
Scalable Epidemiological Workflows to Support COVID-19 Planning and Response

Dustin Machi∗, Parantapa Bhattacharya∗, Stefan Hoops∗, Jiangzhuo Chen∗, Henning Mortveit∗¶,
Srinivasan Venkatramanan∗, Bryan Lewis∗, Mandy Wilson∗, Arindam Fadikar†, Tom Maiden‡,

Christopher L. Barrett∗§ and Madhav V. Marathe∗§
∗ Biocomplexity Institute and Initiative, University of Virginia; † Argonne National Laboratory;
‡ Pittsburgh Supercomputing Center; § Department of Computer Science, University of Virginia;

¶ Department of Engineering Systems and Environment, University of Virginia

Abstract—The COVID-19 global outbreak represents the
most significant epidemic event since the 1918 influenza pan-
demic. Simulations have played a crucial role in supporting
COVID-19 planning and response efforts. Developing scal-
able workflows to provide policymakers quick responses to
important questions pertaining to logistics, resource alloca-
tion, epidemic forecasts and intervention analysis remains a
challenging computational problem. In this work, we present
scalable high performance computing-enabled workflows for
COVID-19 pandemic planning and response. The scalability
of our methodology allows us to run fine-grained simulations
daily, and to generate county-level forecasts and other counter-
factual analysis for each of the 50 states (and DC), 3140 counties
across the USA. Our workflows use a hybrid cloud/cluster
system utilizing a combination of local and remote cluster
computing facilities, and using over 20,000 CPU cores running
for 6–9 hours every day to meet this objective. Our state
(Virginia), state hospital network, our university, the DOD and
the CDC use our models to guide their COVID-19 planning and
response efforts. We began executing these pipelines March 25,
2020, and have delivered and briefed weekly updates to these
stakeholders for over 30 weeks without interruption.

Keywords-COVID-19, Epidemic Modeling, HPC Workflow
Development

I. INTRODUCTION

COVID-19 represents the first pandemic since the 2009

H1N1 outbreak and is the worst pandemic on record since

the 1918 pandemic. Since February 2020, the pandemic has

had a severe economic, social, and health impact. Accord-

ing to the International Monetary Fund (IMF), the global

economic burden for COVID-19 will likely be 9+ trillion

US dollars. More than 113 million confirmed infections

and 2.5 million deaths have been reported globally, with

very different epidemic dynamic trajectories and mortality

witnessed across various countries. Europe and the United

States (US) are seeing a resurgence of cases and the situation

is unlikely to get better anytime soon.

Epidemiological models and workflows comprising of

these models can help provide insight into the spatiotemporal

dynamics of epidemics by: (i) forecasting the epidemic’s

future course, (ii) guiding allocation of scarce resources

and assessing depletion of current resources, (iii) inferring

disease parameters that allow researchers to make better

recommendations and (iv) providing insight into the effec-

tiveness of different interventions. Individual behavior and

public policies are critical influencers for controlling epi-

demics, and computational simulations can be powerful tools

for understanding which behaviors and policies are likely to

be effective. Our studies have used meta-population models,

as well as detailed agent-based models. The network-based

models consider epidemic spread on an undirected social

interaction network G(V,E) over a population V , where

each edge e = (u, v) ∈ E implies that individuals (also

referred to as nodes) u, v ∈ V interact [12], [26]1.

Our contributions and significance. In this paper, we de-

scribe a novel high performance computing (HPC) approach

for executing epidemiological workflows that can support

planning and response to pandemics such as COVID-19. Our

approach is unique: (i) it uses detailed agent-based models

as well as meta-population models to simulate epidemic

dynamics over realistic representations of national-scale

social contact networks, (ii) it splits the workflow across

two supercomputing clusters due to resource constraints,

and (iii) it is used to support near real-time response

efforts. The workflows are comprised of a complex series

of data ingestion, simulation and analytics steps. Details

of how EpiHiper, the agent-based discrete time simulator

for infectious disease spread used in this work, and other

such networked agent-based modeling frameworks work are

described in companion publications and are not the focus

of this paper. However, the basic approach presented here

can be used for other agent models and other synthetic

social contact networks. We focus here on three epidemic

workflows: (i) calibration of the models using county-level

incidence data, (ii) predicting daily county-level incidence

values for time periods covering two weeks to a few months

and (iii) counter-factual analysis of various policy decisions

during the ongoing pandemic. Key steps in all of the

workflows include (i) a data-driven algorithm that integrates

county-level incidence data, as well as individual behavioral

representations and public policies, to calibrate the models

and project incidence going forward; (ii) realistic individual-

level social contact networks and HPC agent-based models

1An extended version of this paper is available at https://www.medrxiv.
org/content/10.1101/2021.02.23.21252325v1

© IEEE 2021. This article is free to access and download, along with
rights for full text and data mining, re-use and analysis.

 DOI 10.1109/IPDPS49936.2021.00072

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
ar

al
le

l
an

d
 D

is
tr

ib
u
te

d
 P

ro
ce

ss
in

g
 S

y
m

p
o
si

u
m

 (
IP

D
P

S
)

| 9
7
8
-1

-6
6
5
4
-4

0
6
6
-0

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
D

P
S

4
9
9
3
6
.2

0
2
1
.0

0
0
7
2

Figure 1. Combined workflow: This diagram illustrates the complete
timeline of our process, from model configuration through intervention
analysis.

to produce highly resolved outcomes (at the individual and

family levels); and (iii) analytics that combine the simu-

lation output, surveillance data and detailed synthetic data

to support policy assessment. The workflows are executed

in real time, meaning that the pipeline produces epidemic

predictions every week that we share with federal and

state authorities. Splitting and orchestration of workflows

across two supercomputing systems that are geographically

separated requires careful analysis of the workload and

practical constraints.

We demonstrate our results by showing how our epi-

demiological workflows can be used to support a national

COVID-19 response. Our pipeline typically runs 5,000–

17,900 simulations per night, covering the entire US network

which is comprised of about 300 million nodes and 7.9

billion edges partitioned across all 50 states and Washington

DC. The simulations yield ensemble models for prediction

of epidemic incidence curves at the US county level (3140

counties). These results are the first of their kind reported in

the literature for national-scale US networks. The workflow

is orchestrated between University of Virginia’s Rivanna
cluster and Pittsburgh Supercomputing Center’s Bridges
cluster; 20,000 cores of the Bridges cluster are dedicated

each night for completing our complex calibration and

prediction tasks.

We are the lead modeling group supporting our state’s

(Virginia) COVID-19 response. We have provided uninter-

rupted weekly projections and analytical products to the

analysts and senior officials of the state hospital referral

regions (HRR) and local universities (including our univer-

sity) since March 25, 2020.2. We also provide our weekly

forecasts to the Centers for Disease Control and Prevention

(CDC), and our analytical products to the Department of

Defense (DoD). Our results demonstrate that real-time, data-
driven high resolution epidemics science at a national scale

2More details on how our models are used can be found at: https:
//www.vdh.virginia.gov/coronavirus/category/covid-19/model

Figure 2. Timeline of tasks involving human efforts. It shows the schedule
of the sequence of tasks over multiple days for a complete calibration-
prediction cycle. The orange boxes are automated.

is indeed possible3.

Overview. The epidemiological pipeline workflows are

shown in Figures 1, 3, 5 and 4.

Each workflow is split between a local cluster (Rivanna)

and a remote super-computing cluster (Bridges). Our work-

flows support our vision of HPC-oriented, real-time epi-
demic science, and are carefully organized to conform to

the following set of practical constraints. (i) Our access to

the Bridges cluster is limited, so it is not available to us

24/7. We note that the level of access provided to us is very

generous — we have had exclusive access to the cluster,

with over 20,000 cores, for 10 hours a day (from 10 pm

to 8 am) for over 4 months. (ii) Purchased datasets and

tools are maintained on Rivanna cluster; these items are

not ported to the Bridges cluster due to time and licensing

requirements. (iii) Analysts have more consistent access to

and control over the Rivanna cluster, so the workflows are

split between the two sites. The workflows are also designed

to provide a level of resiliency and task parallelization:

we use the Rivanna cluster during the day, and use the

Bridges cluster at night. Figure 2 shows the timeline of tasks

involving human efforts. The overall workflow differs based

on the specific kind of problem addressed, but all of them

consist of the following significant sub-components: (i) gen-

eration of national-scale synthetic social contact networks,

(ii) agent-based and meta-population models that can scale

to large systems, (iii) methods for calibrating and producing

ensemble models, (iv) tools for assembling the input data

and distributing this dataset on cluster nodes, and (v) tools

3More information about our work can be found at https://
biocomplexity.virginia.edu/project/covid-19-pandemic-response

Workflow # Cells # States # Replicates # Simulations Raw
Output

Summ.
Output

Economic 12 51 15 9180 3.0TB 5.0GB
Prediction 12 51 15 9180 1.0TB 2.5GB
Calibration 300 51 1 15300 5.0TB 4.0GB

Table I
REPRESENTATIVE EXAMPLES OF INDIVIDUAL WORKFLOWS, THEIR

SCALE, AND SIZE OF RAW AND SUMMARIZED DATA GENERATED BY

THEM.

Figure 3. Economic workflow: Economic workflow is used for computing
the medical costs incurred due to the pandemic. The models and details of
this can be found in [6]. [1] Incidence data includes about 3000 counties
× over 200 days of entries. [2] An example factorial design has (2 VHI
compliances × 3 lockdown durations × 2 lockdown compliances) × 51
states × 15 replicates = 9180 simulation instances. [3] Size of individual
level output data: 12 cells × 51 states × 15 replicates × multi-million state
transitions = multi-billion entries, about 3TB. [4] Size of aggregate output
data: 12 cells × 51 states × 15 replicates × 365 days × 90 health states
× 3 counts = about 1 billion entries, 2.5GB. Size of synthetic data: 300
million × 8 = 2.5 billion entries.

for post-processing the output data so that summary data can

be sent back to the home cluster for further analysis.

Each of our workflows represent an interesting mix of data

and compute intensive steps and thus crucially need HPC

resources. Table I summarizes some of the key numbers for

case studies we have described to illustrate the workflows.

The partitioning of tasks and specific computation is care-

fully managed to reduce the amount of data transfer between

the two clusters and achieve a near real-time response. Our

paper advances the use of parallel and distributed computing

in this important area – to the best of our knowledge this is

the first time two HPC resources have been used in this

manner to support near real-time epidemic planning and

response.

II. DESCRIPTION OF THE WORKFLOWS

Figure 1 describes the overall workflow and how it is

orchestrated across the two systems. Here we discuss three

specific epidemiological workflows that are described in

Figures 3, 4 and 5. Figure 2 shows the timeline of tasks

involving human effort.

Figure 4. Calibration workflow: [1] Incidence data includes about 3000
counties × over 200 days of entries. [2] An example of calibration design
has 300 cells × 51 states × 1 replicates = 15300 simulation instances. [3]
Size of individual level output data: 300 cells × 51 states × 1 replicates
× multi-million state transitions = multi-billion entries, about 5TB. [4]
Calibration uses aggregate data of size: 300 cells × 51 states × 1 replicates
× 365 days × 90 health states × 3 counts = about 1.5 billion entries, 4GB.

Counter-factual analysis workflow (Figure 3). Counter-

factual analysis refers to the study of outcomes under

various posted scenarios. The range of scenarios considered

reflect the possible trajectory of the epidemic and is not

known in advance. Our counter-factual analysis usually

comprises various lockdown policies, compliances, and non-

pharmaceutical interventions. The system is calibrated to

reflect the current conditions on the ground. Usually such

an analysis entails running a large factorial design and

then computing certain outcomes that combine the output

of the simulations and detailed synthetic social network,

demographic and socio-economic data.

Calibration workflow (Figure 4). Calibration refers to find-

ing plausible configuration(s) that produce simulation output

similar to observed ground truth. Generally, such parameter

searches are carried out by first defining a parameter space

consisting of plausible parameter values, then evaluating

the closeness of the simulation output to the ground truth

at various points in that parameter space. However, when

running the simulation is expensive, an emulator can be

used in place of the actual simulation inside a calibration

loop. An emulator is a statistical model that maps the input

to the output of the simulation; it is cheap to run, and

offers a way to quantify uncertainty for a deterministic

system. To calibrate EpiHiper, a Gaussian Process [31], [34]

emulator is used inside a Bayesian calibration framework for

multivariate output [13], [22] to produce a set of plausible

parameter configurations conditioned on the ground truth

and associated uncertainty on the future predictions. The

calibration task is carried out using the GPMSA framework

[18] in Matlab. The calibration workflow typically resumes

when ground truth data is updated or when we want to

improve our predictions with a more appropriate parameter

space or better-modeled mitigations. The calibration may

Figure 5. Prediction workflow: [1] An example design has (3 partial
reopening levels × 4 contact tracing compliances) × 51 states × 15
replicates = 9180 simulation instances. [2] Size of transmission tree data:
12 cells × 51 states × 15 replicates × 1 million transmissions = 9 billion
entries, about 1TB. [3] Size of summary data: 12 cells × 51 states × 15
replicates × 365 days × 90 health states × 3 counts = about 1 billion
entries, 2.5GB.

reuse the existing model configurations, or generate new

configurations as simulated by EpiHiper. This can vary

by state. After simulation and aggregation, the time series

of simulated case counts is compared to the ground truth

with the aforementioned Bayesian approach to generate

configurations for the prediction workflow.

Prediction workflow (Figure 5). To make predictions, we

run simulations using the model configurations generated

from the calibration workflow, and aggregate individual-

level output to obtain future counts for various forecast-

ing targets (e.g. confirmed cases, hospitalizations, deaths)

at various spatial resolution (state or county level) with

different temporal horizons (from one week to five months

ahead) depending on the objective. The ensemble of the

model configurations and the simulation output provides

uncertainty quantification on the predictions. The prediction

workflow typically resumes when the calibration workflow

generates a set of model configurations, which are simulated

by EpiHiper. The output is aggregated and analyzed by

public health domain experts to identify inconsistencies

(which may then trigger the calibration workflow again).

If the predictions are deemed reasonable, we expand the

configurations with a few possible future what-if scenarios

(e.g. what if the stay-at-home order is lifted earlier; what if

the mitigation compliance rate increases; what if testing and

contact tracing are improved). Then simulations are run for

the expanded configurations, and the results are combined

with the as-is predictions.

III. DESCRIPTION OF HARDWARE, SOFTWARE AND

DATA

In this section, we describe the individual components

of the overall workflow: (i) the underlying hardware, (ii)
the software components used, and (iii) data used as input

and generated as output. As mentioned earlier, the hardware

consists of a home cluster (Rivanna) and a remote super-

computing cluster (Bridges). Our typical workflow depict-

ing the sequence of computations and data transfers between

the two clusters are described in Figure 1, and described

in more detail in the following section. The workflow

relies on two important datasets as inputs: (i) the synthetic

population and associated social contact network for the US,

and (ii) COVID-19 specific disease parameters. Ranges for

these parameters are based on best estimates from COVID-

19 literature. The final component of the pipeline is the

simulation-based models. Although we use meta-population

models in addition to agent-based models, we will focus here

on the agent-based models due to the significant computing

challenges they pose.

Home cluster and remote super-computing cluster. Our

methodology makes use of two computing clusters, which

we refer to as the home cluster and the remote super-
computing cluster. The home cluster refers to the Rivanna
computing cluster available at University of Virginia, the

author’s home institution. The Rivanna cluster is modest-

sized relative to the significantly more powerful remote

super-computing cluster, the Bridges at Pittsburgh Super-

computing Center. The actual simulation runs are executed

on the Bridges cluster. We find this distinction to be fairly

typical and important, as most institutions do not have a

super-computing facility available on their local premises,

and researchers/practitioners often run the less compute-

intensive parts of their workflows on their local systems,

while running more computationally heavy tasks at ded-

icated super-computing facilities. Making this distinction

explicit allows us to formally take into consideration issues

arising from these kind of setups.

Note that commercial cloud computing platforms, such

as Amazon EC2 and Google Cloud Platform, also provide

services to make it relatively easy to set up computing

clusters with software stacks mimicking those of HPC and

super-computing facilities. Hence, this logical separation of

“home cluster” and “remote super-computing cluster” is

also relevant for institutions making use of hybrid cloud

infrastructures, where a small local compute cluster is used

alongside off-premises, cloud-based systems.

Input Data: Synthetic populations and contact networks.

Our epidemic computational models depend upon detailed
synthetic populations and contact networks to support accu-

rate and realistic simulations. Such data is prepared for each

state, see Figure 6 for a summary of node and edge counts

by US state.

For each population, data is supplied as a comma-

separated values (CSV) file containing the traits of each

synthetic person. Whereas particular sets of traits may

vary across simulations, typical choices for the US include

household ID, age and age group, gender, county code, and

the latitude and longitude of home locations. For design

�

�

�

�

�

��

�
	
� � �� �
 �

� �
 �� �
�

�� �� �
 �
� �� �� �� �
� �� �� � �� � �� �� �	 �� �� �� �� �
� �
�

�

�
� � �� �� �
�

�
� �� �� �� �� �
�

�� �� �� �� �	 � ��

� !"#$%&'%�&(#)%*%�(+#)%,-%��%�#./&$0

�&(#%1& -.%23%���4 �(+#%1& -.23%����4

Figure 6. The diagram shows the number of nodes and edges in the contact network for each U.S. state as used in the simulations.

reasons, but also to avoid the cost of parsing and reading

files from the file system during simulations, the population

data is loaded into a PostgreSQL4 database server. All

simulations access the population data by communicating

with the database server at run-time.

The agent-based models use dynamic contact networks to

encode interactions between persons during simulations. The

initial dynamic contact network in EpiHiper is generated

statically. However, during the course of the simulation,

each edge in the contact network can be turned on and off

dynamically as required in response to, for example, social

distancing interventions. Like the person data, the contact

network of each population is supplied to the simulations

as one CSV file. Each edge in the contact network includes

the identifiers of the two persons in contact, and is anno-

tated by the start time and duration of the interaction, in

addition to the context in which the persons meet (home,

work, shopping, other, school, college, and religion). These

contexts may not be the same for both persons, however;

for example, if one person is at the store, their context

may be shopping, while the grocer they came in contact

with would be working. Due to the large size of the contact

networks, the network is partitioned between different MPI

processes at the beginning of the simulation run. The overall

objective is to split the contact network such that each

partition contains approximately the same number of edges,

while, at the same time, ensuring that all incoming edges

of any given node are in the same partition. In the current

implementation, we utilize a simple algorithm to partition

edges: given a partition, continue to allocate nodes to that

partition until the number of incoming edges is greater than

a threshold (E/P + ε) where E is the number of edges, P
is the number of partitions, and ε is the tolerance factor.

Note that even a simple partitioning scheme (such as the one

described) takes a significant amount of compute time. This

is why we use our current (simple) algorithm rather than one

that is more sophisticated or optimal. We can also cache the

4https://www.postgresql.org/

result of the partitioning computation on disk, which saves

time on future runs.

Input Data to simulation: Disease progression param-
eters and parameter configurations. The disease model

used for this work is shown in Figure ?? in the extended

version of this paper (see footnote 2, page 1) and depicts

the transmission of COVID-19 through interactions between

individuals, and the subsequent disease progression of an

infected individual. As shown in Figures 4 and 5, both

calibration and prediction workflows start by generating sim-

ulation configurations, also known as cells. For calibration

workflows, a larger number of cells are created, each with

smaller numbers of replicates relative to routine prediction

workflows, in order to explore the model configuration

state space. For prediction workflows, however, a much

smaller number of cells are generated which are based on

the most likely model configurations from the calibration

phase, each with a relatively larger number of replicates.

The model configurations specify which populations and

contact networks to use, as well as the disease parameters,

interventions, initializations, and the number of days to

simulate.

Input data to calibration. For calibrations, we use con-

firmed cases from multiple data sources5 6 7 as our ground

truth dataset. The ground truth data has county-level daily

confirmed case counts starting from January 21, 2020, for

over 3000 counties (as of April 22, 2020, there were 2772

counties with case counts greater than zero).

Simulation-based models. EpiHiper is an agent-based dis-

crete time simulation model for infectious disease spread

in a social contact network. It is implemented as a paral-

lel codeset in C++/MPI. It computes probabilistic disease

transmission between nodes (representing individuals) in a

network of edges (representing interactions between individ-

uals), as well as the disease progression within each infected

5https://github.com/nytimes/covid-19-data
6https://nssac.bii.virginia.edu/covid-19/dashboard/
7https://coronavirus.jhu.edu/map.html

individual. It is based on the synthetic populations, accessi-

ble to the simulations via a database launched at run-time,

and the synthetic contact network, partitioned pre-simulation

and loaded into memory of the allocated processing units in

order to support scalability. The simulation keeps track of

the health state of each individual at each tick (the temporal

resolution, set to one day in this case).

Output data: dendograms and summary information.

EpiHiper produces state transitions of all persons during the

simulation. Each line of the output file written by EpiHiper
includes the tick of the transition event, the identifier of the

person, their exit state, and the identifier of the person caus-

ing the state transition in the case of disease transmission.

The size of the output depends on the total number of ticks,

overall epidemic size (number of infected persons), as well

as the complexity of the finite state machine. Dendograms

are part of this output, which are transmission trees rooted

at initial infections.

From the individual-level output data, we can aggregate

simulation results to the county level for different health

states, and use the summary data for calibration and pre-

diction. For example, the time series of daily cumulative

counts of symptomatic cases at the state or county level are

compared to the ground truth data as part of our calibration,

and daily counts of symptomatic cases, hospitalizations,

ventilations, and deaths are used in our predictions.

IV. ORCHESTRATION OF THE WORKFLOWS

Structure of simulation jobs. The software stack on the

Bridges cluster uses the Slurm scheduler for scheduling

jobs, and Intel MPI for distributed communication. Post-

greSQL servers are utilized to run the population databases.

The number of processes to use per compute node is prede-

termined statically based on the configuration of individual

compute nodes on the cluster. Furthermore, as described

earlier, the population networks are partitioned statically

beforehand, and they also determine the number of compute

nodes/processes that will be utilized when running simu-

lation jobs that use them. For simulations sharing a given

user population, a single PostgreSQL server is started on a

compute node and made available. The simulations use them

to load population information at run-time. The data transfer

between the Rivanna cluster and the Bridges cluster utilizes

the Globus platform8.

Every 24 hours, simulations are generated and executed

to support the decision-making processes of policymakers.

The process begins with the generation of the simulation

configurations. The nature of the configurations generated

depends on whether the calibration or prediction workflows

are to be executed. Calibration workflows typically generate

a large number of different model configurations to explore

8https://www.globus.org/

the space of the configurations. Prediction workflows, how-

ever, typically have a smaller set of model configurations,

each replicated multiple times.

Once the configurations are generated, their transfer from

the Rivanna cluster to the Bridges cluster is started man-

ually using the Globus platform. Once the configurations

are copied over, the population databases are started, one

per population. To speed up the start of the population

databases, snapshots of the databases are generated when

the populations are initially created, and these snapshots are

instantiated at run-time. Next, scripts are used to submit

Slurm job arrays, which are scheduled to run using the

heuristic scheduling strategy discussed above. Once simula-

tion jobs have completed, the summary of simulation outputs

are generated and transferred back to the Rivanna cluster

using the Globus platform.

V. MAPPING AND SCHEDULING JOBS ON PSC MACHINES

Mapping our workflows on the Bridges cluster is an

important component. First, recall that the overall efficiency

of the workflow is measured as time to complete the

workflow rather than a single replicate of a single cell.

Abstractly, our workflows can be thought of as large scale

hierarchical statistical experimental designs. Each workflow

is comprised of 51 regions (50 states and DC), and each

region is then comprised of a number of cells that each

denotes one combination of various parameters used to study

a given problem. Each cell is further comprised of a number

of replicates. Together, this represents a 3-level hierarchy:

regions-cells-replicates. Each cell for a given region uses

exactly the same input data; thus, we view our atomic jobs as

〈cell, region〉. For certain workflows, it is more convenient

and efficient from a scheduling perspective to group several

cells into one to create jobs of appropriate sizes.

In general, the running time for a single replicate for

〈cell, region〉 is not fixed; this is due to (i) randomness

within the computation, (ii) triggered interventions that can,

at certain times, cause new calculations to be spawned

based on the epidemic, (iii) number of processors assigned

to the replicate and (iv) machine-specific randomness due

to processors’ computation, access to the database etc.

Nevertheless, by running the replicate several times we can

obtain a reasonable bound on these times. For the workflows

considered, we fixed the number of processors assigned to

each 〈cell, region〉. We state the mapping problem in two

stages:

The workflow mapping problem (WMP). We are given

a set of 〈cell, region〉 tasks, denoted by task T [r, c]. We

assume that we know a bound tl(T [c, r]) and tr(T [c, r])
denoting the lower and upper bound on the time to com-

plete task T [c, r] using p(T [c, r]) processing units. We

use t(T [c, r,]) to denote the empirical mean running time

obtained by running the computation several times and will

use this for the rest of the paper. We assume p(T [c, r]) is

known a priori. The problem is assigning an order to these

tasks, then supplying this ordered set to the Slurm scheduler

in such a way that minimizes the overall completion time

of all tasks.

WMP is NP-hard. This can be seen by reducing the 2D
Bin packing problem to the WMP problem: Rectangles

become tasks: their width becomes p(T [c, r]) and their

height is running time t(T [c, r]). This reduction is useful

and this correspondence also leads to natural heuristics for

the problem discussed later in this section.

Database Access Constraints. There is one additional

constraint that needs to be taken care of which makes the

problem computationally challenging. The constraint relates

to database access. Recall that each task needs access to

the input synthetic network. The number of simultaneous

connections to the database are upper bounded for technol-

ogy and efficiency reasons. We can capture this by using

a compatibility graph. Usually compatibility constraints for

tasks are captured as a coloring problem: we have a node

for each task, and two tasks u and v have an edge iff they

cannot be scheduled at the same time. A valid coloring

captures a feasible schedule. In our case, the problem is

more challenging and can be best described as a new kind

of vertex coloring problem, which we will call a relaxed col-
oring problem (r-relaxed-coloring): We are given a graph

G(V,E). Edges represent conflicts, and vertices represent

tasks. We are given a number r. The (r-relaxed-coloring)

is to assign a color to each node in the graph (such a graph

would be constructed for each region separately) such that if

a node v gets color c[v] then no more than r of its neighbors

can get the color c[v]. If r = 1, we get the classical coloring

problem and thus all the hardness results hold for the relaxed

coloring problem as well.

The DB-access constrained workflow mapping problem
(DB-WMP). DB-WMP is a constrained version of the WMP
wherein the number of tasks that can be scheduled simul-

taneously is bounded. Thus the general DB-WMP problem

can be thought of as 2D Bin packing with an interesting

compatibility constraint.

Our Mapping heuristic (MAP). Our mapping heuristic

is based on a few simplifying assumptions and exploit-

ing the problem structure. Assumption 1: We assume that

all tasks for a given region take the same amount of

time which is t(T [c, r]), in other words ∀ci, t(T [ci, r]) =
t(T [c, r]). Assumption 2: All tasks have to be scheduled

non-preemptively. Assumption 3: The number of connections

that can be made by tasks corresponding to a region r is

bounded by B(T [r]) (i.e. it is not dependent on the cell).

Assumption 4: For each region, all the tasks T [ci, r] require

the same number of threads for simplicity and are denoted

by dt(T [c, r]), thus
∑

c dt(T [c, r]) > B(T [r]). Our heuristic

is motivated by the non-decreasing first fit heuristic. Recall

the task of this heuristic is to provide the Slurm scheduler

an ordering and chunking of tasks. Slurm further does a

certain amount of real-time optimization. It comprises of

the following steps:

Step 1. Split the overall database so that we have one

database per region. For various system-level reasons and

from the standpoint of human productivity, each such

database occupies one node of the system. Thus, all tasks

corresponding to a given region can access the region-

specific database. Access by each region can now be done

in parallel with no constraints beyond the fact that we

have a constraint on the total number of processors. Let

T [r] = ∪cT [c, r] denote the set of tasks for region r. The

above decomposition makes the coloring problem easy. We

now have r subsets — one subset per region. There is no

edge between the subset, and the graph within each subset is

a complete graph. All tasks for a given region r thus belong

to a Region set RS(r).
Step 2. Organize the tasks in non-increasing order by time

needed to complete the computation. The time is directly

correlated with the size of the network for each cell. Using

an idea motivated by the 2D Bin packing methods, we

use a level-oriented approach [8], [9], [35], [38]. Think

of processors on the X-axis and time on the Y-axis. The

tasks are mapped from left to right (in terms of available

processors), in rows forming levels. Within the same level,

all tasks are packed so that their bottoms align. The first level

is the bottom of the strip and subsequent levels are defined

by the time taken of the slowest task on the previous level.

Step 3. We considered two different mapping algorithms:

The Next-Fit Decreasing time with database constraints
(NFDT-DC) algorithm assigns the next task T [c, r] (in non-

increasing time) on the current level if T [c, r] fits and

database access constraints are satisfied. Otherwise, the

current level is ”closed” and a new level is created. The

First fit decreasing time with database access constraint
(FFDT-DC) algorithm schedules the next task in non-

increasing order of time, until either the database access

constraint for the region is violated, or, if no level can

accommodate the task, a new level is started.

Without the database constraints, the NFDT-DC and

FFDT-DC algorithms have worst-case performance guar-

antees of 2 and 17/10 respectively. Let EC denote the

empirical efficiency of our method. This is computed as the

ratio of the total time used by all processors as they were

computing divided by the product of the total processors

and the time when the last task was completed. As the next

section discusses, our algorithms do quite well; the FFDT-
DC ordering achieves a very high system utilization.

VI. PERFORMANCE ANALYSIS

Runtime performance of EpiHiper. Figure 7 (top) shows

that EpiHiper’s running time increases linearly with its

input size. On the other hand, Figure 7 (middle) shows

how increasing the number of processing units for three

Figure 7. (top) Running time of EpiHiper on networks of different
sizes given 40 processing units. (middle) As the number of processing
units increase, the corresponding improvement in the performance of the
simulations illustrates the strong scaling results of EpiHiper. Beyond
some point, which varies with the problem size, the benefit of using
more resources starts to diminish. (bottom) Running time of EpiHiper
varies with different interventions in the simulation. Simulations with more
interventions, or with more complex interventions, take more time.

medium-to-large networks can significantly improve simu-

lation performance. The improvement in the performance,

however, starts to decrease beyond a certain number of

processing units due to increasing communication costs be-

tween processes. It may even become slower with too many

processes. In Figure 7 (bottom), we show that EpiHiper’s
running time depends also on the interventions implemented

in the simulation. In the base case, the simulation has

implemented VHI (voluntary home isolation), SC (school

closure), and SH (stay-at-home). When we add more inter-

ventions to the simulation, the running time increases. The

Bridges Cluster Rivanna Cluster

Allocated nodes 720 50
CPUs/node 2 2
Cores/CPU 14 20
RAM per node 128GB (DDR4) 384GB (DDR4)
CPU Intel Haswell E5-2695 v3 Intel Xeon Gold 6148
Network Intel Omnipath-1 Mellanox ConnectX-5
Filesystem Lustre Lustre

Size of user traits and contact networks 2TB (one time)
Size of daily simulation configurations 100MB–8.7GB (per day)
Size of raw simulation outputs generated 20GB–3.5TB (per day)
Size of summarized outputs 120MB–70GB (per day)

Table II
CONFIGURATION OF THE BRIDGES CLUSTER AT PITTSBURGH

SUPERCOMPUTING CENTER AND THE RIVANNA CLUSTER AT

UNIVERSITY OF VIRGINIA, ALONG WITH DATA GENERATED AND

MOVED ACROSS THEM.

simpler interventions RO (partial reopening), which extends

SH, and TA (testing and isolating asymptomatic cases),

which extends VHI, increase running time marginally. The

more complex interventions PS (pulsing shutdown), which

repeatedly alternates SH and RO, and D1CT (distance-1

contact tracing and isolating), which affects many more

nodes and edges, significantly increase the running time.

The most complex intervention we have implemented so far,

D2CT (distance-2 contact tracing and isolating), increases

the running time by almost 300% from the base case.

Scheduling and partitioning simulation jobs. The primary

purpose of the workflow presented in this paper is to serve

the needs of policymakers by providing them with timely

predictions of disease progression that incorporates the most

recent data. To serve this purpose, we face a high throughput

problem where we have to maximize the number of simula-

tion jobs we can execute in order to generate calibration

and projection results. We are given two constraints (i)
limited compute time (10:00pm - 8:00am), and (ii) limited

number of compute nodes as described in (Table II). The job

scheduling strategy presented in the previous section focuses

on timeliness, that is, reducing the time span required to

execute a given set of jobs on the compute cluster.

The minimal memory requirement per job is given by

the size of the contact network which is stored in memory

during runtime. Furthermore, the memory requirements may

increase due to the complexity of interventions performed

in a scenario. Our experience is that in nearly all cases, the

additional memory is proportional to the network size. For

simplicity, we therefore divided the 51 regions (networks)

into 3 categories: small (2 compute nodes), medium (4), and

large (6). With these assignments, we were able to guarantee

that the jobs have sufficient memory to complete even the

complex intervention scenarios. We intentionally avoided

using partial nodes in order to limit problems caused by

competing memory requirements of different jobs running

�� �� �� �� �� �� �	
�
� �� � �� �� �
 �� �� �� �� �� �
�

�

 �
� �
�

�
�

�
� �
� �
	 �� �
 �� �� �� �� �� �� �� �� �� �� �� �� �
 	� 	� �	 �� �	 �
� �
�

�
�

�
�

�����

�

���

 ��

!��

"��

#���

#���

��

$%
&�
'(
�)
*'&

)��
+,
&-
�.

Figure 8. Variance in runtime for EpiHiper simulations for different US states, across different cells or simulation configurations.

!� /� "� 0� #��
1)���)%�'2'3��',&

�4�

�4�

�4

�4!

�4"

#4�

�

�

!� /� "� 0� #��
1)���)%�'2'3��',&

�4�

�4�

�4

�4!

�4"

#4�

�

�

Figure 9. Utilization of compute resources on Bridges cluster for different
days of workflows. The left figure shows utilization for the days when all
50 states and DC were simulated, while the right figure shows utilization
for days when only different cells for the state of Virginia were simulated.

on the same node. By consistently using the maximum

number of cores available per node, we ensure that the

available compute resources are fully utilized.

Furthermore, we chose to create static network partitions

in order to save compute time, since partitioning the network

to binary chunks for California alone would take over one

hour. The time for partitioning a network is larger than the

typical run time for a simulation run, which usually requires

between 100 to 300 time steps of about 3 seconds each for

a network the size of California (Figure 7 (left)). We chose

not to assign additional resources, since Figure 7 (right)

shows that increasing the number of compute nodes for

a single simulation gives diminishing returns in terms of

runtime; due to that, the cost of messaging negates any gains

obtained from using more compute power. After the general

categorization of all jobs into the 3 categories above, we are

faced with maximizing the number of simulations we are

able to run within our time window. Every night, we have

a varying number N jobs to run, and face the challenge of

scheduling them efficiently.

While supercomputing facilities can grant access to a

large amount of resources, access to these resources come

at a large cost, either for the users who are paying for the

resources directly or for the taxpayer in case of publicly

funded research. Thus one important metric to consider for

the scheduling problem is the issue of resource utilization.

Figure 9 shows the resource utilizations for our workflows,

� 5� #�� #5� ���
�'(%2��',&)���6

#5�

���

�5�

(
�(

,$
7)
%�
�8
�)
*'&

)
9.

� 5� #�� #5� ���
�'(%2��',&)���6

�

���

 ��

!��

"��

(
�(

,$
7)
%�
�8
�)
*'&

)
9.

Figure 10. Changes in memory required for different cells for VA (left)
and US states (right) at different timesteps. In the left figure, every line
corresponds to a different cell or simulation configuration generated for the
state of Virginia, and shows the mean memory required (across replicates).
In the right figure, every line corresponds to a different US state, and shows
shows the mean memory required (across cells).

in terms of percent of CPU hours allocated that were actually

used. The Figure 9 (left) shows the distribution of utilizations

of 9 workflow runs which simulated all 51 regions, while

Figure 9 (right) shows the same for 24 workflow runs that

simulated multiple configurations for the state of Virginia.

In the case of all state workflows, we have a median

utilization of 96.698% while the same for Virginia-only

workflows is 95.534%. Note that the above results are for the

scheduling configuration (FFDT-DC) where the largest jobs

were scheduled first. Our initial workflow runs without this

scheduling scheme (NFDT-DC) led to utilization numbers

between 44.237% and 55.579% for the all-state case.

Runtime performance of simulation ensembles on remote
system. Here we present the runtime characteristics of

the simulations. Figure 8 shows the variance in runtime

(across compute nodes) for the 50 US states and DC for

a single representative day of simulation. To understand

the dynamic nature of the total memory required for the

different EpiHiper simulations, we plot the total memory

required for different cells, and US states in Figure 10.

Figure 8 shows that runtimes of simulations are dependent

on intervention scenarios and is strongly correlated to the

network size. The memory increase during the simulation in

Figure 10 is due to the intervention scheduled at fixed time

points. Figure 10 (left) shows that memory requirements in

the same scenario may depend on the compliance of nodes

with the interventions, i.e., higher compliance and, therefore,

more scheduled changes to the system state require more

memory. Finally, Figure 10 (right) shows that the final

memory requirements are strongly correlated with the initial

requirements, i.e., the network size.

VII. ILLUSTRATIVE CASE STUDIES

In this section, we discuss three case studies: (i) medical

cost of the pandemic illustrated in Figure 3, (ii) forecasting

workflow illustrated in Figure 5 and (iii) calibration work-

flow illustrated in Figure 4. The second and third workflows

are discussed in the Appendix F in the extended version of

this paper (see Footnote 1).

The workflows selected illustrate a range of tasks under-

taken using the two supercomputing clusters.

Case study: Medical costs of COVID-19. In this study,

we estimate the medical costs of COVID-19 in the US.

The overall impact also includes the cascading effect to

the Gross Domestic Product (GDP), which can be analyzed

by an input-output or general equilibrium model. Since the

purpose is to demonstrate the workflow, we will focus on

the medical cost estimating.

The medical costs include costs incurred by COVID-

19 patients for medical attention, hospitalization, ventilator

support, etc. For each patient, the total costs depend on

the disease severity. We consider a calibrated (towards

R0 = 2.5) disease model with different scenarios with

respect to NPI (non-pharmaceutical intervention) duration

and compliance. For each scenario in our factorial design

of 12 cells, we run simulations with 15 replicates for each

of the 51 regions (50 states and DC), with county-level

seeding derived from county-level confirmed case counts.

The simulation outputs individual-level data on who are

infected, receiving medical attention, hospitalized, and/or

on ventilator support each day. The aggregate data is used

to compute the total medical costs for each scenario. The

details of the study are described in [6]. The workflow for

our economic impact analysis consists of the following steps:

(i) On Rivanna or Bridges cluster, calibrate the disease

model towards R0 = 2.5. (ii) On the Rivanna cluster,

prepare simulation configuration files for a factorial design

of different NPI durations and compliance; get the most

recent county-level confirmed case counts and use them to

prepare county-level seeding. (iii) Send the disease model,

seeding, and configuration files to the Bridges cluster. (iv)
On the Bridges cluster, create database jobs and simula-

tion jobs, use our scheduling heuristic to submit jobs, and

run post-simulation data aggregation. (v) Transfer aggregate

simulation data to the Rivanna cluster. On the Rivanna
cluster, run the economic impact model to estimate medical

costs.

VIII. RELATED WORK

Over the last decade, there has been substantial interest

in developing scalable solutions to support various epi-

demiological tasks. This includes: planning and counterfac-

tual analysis, forecasting, and various resource optimization

problems. There has also been interest in developing web-

based tools to support these tasks. The models used in

these papers often range from simple statistical models to

compartmental models. Due to space considerations, we only

highlight a few important papers here.

Agent-based models in epidemic sciences can be traced

back to the earlier work on human immunodeficiency virus

(HIV), although the models were largely focused on the

structural analysis of small networks; see [12], [16], [19].

The use of the models was largely restricted to modeling

studies. Recent papers that aim to scale these simulations to

the national level include [4], [30].

In [3], [10] the authors report on the development of web-

based systems to carry out large computational experiments

in support of epidemic planning. See [11], [20], [28] for

other related efforts.

Researchers have also created data-driven pipelines to

support epidemic forecasting. CDC runs an annual challenge

in this area for studying influenza. Several important ad-

vances have been made to improve the overall forecasts;

most of the work in this space is either statistical time

series models or simple compartmental mass action models;

see [32], [36]. Operational agent-based models for epidemic

forecasting have not yet been reported on. Recently there

have also been a lot of community-wide efforts related to

COVID-199 10 11; our group submits forecasts to a number

of these efforts.

Developing scalable pipelines and workflows for HPC

tasks involving large datasets has also been well-studied

in literature [14], [21], [25], [29]. For example, the au-

thors of [14] present a technique for building scalable

workflows for analyzing large volumes of satellite imagery

data, while [25] present a system for analyzing workflows

related to weather-sensing data. Other studies have presented

generalized methodologies for building scalable workflows

for tasks requiring HPC platforms [5], [21].

Recently there has been a flurry of papers on developing

agent-based and equation-based models for planning and

response to the COVID-19 pandemic; see [1], [2], [7], [15],

[17], [23], [24], [27], [33], [37] The present paper does not

focus on our agent-based models — they are covered in a

companion paper.

Our primary focus is on creating scalable HPC-oriented

workflows to support a range of epidemiologically rele-

vant tasks in real-time. Our work shows how two large

9https://github.com/ihmeuw/covid-model-seiir-pipeline
10https://covid-19.bsvgateway.org/
11https://reichlab.io/

supercomputing clusters have been used to meet that goal,

and is a step towards demonstrating the use of hybrid

supercomputing cloud technology for epidemic science. The

resulting challenges are unique, and form an important data-

driven simulation platform.

IX. CONCLUSION

We describe how we have developed high performance

computing-oriented epidemic workflows in order to support

the planning and response to pandemics such as COVID-19.

Our workflows are unique in their use of two geographically

separated supercomputing clusters. The workflows are also

unique from the standpoint of executing large data-intensive

steps that incorporate daily county-level surveillance and

policy data, national and highly resolved agent-based simu-

lations of epidemic processes, and post-simulation analytics

for projections and counter-factual analysis. The work arose

in response to requests from federal and state agencies

to support their work on COVID-19 planning, and, using

this approach, we have been able to provide uninterrupted

support for over 30 weeks. This was accomplished in record

time – we began this effort in early March after access

to such machines was made possible by the HPC Con-

sortium. We were provided with unprecedented support by

Pittsburgh Supercomputing Center. Our results demonstrate

that real-time data-driven high resolution epidemics science
at national scale is possible. COVID-19 is not over; we are

witnessing a second, or possibly third, wave. The tools we

have developed will assist policymakers in developing and

evaluating new intervention measures, and will hopefully

help prevent COVID-19 from becoming an even larger-scale

outbreak.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

suggestions.

This work was partially supported by National Insti-

tutes of Health (NIH) Grant 1R01GM109718, NSF BIG

DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805,

NSF Expeditions in Computing Grant CCF-1918656, CCF-

1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-

2027541, US Centers for Disease Control and Prevention

75D30119C05935, University of Virginia Strategic Invest-

ment Fund award number SIF160, Google Grant, and De-

fense Threat Reduction Agency (DTRA) under Contract No.

HDTRA1-19-D-0007. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the funding agencies.

The authors would like to thank members of the Bio-

complexity Institute and Initiative for useful discussion and

suggestions. We thank the staff members at University of

Virginia’s high performance computing center for their help

in ensuring our jobs run smoothly every day on the Rivanna

Cluster. We also thank staff members at the Pittsburgh Su-

percomputing Center, Dr. John Towns head of NSF XSEDE

project and Dr. Shawn Brown, head of PSC for providing us

the needed HPC resources at such a short notice; our work

would not have been possible without their support. The

timely and important resource provided by the NSF during

this national crisis was crucial and is sincerely appreciated.

REFERENCES

[1] D. Adam. Modelling the pandemic the simulations driving
the world’s response to covid-19. Nature, 580(7803):316–
318, 2020.

[2] C. Avery, W. Bossert, A. Clark, G. Ellison, and S. F. Ellison.
Policy implications of models of the spread of coronavirus:
Perspectives and opportunities for economists. Technical
report, National Bureau of Economic Research, 2020.

[3] R. Beckman, K. R. Bisset, J. Chen, B. Lewis, M. Marathe,
and P. Stretz. Isis: A networked-epidemiology based perva-
sive web app for infectious disease pandemic planning and
response. In Proc. ACM SIGKDD, pages 1847–1856, 2014.

[4] A. Bhatele, J.-S. Yeom, N. Jain, C. J. Kuhlman, Y. Livnat,
K. R. Bisset, L. V. Kale, and M. V. Marathe. Massively
parallel simulations of spread of infectious diseases over
realistic social networks. In Proc. IEEE/ACM CCGrid, pages
689–694, 2017.

[5] V. G. Castellana, M. Drocco, J. Feo, J. Firoz, T. Kanewala,
A. Lumsdaine, J. Manzano, A. Marquez, M. Minutoli, J. Suet-
terlein, A. Tumeo, and M. Zalewski. A parallel graph
environment for real-world data analytics workflows. In Proc.
DATE, pages 1313–1318, 2019.

[6] J. Chen, A. Vullikanti, S. Hoops, H. Mortveit, B. Lewis,
S. Venkatramanan, W. You, S. Eubank, M. Marathe, C. Bar-
rett, and A. Marathe. Medical costs of keeping the US
economy open during COVID-19. medRxiv, 2020.

[7] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvi-
nova, S. Merler, A. P. y Piontti, K. Mu, L. Rossi, K. Sun,
et al. The effect of travel restrictions on the spread of the
2019 novel coronavirus (covid-19) outbreak. Science, 2020.

[8] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali. Ap-
proximation and online algorithms for multidimensional bin
packing: A survey. Computer Science Review, 24:63–79,
2017.

[9] E. G. Coffman, Jr, M. R. Garey, D. S. Johnson, and R. E. Tar-
jan. Performance bounds for level-oriented two-dimensional
packing algorithms. SIAM Journal on Computing, 9(4):808–
826, 1980.

[10] S. Deodhar, K. R. Bisset, J. Chen, Y. Ma, and M. V. Marathe.
An interactive, web-based high performance modeling envi-
ronment for computational epidemiology. ACM TMIS, 5(2):1–
27, 2014.

[11] A. Deshpande, K. Margevicius, E. Generous, K. Taylor-
McCabe, L. Castro, J. Longo, and R. Priedhorsky. Tools
and apps to enhance situational awareness for global disease
surveillance. Online journal of public health informatics,
6(1), 2014.

[12] S. Eubank, H. Guclu, V. A. Kumar, M. V. Marathe,
A. Srinivasan, Z. Toroczkai, and N. Wang. Modelling dis-
ease outbreaks in realistic urban social networks. Nature,
429(6988):180–184, 2004.

[13] A. Fadikar, D. Higdon, J. Chen, B. Lewis, S. Venkatramanan,
and M. Marathe. Calibrating a stochastic, agent-based model
using quantile-based emulation. SIAM/ASA Journal on Un-
certainty Quantification, 6(4):1685–1706, 2018.

[14] J. Farnes, B. Mort, F. Dulwich, S. Salvini, and W. Armour.
Science pipelines for the square kilometre array. Galaxies,
6(4):120, 2018.

[15] N. Ferguson, D. Laydon, G. Nedjati Gilani, N. Imai,
K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cu-
cunuba Perez, G. Cuomo-Dannenburg, et al. Report 9: Impact
of non-pharmaceutical interventions (npis) to reduce covid19
mortality and healthcare demand, 2020.

[16] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka,
P. C. Cooley, and D. S. Burke. Strategies for mitigating an
influenza pandemic. Nature, 442(7101):448–452, 2006.

[17] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay,
L. Abeler-Dörner, M. Parker, D. Bonsall, and C. Fraser.
Quantifying sars-cov-2 transmission suggests epidemic con-
trol with digital contact tracing. Science, 2020.

[18] J. Gattiker, K. Myers, B. Williams, D. Higdon, M. Car-
zolio, and A. Hoegh. Gaussian process-based sensitivity
analysis and bayesian model calibration with gpmsa. In
R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook
of Uncertainty Quantification, pages 1867–1907. Springer,
Switzerland, 2016.

[19] T. C. Germann, K. Kadau, I. M. Longini, and C. A. Macken.
Mitigation strategies for pandemic influenza in the united
states. PNAS, 103(15):5935–5940, 2006.

[20] J. J. Grefenstette, S. T. Brown, R. Rosenfeld, J. DePasse,
N. T. Stone, P. C. Cooley, W. D. Wheaton, A. Fyshe, D. D.
Galloway, A. Sriram, et al. Fred (a framework for reconstruct-
ing epidemic dynamics): an open-source software system
for modeling infectious diseases and control strategies using
census-based populations. BMC public health, 13(1):940,
2013.

[21] V. Hendrix, J. Fox, D. Ghoshal, and L. Ramakrishnan. Ti-
gres workflow library: Supporting scientific pipelines on hpc
systems. In Proc. IEEE/ACM CCGrid, pages 146–155, 2016.

[22] D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Com-
puter model calibration using high-dimensional output. Jour-
nal of the American Statistical Association, 103(482):570–
583, 2008.

[23] S. C. Kamerlin and P. M. Kasson. Managing covid-19 spread
with voluntary public-health measures: Sweden as a case
study for pandemic control. Clinical Infectious Diseases,
2020.

[24] M. U. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein,
D. M. Pigott, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage,
et al. The effect of human mobility and control measures on
the covid-19 epidemic in china. Science, 2020.

[25] E. Lyons, G. Papadimitriou, C. Wang, K. Thareja, P. Ruth, J. J.
Villalobos, I. Rodero, E. Deelman, M. Zink, and A. Mandal.
Toward a dynamic network-centric distributed cloud platform
for scientific workflows: A case study for adaptive weather
sensing. In Proc. eScience, pages 67–76, 2019.

[26] M. Marathe and A. K. S. Vullikanti. Computational epidemi-
ology. Communications of the ACM, 56(7):88–96, 2013.

[27] C. J. E. Metcalf, D. H. Morris, and S. W. Park. Mathematical
models to guide pandemic response. Science, 369(6502):368–
369, 2020.

[28] J. Paparian, S. Brown, D. Burke, and J. Grefenstette. Fred
navigator: An interactive system for visualizing results from
large-scale epidemic simulations. In Proc. IEEE eScience,
pages 1–5, 2012.

[29] I. Paraskevakos, M. Turilli, B. C. Gonçalves, H. Lynch, and
S. Jha. Workflow design analysis for high resolution satellite
image analysis. In Proc. eScience, pages 47–56, 2019.

[30] K. S. Perumalla, A. J. Park, and V. Tipparaju. Discrete event
execution with one-sided and two-sided gvt algorithms on
216,000 processor cores. ACM Trans. Model. Comput. Simul.,
24(3), June 2014.

[31] C. E. Rasmussen and H. Nickisch. Gaussian processes for
machine learning (gpml) toolbox. JMLR, 11(Nov):3011–
3015, 2010.

[32] N. G. Reich, L. C. Brooks, S. J. Fox, S. Kandula, C. J.
McGowan, E. Moore, D. Osthus, E. L. Ray, A. Tushar,
T. K. Yamana, et al. A collaborative multiyear, multimodel
assessment of seasonal influenza forecasting in the united
states. PNAS, 116(8):3146–3154, 2019.

[33] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg,
J. Hyman, P. Yan, and G. Chowell. Real-time forecasts of
the covid-19 epidemic in china from february 5th to february
24th, 2020. Infectious Disease Modelling, 5:256–263, 2020.

[34] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design
and analysis of computer experiments. Statistical science,
pages 409–423, 1989.

[35] M. Seizinger. The two dimensional bin packing problem with
side constraints. In Operations Research Proceedings 2017,
pages 45–50. Springer, 2018.

[36] J. Shaman and A. Karspeck. Forecasting seasonal outbreaks
of influenza. PNAS, 109(50):20425–20430, 2012.

[37] R. Verity, L. C. Okell, I. Dorigatti, P. Winskill, C. Whittaker,
N. Imai, G. Cuomo-Dannenburg, H. Thompson, P. G. Walker,
H. Fu, et al. Estimates of the severity of coronavirus disease
2019: a model-based analysis. The Lancet infectious diseases,
2020.

[38] Wong and Jansen. Lanl covid-19 cases and deaths forecasts
survey on 2-dimension bin packing. https://cgi.csc.liv.ac.uk/
∼epa/surveyhtml.html.

