state-level cumulative curve is obtained by
summing its underlying county curves. There are a total of 3140 counties
in the US.

Figure 14. Time series of state-level cumulative confirmed cases of
COVID-19. The incidence curves are highly noisy and often time-delayed.
As a result, they pose a significant challenge when calibrating the simula-
tions.

following.

Using iterative proportional fitting (IPF) [4], [13] the base

population model constructs a set of individuals P where

each person has assigned demographic attributes from D. By

design, this ensures that P matches the actual distributions

and Public Use Microdata Sample (PUMS) data from the

U.S. Census [51], which is the input data for the model. Ad-

ditionally, this model partitions P into a set H of households,

where the notion of household encompasses the traditional

notion of “family”, but also any other subset of individuals

residing in the same dwelling unit (e.g., dormitories, army

barracks, or prisons).

After household assignment, each individual p ∈ P is

assigned a week-long activity sequence α(p) = (ai,p)i
where each activity ai,p has a start time, a duration, and

an activity type from A. Data sources used for this step

include National Household Travel Survey (NHTS) [53],

American Time Use Survey (ATUS) [52] and Medical Treat-

ment Utilization Schedule (MTUS) [49]; these sources are

fused to form consistent, week-long activity sequences. We
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write α : P −→ A for the mapping assigned to each person.

For this construction we use Fitted Values Matching (FVM)

for adults [32], and CART (Classification And Regression

Tree) for children (see, e.g., [6]).

The location model constructs a set of spatially embed-

ded locations L consisting of residence locations where

households live, and activity locations where people con-

duct their non-Home activities. This construction is highly

granular and is rooted in data such as the MS Building

data [37], HERE/NAVTEQ data [28] for points-of-interest

(POIs) and land-use classifications, National Center for Edu-

cation Statistics (NCES) [39] data for public schools, as well

as LandScan12, OpenStreetMap13, and Gridded Populations

of the World (GPW) v414.

For each person p ∈ P , the location assignment model

assigns a location ℓ = ℓ(ai) to each of their activities ai. We

denote the sequence of locations visited by p as λp = (λi)p.

The location assignment model uses American Community

Survey (ACS) commute flow data [50] to assign the target

county c for Work activities, and a particular location

randomly within c work weights assigned to each location

in c. School activity locations are assigned based on NCES

data, with remaining activities anchored near home and work

locations.

Finally, the contact network model uses the location as-

signment to derive the bipartite people location graph GPL

with vertex sets V1 = P and V2 = L and a labeled

edge (p, ℓ) whenever p visits ℓ with labels activity type and

time of visit. From this we derive the list of visitors to each

location and the graph Gmax with vertex set P and edges

all e = (p, p′) for people p and p′ that are simultaneously

present at the same location. Merely being present at a

location at the same time does not imply a contact, and

sub-location contact modeling is applied at each location to

determine which of the edges of Gmax should be retained

to form the contact network G. Finally, for the applications

and scenarios of this paper, we project from G, the week-

long contact network, to GWednesday, representing the contact

network on a “typical day”.

APPENDIX D.

THE AGENT-BASED SIMULATION MODEL

EpiHiper supports disease models which are comprised

of disease states, disease transmissions (through contacts),

and disease progressions. These disease models are specified

independently from the people and their contact network

among whom the diseases spread. In other words, all in-

dividuals have the same dynamics; that is, they have the

same infection process and disease progression dynamics.

All inputs to EpiHiper are given in JSON format, with the

12https://landscan.ornl.gov/.
13http://www.openstreetmap.org
14https://sedac.ciesin.columbia.edu/data/collection/gpw-v4

exception of the contact network, which, due to its large

size, is in csv or binary format.

Disease Transmissions are caused by contact between

a susceptible individual P s in state Xi and an infectious

individual P i in state Xk. The susceptible individual P s

will transition to an exposed state Xj based on information

given by the transmission Ti,j,k, the contact E(P i, P s),
and attributes from the individuals P s and P i such as the

susceptibility σ(P s) and infectivity ι(P i).
Under the assumption of independence of transitions

across contacts for individual P s with infectious individ-

ual P i, the propensity of the state transition to the exposed

state Xj based on the transmission Ti,j,k and the contact

E(P i, P s) is defined as:

ρ(P s, P i, Ti,j,k) = T × we ×
[

σ(P s) · ι(P i)
]

× ω(Ti,j,k) ,
(1)

where T is the contact duration, we is the edge weight, and

ω(Ti,j,k) is the transmission rate.

The propensities of all state transitions to the exposed

state Xj are summed. We use the Gillespie algorithm [25] to

determine whether a transition occurs during the simulation

interval, and which contact caused it.

Disease Progression covers the health state transitions

within an individual P that are independent of other people.

For the EpiHiper model, a disease progression diagram

describes all the possible health state transitions that take

place within a person. The nodes of the diagram are the

health states X = {Xi} and directed edges of the form e =
(Xi, Xj) with an assigned probability pe = prob(Xi, Xj)
and a dwell time distribution De. The sum of all probabilities

of transitioning out of a given state Xi must be either 1 or

0. Zero indicates a terminal state.

The System State at any point in time is given by the

attributes of the individuals (nodes) and contacts (edges)

of the network, the simulation time, and the value of user-

defined variables.

The values nodeTrait and edgeTrait are user-defined at-

tributes which may be used to govern interventions (de-

scribed below). They do not influence the disease transmis-

sion or progression. Interventions are external modifications

of the state of the simulation, where ”external” means not

governed by the disease model and the contact network

itself. An intervention comprises of a trigger and an action

ensemble. The action ensemble is only applied if the trigger

evaluates to true.

The trigger is a function of the systems state and thus may

depend on any of the above-mentioned attributes, including

the Person Trait DB.

An action ensemble operates on a target set which may

contain either nodes or edges. Operations may be performed:

(i) once per intervention (typically to update variables), (ii)
for each element within the target set, and (iii) for a sampled

subset, as well as for the remaining non-sampled elements
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Object Value Access Description

system time r the current time (mapped from

iteration number/tick)

node id r PID of node

node infectivity rw infectivity scaling factor

node susceptibility rw susceptibility scaling factor

node healthState rw health state

node nodeTrait[traitName] rw value of nodeTrait[traitName]

of node

edge sourceID r source vertex ID of edge

edge targetID r target vertex ID of edge

edge sourceActivity r activity of source of edge

edge targetActivity r activity of target of edge

edge active rw active flag of edge

edge weight rw weight of edge

edge edgeTrait[traitName] rw value of edgeTrait[traitName]

of edge

variable name rw a user-defined numerical

variable referenced by name

Table V
EPIHIPER STATE VALUES OF NODES AND EDGES

of the target set. Note that sampling may be nested, i.e., it is

possible to sub-sample an existing sample set. Furthermore,

it is possible to delay the operation to a later point in the

simulation.

Prior to the simulation, the state of any individual P
must be initialized. Initialization is a special case of an

intervention where the trigger is omitted.

APPENDIX E.

BAYESIAN MODEL CALIBRATION

Agent-Based Model Calibration.

For a particular state, we model the observed time series

of logged reported case counts y = (y1, y2, · · · , yt) as an

additive combination of the computational model η(θ), i.e.,

EpiHiper at the best setting for the parameters, a systematic

model discrepancy term δ, and observation error ǫ:

y = η(θ) + δ + ǫ. (2)

where, θ denotes the set of parameters that we are interested

in finding the plausible values given the observed data. To

begin with, a limited number of simulations are run at pre-

specified parameter settings, based on which a Gaussian

Process (GP) emulator [46] is specified, so that uncertainty

in the simulator output at untried setting θ∗ can be accounted

for in the analysis. To handle the multivariate nature of

the simulation output, as well as the observations, a basis

representation is used for η():

η(θ, α) = φ0 +

pη
∑

k=1

φkwk(θ) + ǫw0, (3)

where pη is the number of basis functions, and ǫw0 accounts

for error due to the limited number of basis functions used.

We have used pη = 5 and eigenvector basis functions (φk)

for this analysis. Each individual basis coefficient wk(θ) is

given a zero mean GP prior having Gaussian covariance

functions, with hyper-parameters controlling the marginal

variance, the correlation length in each of the component

directions of θ, and a nugget term so that interpolation is

not necessarily enforced depending on the resulting posterior

distribution.

wi(θ) ∼ GP(0, λ−1
wiR(θ,θ′; ρwi)), (4)

where λwi is the marginal precision of the process and the

correlation function is given by

R(θ,θ′; ρwi) =

pθ
∏

k=1

ρ
4(θk−θ′

k)
2

wik .

The discrepancy term δ is also modeled using a basis

representation over time. In this case, the discrepancy basis

vectors are 1-d normal kernels with an sd of 15 days; the

kernels are spaced 10 days apart.

δ =

pδ
∑

k=1

dkvk, (5)

where pδ = 7 and each vk has a zero mean normal prior

with precision λδ .

All precision hyper-paremeters λ are given suitable

gamma priors and the correlation hyper-parameters ρ are

given beta priors. For calibration parameters θ, we assume

a uniform prior defined by their ranges. Gaussianity as-

sumption for the observation error ǫ along with prior spec-

ifications complete the posterior of θ. Detailed derivation

of the likelihood and posterior can be found in [18]. This

posterior is explored via MCMC using the GPMSA [23] tool

in Matlab.

Metapopulation Model Calibration For each county c in a

state, we model the observed time series of reported case

counts y(c) = (y
(c)
1 , y

(c)
2 , · · · , y

(c)
t ) as noisy realization from

the underlying metapopulation model η(θ), with additive

Gaussian noise. The noise standard deviation is assumed to

be 20% of the daily case counts. Assuming independence

between counties, the joint likelihood can be written as the

product of C multivariate gaussian pdfs:

ℓ(y(1), · · · ,y(C)|θ) ∝ (6)
C
∏

c=1

exp
{

−
1

2

(

y(c) − η(c)(θ)
)T

Σ
(−1)
(c)

(

y(c) − η(c)(θ)
)

}

,

where, C is the total number of counties in the state, η(c)(θ)
represents the simulation output for county c at parameter

setting θ, and Σ(c) contains the error covariances for the

same county [17].

Unlike Agent-Based Models, the metapopulation model

is cheap to run, hence, calibration is carried out by directly

simulating from the model in the Markov Chain Monte

Carlo (MCMC) loop. The parameters of interest θ are given

uniform priors based on their ranges. We use metropolis

update in the Markov chain. Inferences and predictions are

carried out based on samples from the posterior distribution.
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Figure 15. Scatter plots of varying parameters in the prior (top) and
posterior (bottom) designs show how the distributions are changed by
the calibration. In the prior design, the parameters are evenly distributed
in the pre-specified space. After calibration, transmissibility (TAU) and
symptomatic fraction (SYMP) seem to be negatively correlated and both
distributions are tightened; SH compliance distribution is concentrated
towards lower values; VHI compliance distribution seems unchanged.

APPENDIX F.

CASE STUDY

Case study 2: County-level projections. For our case

study on the dynamics of COVID-19 at the state level,

we adopted a combination of mechanistic metapopulation

and agent-based modeling frameworks similar to the US

national-scale models we have employed for forecasting

spatio-temporal spread of seasonal influenza. Our model

represents SEIR disease dynamics across counties. The

overall workflow is shown in Figure 5. The disease dynamics

were modified to reflect the transmissivity of asymptomatic

and pre-symptomatic COVID-19 patients, as well as the

disease parameters calculated from early COVID-19 esti-

mates. We expect these disease characteristics to be refined

over time. Additional data sources we rely upon to train

our model include: (a) County-level confirmed case datasets

(initial conditions) queried from the COVID-19 Surveillance

Dashboard, an online web application that provides a history

of curated COVID-19 incidence data. (b) Counts by date of

illness onset and other outcomes, such as hospitalizations

and ICU treatment, obtained from the state health depart-

ment; (c) Hospital bed and ventilator counts obtained from

Figure 16. Visualization of calibration produced by the GPMSA tool is
used to evaluate the results. We mainly consider the left panel plot, where
the blue marks show the ground truth and the green curves show the 95%
uncertainty interval of the emulated data from the GP emulator. The result
is good if the ground truth falls between the green curves. Otherwise, we
may need to continue calibrating with more iterations.

individual hospitals, as well as from the 2018 American

Hospital Association (AHA) estimates.

We model five different scenarios. One is the worst-case

scenario, where limited social distancing is observed. The

remaining four assume a start date of March 15, 2020 for

intense social distancing, and are further differentiated by

the proposed end date for intense social distancing (April

30, 2020 and June 10, 2020) and reduced transmissibility

rates (25% and 50%).

Transmissibility and infectious duration parameters are

calibrated based on county-level confirmed cases, utilizing

a Bayesian model calibration approach. Logged values of

cumulative counts were modeled as noisy realization of

the underlying disease dynamics, with noise following a

multiviate Gaussian distribution. The full posterior was

obtained using this likelihood and uniform prior specification

on disease parameters. Markov Chain Monte Carlo was used

to explore the posterior distribution, and uncertainty bounds

were obtained based on the samples from the posterior.

Case study 3: Calibrating agent-based model. In this

section we demonstrate the calibration-prediction workflow

described earlier using Virginia as an example. We have

done the same for all 50 states and Washington DC for

many cycles. In this case study, we started with cumulative

confirmed case counts of Virginia through April 11, 2020.

We took the “best guess” disease model defined in [8],

and vary two parameters: the disease transmissibility and

the ratio between symptomatic and asymptomatic cases. We

implemented a school closure (SC) mitigation, which started

on March 16, 2020, and would extend through the end of

August; and a stay-at-home order (SH), which started March
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Figure 17. Prediction of the cumulative confirmed case count for the
state of Virginia for each day of the two months after April 11, 2020. The
black curve represents the reported case counts up to April 11, while the
blue curve is the median of prediction and the yellow band shows the 95%
uncertainty interval.

31, 2020, and would expire on June 10, 2020. The timing

of these mitigations is real. We also implemented voluntary

home isolation (VHI) of symptomatic cases (VHI). We vary

compliance rates on SH and VHI mitigations, and assume

100% compliance on SC. With SC, all schools, including

colleges, are closed so school type contacts are disabled.

With SH, we disable all contacts of compliant people except

their home type contacts (with their family). With VHI,

compliant people stay at home and their non-home type

contacts are disabled.

We created a design of 100 configurations (prior) with

the Latin hypercube sampling method [35]. After simulating

these configurations and aggregating the output, we ran the

Bayesian calibration to obtain another 100 configurations

(posterior). Figure 15 shows the comparison of the prior and

posterior configurations. Figure 16 shows the visualization

of the calibration that helps us to decide the goodness-of-fit.

After simulating the posterior configurations, we were able

to make a prediction – Figure 17 shows our forecast for the

next eight weeks for cumulative confirmed case counts.
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