
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Summer 8-5-2015

Scalable Equivalence Checking for Behavioral Scalable Equivalence Checking for Behavioral

Synthesis Synthesis

Zhenkun Yang
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Programming Languages and Compilers Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation

Yang, Zhenkun, "Scalable Equivalence Checking for Behavioral Synthesis" (2015). Dissertations and

Theses. Paper 2461.

https://doi.org/10.15760/etd.2459

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F2461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.2459
mailto:pdxscholar@pdx.edu

Scalable Equivalence Checking for Behavioral Synthesis

by

Zhenkun Yang

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

Dissertation Committee:

Fei Xie, Chair

Suresh Singh

Feng Liu

Sandip Ray

Fu Li

Portland State University

2015

i

ABSTRACT

Behavioral synthesis is the process of compiling an Electronic System Level (ESL)

design to a register-transfer level (RTL) implementation. ESL specifications define

the design functionality at a high level of abstraction (e.g., with C/C++ or Sys-

temC), and thus provide a promising approach to address the exacting demands

to develop feature-rich, optimized, and complex hardware systems within aggres-

sive time-to-market schedules. Behavioral synthesis entails application of complex

and error-prone transformations during the compilation process. Therefore, the

adoption of behavioral synthesis highly depends on our ability to ensure that the

synthesized RTL conforms to the ESL description.

This dissertation provides an end-to-end scalable equivalence checking support

for behavioral synthesis. The major challenge of this research is to bridge the

huge semantic gap between the ESL and RTL descriptions, which makes the direct

comparison of designs in ESL and RTL difficult. Moreover, a large number and a

wide variety of aggressive transformations from front-end to back-end require an

end-to-end scalable checking framework.

A behavioral synthesis flow can be divided into three major phases, including

1) front-end : compiler transformations, 2) scheduling : assigning each operation

a clock cycle and satisfying the user-specified constraints, and 3) back-end : local

optimizations and RTL generation. In our end-to-end and incremental equivalence

checking framework, we check each of the three phases one by one. Firstly, we check

ii

the front-end that consists of a sequence of compiler transformations by decompos-

ing it into a series of checks, one for each transformation applied. We symbolically

explore paths in the input and output programs of each transformation, and check

whether the input and output programs have the same observable behavior under

the same path condition. Secondly, we validate the scheduling transformation by

checking the preservation of control and data dependencies, and the preservation

of I/O timing in the user-specified scheduling mode. Thirdly, we symbolically sim-

ulate the scheduled design and the generated RTL cycle by cycle, and check the

equivalence of each mapped variables. We also develop several key optimizations

to make our back-end checker scale to real industrial-strength designs. In addition

to the equivalence checking framework, we also present an approach to detect-

ing deadlocks introduced by parallelization of RTL blocks that are connected by

synthesized interfaces with handshaking protocols.

To demonstrate the efficiency and scalability of our framework, we evaluated

it on transformations applied by a behavioral synthesis tool to designs from the

C-based CHStone and SystemC-based S2CBench benchmarks. Based on the eval-

uation results, our front-end checker can efficiently validate more than 75 percent

of the total of 1008 compiler transformations applied to designs from the CHStone

benchmark, taking an average time of 1.5 seconds per transformation. Our schedul-

ing checker can validate control-data dependencies and I/O timing of all designs

from S2CBench benchmark. Our back-end checker can handle designs with more

than 32K lines of synthesized RTL from the CHStone benchmark, which demon-

strates the scalability of the checker. Furthermore, our checker found several bugs

in a commercial tool, underlining both the importance of formal equivalence check-

ing and the effectiveness of our approach.

iii

DEDICATION

To my wife Jialu.

To my parents Xiuzeng and Yunpeng.

In memory of my grandmother Xiuli Zhang (1920 – 2004)

iv

ACKNOWLEDGMENTS

This dissertation could not have been accomplished without generous support from

many talented people. I am grateful to all of them from the bottom of my heart.

First and foremost, I would like to express my great appreciation to my advisor,

Prof. Fei Xie, for his enlightening guidance and generous support during my Ph.D

study. Prof. Xie is an excellent advisor. He taught me how to identify research

problems and become an independent researcher. Without his support and encour-

agement, this dissertation would not have been accomplished. His deep theoretical

knowledge and passion about developing practical tools have great influence on my

Ph.D research and future career.

I would like to thank Prof. Suresh Singh, Prof. Feng Liu, Dr. Sandip Ray, and

Prof. Fu Li for serving on my dissertation committee. Thanks for their advice and

sacrifice of valuable summer time for coming to my dissertation defense.

I would like to thank Dr. Kecheng Hao and Dr. Sandip Ray. I benefit a lot

from the great infrastructure they built before I joined the group. Many research

ideas of this dissertation come from fruitful discussions with them. I sincerely

thank them for being excellent collaborators. I am grateful that I have this great

opportunity to work with talented group members: Kai Cong, Li Lei, Bin Lin,

Disha Puri, Bo Chen, and Christopher Havlicek.

Finally, I would like to thank my parents for their continuous support and

endless love. Special thanks to my wife Jialu for her sound and complete love.

v

Table of Contents

Abstract i

Dedication iii

Acknowledgments iv

List of Tables vii

List of Figures viii

List of Abbreviations xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Proposed Equivalence Checking Framework 4

1.4 Dissertation Outline . 7

Chapter 2 Background 8

2.1 Behavioral Synthesis . 8

2.2 Symbolic Simulation . 9

2.3 Formal Equivalence Checking 10

Chapter 3 Front-end Compiler Transformation Checking 12

3.1 Notations and Definitions 12

3.2 Equivalence Checking Framework 15

3.3 Modular Reasoning across Functions 18

3.4 Handling Loops . 21

3.5 Experimental Results . 24

vi

3.6 Related Work . 27

3.7 Summary . 29

Chapter 4 Validating Scheduling Transformation 32

4.1 Scheduling Transformation 32

4.2 Formalization . 35

4.3 Validation Approach . 40

4.3.1 Validating Trace Compatibility 40

4.3.2 Validating I/O Timing . 40

4.4 Experimental Results . 44

4.5 Related Work . 47

4.6 Summary . 48

Chapter 5 Scaling Back-end RTL Generation Checking 49

5.1 Equivalence Checking Framework 49

5.2 Handling Operation Gating Optimization 51

5.3 Handling Global Variables 56

5.4 Experimental Results . 58

5.4.1 Performance Evaluation . 58

5.4.2 A Behavioral Synthesis Bug 60

5.5 Related Work . 61

5.6 Summary . 63

Chapter 6 Interface Synthesis Checking 64

6.1 Interface Synthesis . 65

6.2 Deadlock Detection . 68

6.2.1 Deadlock Example . 68

6.2.2 Deadlock Detection Algorithm 71

6.3 Experimental Results . 75

6.4 Related Work . 77

6.5 Summary . 78

Chapter 7 Conclusion and Future Work 79

7.1 Conclusion . 79

7.2 Future Work . 80

References 82

vii

List of Tables

Table 3.1 Summary of CHStone Benchmark for Equivalence Checking

of Front-end Compiler Transformations 24

Table 3.2 Summary of Evaluation on CHStone Benchmark for Equiva-

lence Checking of Front-end Compiler Transformations 25

Table 4.1 Summary of Evaluation on S2CBench Benchmark 44

Table 5.1 Summary of CHStone Benchmark for Equivalence Checking

of Back-end RTL Generation 58

Table 5.2 Summary of Evaluation on CHStone Benchmark for Equiva-

lence Checking of Back-end RTL Generation 59

viii

List of Figures

Figure 1.1 Behavioral synthesis flow . 2

Figure 1.2 Behavioral synthesis and verification flow 5

Figure 2.1 A simple function foo in C with its symbolic execution tree.

(a) Function foo in C. (b) Symbolic execution tree of foo,

where F and X are symbolic values for *f and x, r denotes

the return value, and nil denotes that the value is not yet

available. 10

Figure 3.1 Framework of checking equivalence between program S and T ,

which are the input and output of transformation T respectively. 14

Figure 3.2 A simple function bar in C with its symbolic execution tree.

(a) Function bar in C. (b) Symbolic execution tree of bar,

where F and X are symbolic values for *f and x, r denotes the

return value, and nil denotes that the value is not yet available. 17

Figure 3.3 Symbolic execution tree of function foo and bar, where bar

is executed after foo, and based on the execution condition

of foo. 18

Figure 3.4 Global variable usage with sub-function call example. 20

Figure 3.5 A simple function with a loop in C and its IR. (a) Function f

has an unbounded for loop. (b) The IR of f, with boxes rep-

resenting basic blocks, and arrows representing control flow.

Control flow merge is implemented via φ-instructions in basic

block B2. 21

Figure 3.6 Comparison of success rate on designs of CHStone benchmark

without and with cut-loop optimization. The x axis is ordered

by the success rate with cut-loop. 26

ix

Figure 4.1 An example of a SystemC thread, which has two superstates

in the while loop. 33

Figure 4.2 Cycle-fixed and superstate-fixed scheduling mode for the while

loop in thread in Fig. 4.1. 34

Figure 4.3 Extract superstates of a thread in SystemC. (a) my thread is

a thread of module dut, wait statements are the boundary of

superstates in SystemC. (b) Superstates and their transitions

of my thread. 41

Figure 4.4 An example of incorrect scheduling of signal I/O. (a). Design

before scheduling, where a signal output Out is written twice

with different values, however, only the last write is visible

and valid. (b). The design after scheduling, where two writes

of Out are scheduled to two different cycles. For simplicity, we

use function add state() to represent the scheduling trans-

formation will add a new state on that line. 45

Figure 4.5 An example of incorrect scheduling of signal I/O. (a). Design

before scheduling, where a local signal sig is written and then

read at the same cycle. The read statement takes the old

value. (b). The design after scheduling, where the write and

read statements are scheduled to two different cycles, then

the read takes the new value. For simplicity, we use function

add state() to represent the scheduling transformation will

add a new state on that line. 46

Figure 5.1 Dual-rail cycle-based symbolic simulation of a CCDFG and

RTL circuit. 49

Figure 5.2 Operation gating example. (a) C code. (b) Data flow graph.

(c) Schematic of generated RTL 52

Figure 5.3 Simplified C source code of the MOTION example. 61

Figure 5.4 Bug found in the MOTION example, where an important regis-

ter is eliminated. (a). Wrong RTL (b). Correct RTL 62

x

Figure 6.1 Example of interface synthesis. (a). A simple C function with

one input and two outputs. (b). Synthesized block diagram of

the C function. Input IN has an associated valid signal IN vld

to indicate when IN is ready to be read. Output O1 has an as-

sociated acknowledge signal O1 ack to allow the downstream

block to acknowledge block ‘func’ that the output data O1 has

been read. Output O 2 has both valid and acknowledge signals. 65

Figure 6.2 Timing diagram of the synthesized block ‘func’. 66

Figure 6.3 Block diagram of a FIFO with read and write ports. Signals

empty and full indicate the emptiness and fullness of the

FIFO. 67

Figure 6.4 Timing diagram of a FIFO with depth of 2. 67

Figure 6.5 A design in C with three blocks. 69

Figure 6.6 Deadlock example: a synthesized design with three blocks.

Interface C is a FIFO of depth of 2. Interfaces B and D are

FIFOs of depth of 1. (a). FIFOs are initialize to be empty.

(b). Status of FIFOs when the design deadlocks. 70

Figure 6.7 Dependency graph of Fig. 6.6. 72

Figure 6.8 Dependency graph example 73

Figure 6.9 Block diagram of DCT example. 76

Figure 6.10Block diagram of YUV Filter example. 76

xi

LIST OF ABBREVIATIONS

BDD Binary Decision Diagram

CCDFG Clocked Control/Data Flow Graph

CDFG Control/Data Flow Graph

DFG Data Flow Graph

EDA Electronic Design Automation

ESL Electronic System Level

FIFO First In, First Out

FSMD Finite State Machine with Datapath

HLS High-Level Synthesis

IP Intellectual Property

IR Intermediate Representation

PSL Property Specification Language

RTL Register Transfer Level

SAT Boolean satisfiability problem

SEC Sequential Equivalence Checking

SMT Satisfiability Modulo Theories

SSA Single Static Assignment

STP State Transition Partition

SVA SystemVerilog Assertions

1

Chapter 1

INTRODUCTION

1.1 MOTIVATION

With the ever-growing complexity in modern VLSI systems, designing high-quality

hardware at Register-Transfer Level (RTL) under high time-to-market pressure is

challenging. Behavioral synthesis, also called high-level synthesis (HLS), is the

process of compiling an Electronic System Level (ESL) design to an RTL imple-

mentation. ESL specifications define the design functionality at a high level of

abstraction (e.g., with C/C++ or SystemC), and thus provide a promising ap-

proach to address the exacting demands to develop feature-rich, optimized, and

complex hardware systems within aggressive time-to-market schedules. Recent

years have seen the adoption of behavioral synthesis in industry. A typical exam-

ple is how Google uses a behavioral synthesis tool to design the G2 VP9 hardware

decoder [72] to implement the VP9 video compression standard.

As shown in Fig. 1.1, a behavioral synthesis takes a design specified in high-

level languages, applies a sequence of transformations, and generates targeted RTL

netlist. A typical behavioral synthesis flow can be roughly divided into three

phases: front-end, scheduling and back-end. The front-end primarily entails com-

piler transformations; the goal is to reduce code complexity of the generated design,

maximize data locality, etc. [19], and transform the design into a form more suit-

able for resource allocation and control synthesis. The scheduling transformation

2

B
e
h

a
v
io

ra
l
S

y
n

th
e
s
is

 T
o

o
l

C/C++/SystemC

RTL

Compiler
Transformations

Compiler Front-end

Scheduling
Transformations

Binding and

Code Generation

Front-end

Scheduling

Back-end

Figure 1.1: Behavioral synthesis flow

schedules each operation a clock cycle to execute. The scheduled design needs

to satisfy user-specified timing and resource constraints at the same time. The

back-end entails local, sometimes manual, optimizations for a number of metrics,

e.g., performance and power consumption, and generates RTL at the end.

Behavioral synthesis provides two major advantages over traditional design

methodology: accelerated development and fast verification. Firstly, development

of the functionality at a higher abstraction level is much more efficient than devel-

opment at RTL. Secondly, functional verification can be done at high-level, which

is usually hundreds of times faster than verification at RTL in terms of runtime.

However, the expensive verification efforts of generated RTL can be saved only if

we guarantee that behavioral synthesis tool generates correct RTL from the ESL

specification. Therefore despite that there are several commercial behavioral syn-

thesis tools available, the adoption of behavioral synthesis critically depends on

3

our ability to ensure that the synthesized designs indeed correctly implement the

ESL specifications. The goal of this research is to provide a formal equivalence

checking support for behavioral synthesis, with the emphasis on scalability and

end-to-end checking ability.

1.2 PROBLEM STATEMENT

Real industrial designs are typically thousands or even tens of thousands of lines

of C/C++ code. The performance (runtime and memory usage) of the equivalence

checker should scale to large industrial designs. To provide a scalable end-to-end

formal equivalence checking support for behavioral synthesis, we need to decom-

pose the verification flow into phases that are defined in the behavioral synthesis

flow, and address the following challenges for different phases.

• How to check front-end compiler transformations? Front-end transformations

constitute the majority of synthesis transformations. It is typical that more

than a hundred transformations are applied to a design. Furthermore, they

are applied aggressively under delicate and implicit invariants, and tend to

be complex and error-prone.

• How to validate scheduling transformation? Scheduling transformation is

usually a very aggressive, complicated, thus error-prone transformation to

meet the timing and resource constraints. It entails sophisticated heuristics

to minimize register usage, improve timing and possibilities for sharing. The

scheduling transformation not only needs to preserve control and data depen-

dencies of the original design, but also needs to accommodate user specified

timing constraints: either compiler directives or wait statements explicitly

specified in the design. In this dissertation, we don’t consider pipelining in

the scheduling transformation.

4

• How to make the back-end checking framework scale to industrial-strength

designs? Previous work [36, 64] proposed a dual-rail symbolic simulation

framework to check the equivalence between the design after scheduling trans-

formation and the synthesized RTL. However, the framework is inadequate

to handle design and implementation optimizations, therefore it is not scal-

able to real industrial-strength designs. In order to improve the scalability

of the framework, we need a robust approach to handling the design and

implementation optimizations.

• How to detect deadlocks introduced by parallelization of RTL blocks that are

connected by synthesized interfaces with handshaking protocols? Behavioral

synthesis tools allow designers to synthesize concurrent RTL blocks from

a sequential high-level specification, and to synthesize interfaces between

blocks into pre-defined interface components with handshaking protocols.

Allowing blocks to run concurrently may introduce deadlocks. Therefore,

we need scalable approach to detecting deadlocks in the synthesized RTL

implementations.

1.3 PROPOSED EQUIVALENCE CHECKING FRAMEWORK

Because of the huge semantic gap between the ESL specification and the generated

RTL implementation, and the fact that a large number of transformations will be

applied to the ESL design, it is extremely hard to check equivalence of the ESL

design and the RTL implementation directly. This research focuses on the ability

of checking the entire behavioral synthesis flow and the scalability to industrial-

strength designs. Instead of checking the ESL and RTL directly, we employ an

incremental checking approach, taking advantage of the similarity of the design

representations before and after each transformation. We establish intermediate

5

equivalence points in the checking flow by decomposing the checking into a se-

quence of checks, one for each transformation applied by the behavioral synthesis

tool. This incremental approach is essential to the scalability of our framework.

B
e
h

a
v
io

ra
l
S

y
n

th
e
s
is

 T
o

o
l

C/C++/SystemC

RTL

Compiler

Transformations

Compiler Front-end

Scheduling

Transformations

Binding and

Code Generation

V
e
ri

fi
c
a
ti

o
n

 F
lo

w

IR0

IRn

IRs

Back-end

Checker

Transformation

Checker

Scheduling

Checker

Figure 1.2: Behavioral synthesis and verification flow

As discussed in Section 1.1, a behavioral synthesis tool mainly has three phases:

front-end, scheduling and back-end. To build a scalable end-to-end formal equiva-

lence checking framework, we also partition our verification flow shown in Fig. 1.2

into the following three parts.

1. Front-end transformation checker checks the equivalence of the input and

output programs of each transformation applied. We use symbolic execution

techniques to explore paths of the input and output programs of each trans-

formation. We then check that under the same path condition, whether they

have the same observable behavior. Our incremental approach checks the

6

front-end transformations by decomposing them into a sequence of checks,

one for each transformation applied. We identify two major sources to path

explosion problem in symbolic execution: subroutine calls and loops. We

propose a compositional checking approach to checking a design that con-

sists of a number of functions on a function-by-function basis, which greatly

reduces the checking complexity. We use cut-loop optimization to handle

path explosions introduced by loops.

2. Scheduling checker validates that 1) every operation in the design must be

scheduled to be executed, 2) control and data dependencies of the design

are preserved after scheduling, and 3) user specified timing constraints are

satisfied. We identify the properties need to be checked for different I/O

scheduling modes. and propose different algorithms to check the properties.

3. Back-end checker checks the equivalence of the scheduled design and the gen-

erated RTL. We symbolically simulate them cycle by cycle, and compare the

mapped variables (including inputs and outputs) at the end of each cycle.

Design and implementation optimizations employed either by the design-

ers or by the behavioral synthesis tool complicate the equivalence checking

problem. In particular, interface synthesis of global variables of a design and

operation gating are hurdles to the scalability of our checker. We use a com-

positional equivalence checking approach together with automatic inference

of the extended signature of each module to handle global variables. We pro-

pose a relaxed equivalence checking algorithm to tolerate local and irrelevant

in-equivalences introduced by operation gating. These two optimizations are

essential to make our checker scale to industrial-strength applications.

In addition to the three-phase equivalence checking framework, our deadlock

detection approach takes the design representation after scheduling transformation

and the result of interface synthesis, automatically generates assertions to capture

7

deadlock conditions. The generated assertions can be used in assertion-based ver-

ification (simulation or formal verification tools) to detect deadlocks.

1.4 DISSERTATION OUTLINE

The rest of this dissertation is organized as follows: Chapter 2 provides background

on behavioral synthesis, symbolic simulation and equivalence checking techniques

employed in hardware verification. In Chapter 3, we present our equivalence check-

ing framework for front-end compiler transformations in behavioral synthesis. We

also present several optimizations to handle the path explosion problem. In Chap-

ter 4, we present our validation approach to scheduling transformation, including

validation of control and data dependencies and I/O interface timing under differ-

ent scheduling modes. In Chapter 5, we present several optimizations to make our

back-end equivalence checker scale to industrial applications. We present an asser-

tion based verification approach to detecting deadlocks introduced by paralleliza-

tion of RTL blocks that are connected by synthesized interfaces with handshaking

protocols in Chapter 6. We conclude this dissertation research and discuss some

future research directions in Chapter 7.

8

Chapter 2

BACKGROUND

2.1 BEHAVIORAL SYNTHESIS

Behavioral synthesis [26] provides a promising approach to dealing with the ever-

growing complexity in modern hardware design by generating high-quality RTL

implementations from high-level specifications. An early effort was made by re-

searchers at Carnegie Mellon University [51, 58] in the 1970s, which used instruc-

tion set processor specification as input language. There are open-source behavioral

synthesis tools from academia, e.g., SPARK [33], LegUp [17], and Bambu [1]. Com-

mercially available tools from major EDA (Electronic Design Automation) vendors

include Cadence’s C-to-Silicon Compiler [3], and Cynthesizer [5], Calypto’s Cata-

pult HLS [4], NEC’s Cyber Workbench [71], Synopsys’s Synphony C Compiler [67],

and Xilinx’s Vivado high-level synthesis [73]. Beside the above C based behavioral

synthesis tool, there are also tools use domain-specific input languages, e.g., HDL

Coder [52] from MathWorks generates portable, RTL code from MATLAB func-

tions or Simulink models. Bluespec [57] uses Bluespec SystemVerilog as input

language.

A behavioral synthesis tool takes an ESL behavioral description of a design (in

SystemC or C/C++), together with a library of hardware resources, and generates

an RTL implementation [20]. Similar to a compiler, a behavioral synthesis tool

first performs lexical, syntax and semantic analysis, and builds an intermediate

representation (IR) of the ESL description. A series of transformations is then

applied to the IR, which can be categorized into three phases.

9

• Compiler transformations form the first phase. This includes transformations

such as dead code elimination, constant propagation, loop unrolling, etc.

• Scheduling transformations entail computing for each operation the clock cy-

cle for its execution. The clock cycle must account for constraints in hardware

resources as well as control and data flow. These transformations include

pipelining loops, grouping independent operations for concurrent execution,

etc.

• Resource binding and control synthesis map each operation to a hardware

functional unit, allocates registers for variables used across clock cycles, and

generates a finite state machine to implement the schedule.

After these transformations, the design can be represented in RTL. The RTL may

be subjected to further manual tweaks.

2.2 SYMBOLIC SIMULATION

Symbolic execution [43] is a technique that executes a program with symbolic

inputs instead of concrete ones. A symbolic program state includes a statement

counter, values of variables and a path condition. Since the inputs are symbolic,

the values of variables are expressions over symbolic inputs, and the path condition

is a Boolean expression over symbolic inputs. During the execution, a symbolic

execution tree is built, with each node representing a program state and each edge

representing a state transition condition.

Fig. 2.1 illustrates an example of symbolic execution of a simple program.

Fig. 2.1(a) shows a function foo written in C, and Fig. 2.1(b) shows its symbolic

execution tree. For simplicity, we only show the values of variables (in the box)

and path conditions (on the edge). At the beginning of the execution, variable x

and *f take symbolic value X and F, respectively. Function foo has two paths:

10

1 int foo(int *f, int x){

2 if(x>1) {

3 *f = *f + 1;

4 return 0;

5 } else {

6 *f = *f - 1;

7 return 1;

8 }

9 }

*f: F+1
 x: X
 r: 0

X>1 X≤1

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

(a) (b)

Figure 2.1: A simple function foo in C with its symbolic execution tree. (a)

Function foo in C. (b) Symbolic execution tree of foo, where F and X are symbolic

values for *f and x, r denotes the return value, and nil denotes that the value is

not yet available.

one path increments f, and returns 0 with path condition X > 1; the other path

decrements f, and returns 1 with path condition X ≤ 1.

2.3 FORMAL EQUIVALENCE CHECKING

Formal equivalence checking techniques play an important role in EDA. After syn-

thesize an RTL design to a gate-level implementation, logic equivalence check-

ing tools are used to to prove that the gate-level implementation is function-

ally equivalent to the RTL design. With decades of research and development,

logic equivalence checking has become a mature field. Binary decision diagrams

(BDDs) [14] provide canonical representations for Boolean functions, early verifi-

cation efforts [50] use BDDs for formal logic verification. The idea is to convert

two Boolean functions into two BDDs, two functions are equivalent if they have

11

the same BDD representation. Boolean satisfiability problem (SAT) is to check

whether a given propositional formula is satisfiable. There have been research on

using SAT for equivalence checking [32]. The basic idea is to convert the equiv-

alence of two circuits problem into satisfiability of a propositional formula, and

leverage the state-of-the-art SAT solver to solver the formula.

Our research leverages the success of logic equivalence checking. We borrow the

idea of logic equivalence checking of RTL designs and their gate-level implementa-

tions to check the equivalence of the high-level (C/C++) designs and the generated

RTL implementations in behavioral synthesis.

12

Chapter 3

FRONT-END COMPILER TRANSFORMATION CHECKING

Behavioral synthesis tools apply a sequence of transformations to the input de-

sign before scheduling. We check front-end by decomposing it into a sequence of

checks, one for each transformation applied. The key observation is that even if the

transformation implementations may be closed-source, it is still possible to obtain

from most tools the IRs after application of each front-end transformation. Thus,

an sequential equivalence checking (SEC) methodology was developed to compare

each pair of consecutive IRs.

3.1 NOTATIONS AND DEFINITIONS

Let P be a program, V be the set of variables of P , and VO ⊆ V be the set of

observable variables. Intuitively, variables that we can observe during the execution

of P are called observable variables; we assume that the VO includes the input,

output, and global variables.

Definition 3.1 (State). A state s , {〈v, u〉 | v ∈ V, u is the value of v} of a

program P is the set of variables in P with their values.

Definition 3.2 (Observable State). An observable state sO at state s of a program

P , denoted by sO(s), is a projection of s, where variables in sO are restricted to

observable variables in program P .

Remark 3.1. We leave the domains for the values of variables undefined for this

presentation, but assume that they can be determined from the context. Also, we

13

assume that the domain can be both concrete or symbolic; this permits us to use

the same notation for both concrete and symbolic states. For simplicity, we use

s[v] to denote the value, either concrete or symbolic, of variable v in state s.

Definition 3.3 (Path). A path π , s0, c1, s1, c2, s2, . . . , cn, sn of a program is an

alternating sequence of states and state transition conditions, starting from an

initial state s0 and ending with a terminal state sn, where ci is the state transition

condition (Boolean expression over program variables) from si−1 to si for all 1 ≤

i ≤ n.

Definition 3.4 (Path Condition). Let π , s0, c1, s1, c2, s2, . . . , sn−1, cn, sn be a

path of a program P . The path condition pc ,
∧n

i=1 ci of path π is a conjunction

of all transition conditions on π. We use π[pc] to denote the path condition of π.

Definition 3.5 (Path Compatibility). Given two programs S and T with the same

set of observable variables VO, let π be a path of S with initial state s0 and path

condition pc, and π′ be a path with initial state s′0 and path condition pc′ of T .

We say π and π′ are compatible if sO(s0) = sO(s
′
0) and pc ∧ pc′ is satisfiable. Paths

π and π′ are called a compatible path pair of S and T .

Definition 3.6 (Path Equivalence). Let π be a path of program S with terminal

state sn, and π′ be a path of program T with terminal state s′m, and suppose that

programs S and T have the same set of observable variables VO. We say path π

and π′ are equivalent, denoted by π ∼ π′, if π and π′ are compatible, and for each

variable v ∈ VO, sn[v] = s′m[v].

Informally, two paths are equivalent if they are compatible, and they have the

same observable state at their terminal states.

Definition 3.7 (Program Equivalence). Let S and T be two programs, we say

that program S and T are equivalent, denoted by S ∼ T , if every compatible path

pair of S and T has the same observable state at their terminal states. Formally let

14

Program S

Program T

Symbolic
Executor

Execution
Controller

Yes

Evidence of
Inequivalences

No

Symbolic
Executor

C
om

m
an

d

Equivalent?

P
at

h
P

at
h

C
om

m
an

d

Transformation T S ∼ T

SE1

SE2

Figure 3.1: Framework of checking equivalence between program S and T , which

are the input and output of transformation T respectively.

Paths(S) and Paths(T) be all paths of program S and T respectively, program S

and T are equivalent if for each path π ∈ Paths(S) and every path π′ ∈ Paths(T)

that is compatible with π, π is equivalent to π′.

We define the correctness of a transformation by the equivalence of the observ-

able behavior of the source program S and the target program T . Informally S

and T are equivalent if fed the same inputs to both programs, they produce the

same output, and have the same effect on the environment (modification to global

variables) when terminating.

Definition 3.8 (Transformation Correctness). Let T be a transformation which

takes a source program S as input and produces a target program T as the output.

We say T is a correct transformation on program S if S ∼ T .

15

3.2 EQUIVALENCE CHECKING FRAMEWORK

As shown in Fig. 3.1, suppose a transformation T takes a program S as input and

generates a program T as output. We validate the correctness of transformation

T when applied to S by checking whether T is equivalent to S. According to

Definition 3.7, we need to prove that S and T have the same observable state at

their terminal states for all compatible path pairs.

As a pedagogical simplification, assume that all the paths in S and T are enu-

merable. Also assume that S and T have the same function signature and global

variables; this assumption does not limit our approach because compiler transfor-

mations usually do not change function signature unless there are parameters that

are irrelevant or unused in the function body, which can be easily detected. Fi-

nally, assume that for each observable variable of S we can find the corresponding

variable for T and vice versa. We then proceed as follows. We assign the same

symbols to the input and non-constant global variables of S and T , then symboli-

cally execute them. After enumerating all paths of S and T , for each compatible

path pair π in S and π′ in T , we check whether π and π′ have the same observable

behavior; this check is done by an SMT (satisfiability modulo theories) solver by

checking the equality between the symbolic expressions of the (symbolic) values of

the observable variables.

Algorithm 1 provides a high-level description of our approach. FunctionCheck-

Equivalence takes two programs S and T as arguments. Subroutine Symbol-

ize-Inputs creates symbols for inputs of S and T . Subroutine Sym-Exe symbol-

ically executes S with symbolic inputs, and collects all paths of S. For each path

π with path condition π[pc] of S, subroutine Get-Observable-State collects

the observable state sO corresponding to the terminal state in path π. Subroutine

Sym-Exe symbolically executes T with the same symbolic inputs under condition

π[pc], and collects all paths of T . Since all paths found in T are under the condition

16

Algorithm 1: Check-Equivalence(S, T)

1 sI ← Symbolize-Inputs(S, T) ⊲ Symbolize inputs

2 Π← Sym-Exe(S, sI , nil) ⊲ Symbolically Execute S

3 foreach π ∈ Π do

4 sO ← Get-Observable-State(π)

5 Π′ ← Sym-Exe(T, sI , π[pc])

6 foreach π′ ∈ Π′ do

7 s′O ← Get-Observable-State(π′)

8 if not Cmp-State(sO, s
′
O, π

′[pc]) then

9 print 〈sO, s
′
O〉 ⊲ Report inequivalences

10 return false

11 return true

π[pc], therefore they are all compatible path with π. For each path π′ of T found

under the condition of π[pc], subroutine Cmp-State checks if π and π′ have the

same observable state at termination. If the observable states are not equal, the

algorithm reports the inequivalences, otherwise it proceeds until all paths of S and

T are checked.

Fig. 2.1 and Fig.3.2 show two programs foo and bar which are defined in C and

their independent symbolic execution trees. Before execution, foo and bar have

the same symbolic input { 〈∗f, F〉 , 〈x, X〉 }, where F and X are symbolic values of

variables *f and x, respectively. Function foo has two paths, the final observable

states are { 〈∗f, F+ 1〉 , 〈x, X〉 , 〈r, 0〉 } and { 〈∗f, F− 1〉 , 〈x, X〉 , 〈r, 1〉 }, with condi-

tions X > 1 and X ≤ 1, respectively. Similarly, the two final observable states of

function bar are { 〈∗f, F+ 1〉 , 〈x, X〉 , 〈r, 1〉 } and { 〈∗f, F− 1〉 , 〈x, X〉 , 〈r, 1〉 }, with

conditions X > 3 and X ≤ 3, respectively.

Fig. 3.3 shows the symbolic execution tree when function bar is executed under

17

1 int bar(int *f, int x){

2 if(x>3) {

3 *f = *f + 1;

4 return 1;

5 } else {

6 *f = *f - 1;

7 return 1;

8 }

9 }

*f: F+1
 x: X
 r: 1

X>3 X≤3

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

(a) (b)

Figure 3.2: A simple function bar in C with its symbolic execution tree. (a)

Function bar in C. (b) Symbolic execution tree of bar, where F and X are symbolic

values for *f and x, r denotes the return value, and nil denotes that the value is

not yet available.

the path condition of function foo. In Fig. 3.3, state s0 is the initial state of

function foo, states s3 and s4 are the initial states of function bar, states s1 and

s2 are terminal states of foo, and states s5, s6 and s7 are terminal states of bar.

We need to conduct three equivalence checks:

• s1 vs. s5, where the return values are not equivalent;

• s1 vs. s6, where the values of *f are not equivalent, and return values are

also not equivalent;

• s2 vs. s7, the states are equivalent.

Therefore, our checking algorithm returns that foo and bar are not equivalent,

and reports the inequivalences.

18

X>1 X≤1

X>3 1<X≤3 X≤1

foo
bar

s1

*f: F
 x: X
 r: nil

*f: F+1
 x: X
 r: 0

*f: F-1
 x: X
 r: 1

*f: F
 x: X
 r: nil

*f: F
 x: X
 r: nil

*f: F+1
 x: X
 r: 1

*f: F-1
 x: X
 r: 1

*f: F-1
 x: X
 r: 1

s0

s2

s4

s7

s3

s6s5

X>1 X≤1

Figure 3.3: Symbolic execution tree of function foo and bar, where bar is executed

after foo, and based on the execution condition of foo.

In summary, the above approach symbolically execute the two IRs (referred to

as S and T) and check that each pair of corresponding program paths is equivalent.

A program path is uniquely specified by the sequence of branch conditions that

must hold for the control flow to execute the instructions in the path. The approach

was used on some cryptographic applications. Unfortunately, it does not scale to

other practical programs. In particular, it requires effective enumeration of all

paths in S and T ; in practice, this can lead to path explosion. Two key sources of

path explosion in practice are subroutine calls and loops. In the next two sections

we discuss optimizations to address these problems.

3.3 MODULAR REASONING ACROSS FUNCTIONS

Why do subroutine calls contribute to path explosion? The näıve approach of

symbolically executing the program treats each function as if it were inlined: the

19

function body is symbolically executed at each call site. When a function f having

a number of branches in its body (and hence program paths) is invoked many

times, each invocation contributes a multiplicative factor to the number of paths

explored.

Our approach to address this problem is to develop a compositional approach

to symbolic execution [31], which permits equivalence checking on a per-function

basis. Suppose functions f and f ′ invoke functions g and g′ respectively. Then

(1) we separately check the equivalence of g and g′; and (2) when checking the

equivalence of f and f ′, we replace g and g′ with the same uninterpreted function

symbols.

Of course the above näıve scheme only works for side effect free functions. If g

and g′ update some global variables or pass-by-reference arguments, then replacing

g and g′ with the same uninterpreted function on the explicit arguments will be

unsound since the effect on the global variable or pass-by-reference arguments is

not accounted for. To address this, we use a notion of “extended signature”. The

idea is to extend the type signature of a function explicitly accounting for the side

effects. Let g be a sub-function; we use τ = g(~αv, ~αr) to represent the signature of

g, where τ denotes the return value, ~αv denotes pass-by-value arguments, and ~αr

denotes pass-by-reference arguments. Then, in addition to the function arguments,

suppose function g reads globals ~βr and updates globals ~βw. The extended type

signature of g is:

〈τ, ~α′
r,

~β′
w〉 = g(~αv, ~αr, ~βr),

where ~α′
r and ~β′

w are updated versions of ~αr and ~βw respectively, mimicking the

notion that they may be arbitrarily changed by function g. 1

Fig. 3.4 shows an example of a sub-function with side effects. Function f invokes

1Pass-by-reference arguments are pointers, and most behavioral synthesis tools restrict the
usage of pointers to compile-time determinable ones, which makes this approach works in finding
which variable a pointer points to.

20

1 char A; // global variable

2 int B; // global variable

3 int C[2]; // global variable

4 void f(int d[4]) {

5 int i = 8;

6 g(i, d);

7 }

8 void g(int x, int y[4]) {

9 B = A + x; // side effect on global B

10 C[1] = C[0] + x; // side effect on global C

11 y[1] = y[0] + x; // side effect on arguments

12 }

Figure 3.4: Global variable usage with sub-function call example.

function g which updates the globals B and C, and pass-by-reference argument y.

Extended signatures are exploited to replace function calls with uninterpreted

functions symbols. Suppose that function g has been certified; when certifying

function f, we replace g with an uninterpreted function (say G) of four arguments,

and the effect of the invocation of g on the globals (B and C) and argument y is

given by:

〈d, B, C〉 = G(i, d, A, C).

Since each invocation of sub-functions is replaced by an uninterpreted function

symbol, we alleviate path-explosion problem introduced by subroutine calls. It

is worth noting that this can generate false alarms, and we need to take special

care to handle common false negatives. We discuss this issue when describing our

experiments.

21

1 int f(int x) {

2 int i=0, sum=0;

3 int y = x + 100;

4 for(i=0; i<y; i++){

5 sum += i * 4;

6 }

7 return sum + x;

8 }

t1 := x + 100

t2 := ϕ [0, B1] [t7, B3]

t3 := ϕ [0, B1] [t6, B3]

t4 := t2 < t1

if t4 goto B3

t8 := t3 + x

return t8

t5 := t2 × 4

t6 := t5 + t3

t7 := t2 + 1

B1

B2

B3B4

(a) (b)

Figure 3.5: A simple function with a loop in C and its IR. (a) Function f has

an unbounded for loop. (b) The IR of f, with boxes representing basic blocks,

and arrows representing control flow. Control flow merge is implemented via φ-

instructions in basic block B2.

3.4 HANDLING LOOPS

Loops are the second major contributors to path explosion (and, in case of un-

bounded ones, non-termination) in symbolic simulation of software programs. The

reason is that symbolic simulation of a loop induces (at least) two branches for

each loop iteration simulated: (1) the branch where the loop test holds (and hence

the body is executed) and (2) the branch where the test is false.2

We handle equivalence of loops by an approach called cut-loop optimization.

Our approach borrows ideas from a corresponding one for back-end SEC between

high-level IR and RTL [36], and is an adaptation of classic inductive assertions

2The branching may be limited if the value of the loop test can be computed concretely
during symbolic execution of the loop. However, this is not possible for most non-trivial loops in
practice.

22

approach [29, 38] to program equivalences. The idea is to “cut” the loop, which

reduces equivalence of loop execution to equivalence checks at entry, body, and

exit. To illustrate the idea, consider the example in Fig. 3.5. Fig. 3.5 (a) shows a

simple unbounded loop in C. Fig. 3.5 (b) shows the IR of function f.3 If the input

x is symbolic, then the symbolic expansion of the loop (and hence the symbolic

execution of f) will not terminate.4 We assume loops are in natural loop form in

the IRs. A natural loop must have a single entry point (header) and at least one

back edge leading the control flow from the loop body back to the loop header.

Fig. 3.5 (b) is an example of a natural loop, where B2 is the loop header, and edge

(B3, B2) is the back edge.

Back-end SEC [36] exploits mappings of variables provided by behavioral syn-

thesis tool. For simplicity, suppose each basic block is a scheduling step in Fig. 3.5 (b).

At the end of execution of each scheduling step, we check the equivalence of all

mapped variables. If they are equivalent, we replace every pair of mapped vari-

ables with the same symbolic symbol (with cut-point optimization). Suppose the

loop is entered from B1, after executing of B3, variables t5, t6 and t7 are checked

equivalence with their mapped variables in RTL, and then will be replaced with

symbolic variables. Till this point, we checked the first iteration of the loop. The

subsequent iterations of the loop are all led by the back edge. Since we made t5,

t6 and t7 symbolic, executing the subsequent iterations once will cover all possible

cases. All we need to do is to avoid multiple entrance of a loop through the same

back edge.

3Control flow merge is implemented via φ-instructions in basic block B2. A φ-instruction v

= φ [α, Bi] [β, Bj] in basic block B means that v has the value α if B is reached from Bi, and β

if reached from Bj .
4Technically, symbolic simulation can terminate when a fixpoint is reached, i.e., when all

reachable states have been explored. But achieving such fixpoint requires the restriction that
all the variable types are finite, as well as an expensive fixpoint computation through symbolic
simulation.

23

However, variables mappings between two IRs are not available during front-

end transformations. Suppose a loop consists of a list of basic blocks; then we

must identify a minimum set of variables that need to be mapped between the two

IRs. In particular, we need to identify mappings for loop-carried variables. The

reason is that we want to make them symbolic, so that we only need to execute

the loop once through each back edge (see below).

We achieve the above through use-definition chains analysis [10]. In the ex-

ample shown in Fig. 3.5 (b), loop L consists of basic blocks B2 and B3, variable

t6 and t7 are loop-carried variables. For example, execution of loop L is done as

follows:

1. Loop L is entered from B1:

• path 1: B1 → B2 → B4: we check the equivalence of return variable t8;

• path 2: B1 → B2 → B3: we check the equivalence of loop-carried

variables t6 and t7, and make them symbolic afterwards.

2. Loop L is entered from B3 through the back edge:

• path 1: B3 → B2 → B4: we check the equivalence of return variable t8;

• path 2: B3 → B2 → B3: we check the equivalence of loop-carried

variables t6 and t7, and terminate L.

The above approach requires detecting the loop structure (e.g., loop header,

exit, back edge, etc.) in the IRs. Once the loop-carried variables are identified,

equivalence of loop computation can be verified by checking the first iteration

(entered from entry) and one subsequent symbolic iteration (entered through back

edge) for each back edge; since we made loop-carried variables symbolic after first

iteration, this covers all possible cases for the subsequent iterations. The sufficiency

of these checks was mechanically proven in previous work using the ACL2 theorem

prover [63].

24

Finally, cut-loop requires that when the corresponding loops in the two IRs be-

ing compared have the same structure, and perform equivalent computation at each

iteration, e.g., it is inapplicable if the transformation entails partial loop unrolling.

However, as our experiments indicate, most behavioral synthesis transformations

are structure-preserving, making the optimization widely applicable.

3.5 EXPERIMENTAL RESULTS

Table 3.1: Summary of CHStone Benchmark for Equivalence Checking of Front-

end Compiler Transformations

App. Domain Design Lines of C Code Lines of RTL # of Functions

Arithmetic DFADD 542 12933 17

DFDIV 452 10948 19

DFMUL 392 7100 16

DFSIN 772 22949 31

Microprocessor MIPS 256 7237 1

Media Processing ADPCM 521 33706 15

GSM 388 22816 12

JPEG 1031 53584 30

MOTION 414 13770 13

Security AES 699 40014 11

BLOWFISH 1241 23490 6

SHA 1284 12491 8

We applied our framework to CHStone [37], a publicly available behavioral

synthesis benchmark suite containing 12 ESL designs (in C). We used LegUp [17]

to synthesize these designs. We conducted our experiments on a workstation with

Debian 7.1 running on a 2.93 GHz Intel Xeon X3470 processor with 8 GB of

25

Table 3.2: Summary of Evaluation on CHStone Benchmark for Equivalence Check-

ing of Front-end Compiler Transformations

Design # of Checked

Transformations

of Successful

Checks

Success

Rate (%)

Avg.

Time (s)

Memory

(MB)

DFADD 62 62 100.00 0.78 159.86

DFDIV 62 78 79.49 0.95 161.22

DFMUL 47 48 97.92 0.93 155.93

DFSIN 113 115 98.26 0.88 187.70

MIPS 10 13 76.92 2.32 15.01

ADPCM 69 101 68.32 3.33 123.85

GSM 53 86 61.63 0.26 122.94

JPEG 158 237 66.67 1.55 694.76

MOTION 59 74 79.73 0.49 52.50

AES 67 85 78.82 4.22 120.56

BLOWFISH 27 48 56.25 3.28 93.58

SHA 36 61 59.02 0.05 106.14

memory. We focused on intra-procedural transformations. The experiments were

run with a cutoff time of 90 seconds: certifications taking longer than this time

are classified as failures. The reason for this cutoff is that in our experience,

most successful transformation certifications that complete in any reasonable time

finish within a few seconds of this size; if symbolic execution takes more than 90

seconds, it is unlikely to finish. Thus we believe that the impact of making the

cutoff longer on the number of successful transformations will be insignificant. Our

tool supports a number of SMT solvers. The results on this benchmark use Z3 [24]

since it outperforms others.

Table 3.1 and 3.2 show the statistics of the experiments, e.g., the number

26

 0%

 20%

 40%

 60%

 80%

 100%

B
L

O
W

F
IS

H

S
H

A

G
S

M

JP
E

G

A
D

P
C

M

M
IP

S

A
E

S

M
O

T
IO

N

D
F

D
IV

D
F

M
U

L

D
F

S
IN

D
F

A
D

D

S
u

cc
es

s
R

at
e

without cut−loop

 with cut−loop

Figure 3.6: Comparison of success rate on designs of CHStone benchmark without

and with cut-loop optimization. The x axis is ordered by the success rate with

cut-loop.

of transformations applied by the synthesis tool,5 the number of transformations

checked successfully, as well as time and memory usages. In all successful cases,

time and memory usages are modest. With compositional execution and cut-loop

optimization, we successfully validated 75.69 percent of transformations (763 out

of 1008).

Fig. 3.6 compares the success without and with cut-loop optimization. Without

cut-loop, we can validate only 52.88 percent of transformations (533 out of 1008).

Cut-loop optimization provides an improvement of 22 percent. The improvement

is most significant for AES, JPEG, GSM, and BLOWFISH since they have more loops.

The transformations that fail certification (about 25 percent) typically do so for

5Some transformations are applied more than once.

27

two reasons: (1) the transformation changes loop structure thus makes cut-loop

inapplicable; or (2) symbolic expressions of corresponding variables in source and

target programs become too complex, causing blow-up of the SMT solver.

Since we focus on intra-procedural transformations, we check the designs com-

positionally; this may sometimes introduce subtle false alarms. False alarms can

arise in surprising ways, e.g., the extended signature of a sub-function is different

in the source and target programs. As an example 6, suppose that a function foo

has a sub-function legup memcpy that is invoked as follows.

r = legup memcpy(a, b, c)

This sub-function has a return value, but the value is never used subsequently.

Similarly, suppose that a function bar invokes the same sub-function legup memcpy

as follows:

legup memcpy(a, b, c)

This invocation treats legup memcpy as if it returns void. The problem is when we

compositionally check foo and bar, we abstract sub-function legup memcpy with

uninterpreted function. Since the extended signatures are different for two invoca-

tions of the sub-function, (one with a return value and the other one without), a

näıve approach will report an inequivalence due to type mismatch. Since the result

of return value r in foo is not used, this inequivalence is a false alarm. However,

it can be easily eliminated, by excluding from the extended signature the types of

return values that are not subsequently used.

3.6 RELATED WORK

Formal verification of compilers: There has been research on formally prov-

ing compiler transformations correct by theorem prover. CompCert [49] is the

6This is a real example in function Fill Buffer in MOTION design. The transformation is
called “Combine Redundant Instructions”

28

first formally verified compiler. Similar to CompCert, Vellvm [76] project formal-

izes LLVM’s intermediate representation, and develops a framework for reasoning

about programs. Ray et al. proposed an certification framework for transforma-

tions in behavioral synthesis [64]. This framework uses theorem proving to certify

high-level transformations. However, using theorem proving to prove all transfor-

mations requires enormous manual effort; it also requires knowledge about internal

algorithms of each transformation, which is often not available because most be-

havioral synthesis tools are closed source.

Translation validation: Pnueli et al. proposed the notion of translation valida-

tion [59] for validating the transformations during compilation. Instead of verifying

a transformation once and for all, they showed how to generate a proof of correspon-

dence between the source and target programs for each individual transformation.

However, it is problematic for the approach to handle programs with more than

one loop. Zuck et al. extended this approach to support structure-modifying trans-

formations [77]. Necula used symbolic evaluation techniques from proof-carrying

code to tackle translation validation [56]. However, this approach only handled

transformations where source and target programs have the same branch condi-

tions. Zaks and Pnueli proposed a framework to construct the cross product of the

source and target programs [75]. This reduces the problem of checking the equiv-

alence of two programs to verification of a single program. Peggy [69] performed

translation validation for the LLVM compiler using equality saturation. It built

Program Expression Graphs for the source and target programs of a transforma-

tion and then reasons about equalities among graph nodes. If output nodes of two

programs are shown equal, the two programs are equivalent. To our knowledge,

these approaches do not scale to programs of the size we consider in this research.

Note that a key reason for the differences in scalability is that the aim of the above

line of research is to check the correctness of generic compiler transformations

while we focus on the transformations in behavioral synthesis. In particular, the

29

programs being synthesized can be represented as finite state machines and many

language features such as dynamic memory allocation are prohibited.

Symbolic execution based techniques: There has also been recent research

on applying symbolic techniques to checking the equivalence of two arbitrary pro-

grams. uc-klee [62] proposes a smart stub function that invokes two routines

that need to be verified for equivalence, and leverages klee [15] to symbolically

execute the stub function. Upon finding a path, uc-klee checks if the two rou-

tines behave the same. uc-klee enumerates path with best efforts; thus it suffers

from path explosion and does not terminate when executing unbounded loops.

sym-diff [48] is a symbolic differentiation tool, which symbolically executes two

programs with same symbolic inputs, and checks if the two programs have identi-

cal outputs. sym-diff handles loops by unrolling them to a user-specified depth;

consequently it cannot certify equivalence between programs whose loops itera-

tions are long or controlled by input variables; we can handle such programs with

cut-loop optimization.

3.7 SUMMARY

In this Chapter, we have presented a scalable SEC framework to validate the cor-

rectness of front-end compiler transformations in behavioral synthesis. We use

symbolic execution technique to explore (possibly all) paths of the source and tar-

get programs of each transformation. We showed how to ameliorate path explosion

and non-termination in symbolic simulation through compositionality and cut-loop

optimization. Our framework can fully automatically certify results of more than

75 percent of 1008 transformations employed by a synthesis tool on designs from

the CHStone benchmark. We are not aware of any SEC framework that can handle

compiler transformations at such diversity and scale.

Our results underline the importance of aligning verification methodology with

30

the design flow in the development of a scalable verification framework. SEC for

behavioral synthesis transformations at the scale achieved here has not been done

before because extant tools focused on input/output equivalence between the high-

level ESL description and synthesized RTL; such efforts are ineffective because of

the high abstraction gap. On the other hand, pre-certified compiler transforma-

tion via theorem proving as proposed in previous work [64] was not successful

both because of the number and complexity of such transformations and the reluc-

tance of synthesis tool vendors to expose transformation implementation for formal

analysis. Our key insights are that (1) design IRs before and after each transfor-

mation application can be made available from a commercial synthesis flow even

if the transformations themselves are proprietary, and (2) restrictions in program

features enforced by behavioral synthesis from the need to eventually generate

hardware circuit from the design description make it possible to use “black-box”

SEC techniques effectively to certify these IRs. The key take-away from our paper

is that once the right verification methodology has been identified, it is possible

with insight of the source of verification complexity of the domain to adapt well-

known analysis ingredients into an end-to-end certification solution in a complex

domain.

One possible argument against our framework is the requirement that IRs after

each transformation application be available to the tool. In particular, if the

validation is performed by a third party, this requirement may provide exposure

to confidential design intellectual property (IP). In practice, we have not seen that

to be a problem for two reasons. First, in many industrial contexts, the validation

is performed by personnel who have access to the original ESL and RTL designs

anyhow (e.g., by a validation group in the same organization that designed the

ESL). Second, most extant commercial behavioral synthesis tools already provide

the information on IRs; we do not require any additional information to perform

our analysis. Nevertheless, the potential of IP leakage is an important one, and we

31

plan to look at the constraints and data available to third-party evaluators during

design certification in future work to determine how our framework can be made

usable in that context.

32

Chapter 4

VALIDATING SCHEDULING TRANSFORMATION

4.1 SCHEDULING TRANSFORMATION

Scheduling is a critical synthesis phase that directly affect the quality of synthe-

sized design in terms of timing, performance, and thermal characteristics [22].

Scheduling transformation involves complex heuristics to ensure that the design

being synthesized can meet the timing and resource constraints while preserving

control and data dependencies.

To understand the source of resource constraints consider scheduling the fol-

lowing operations:

S1: x = y * z;

S2: p = x + y;

S3: w = a * b;

S4: q = a + z;

Assume that the design is not being pipelined, the system has a single multiplier

that requires 3 cycles for completion, and two adders. Suppose the scheduling

transformation schedules S1 to start at clock cycle t. Then, since there is data

dependency between S1 and S2, the operation S2 cannot be scheduled before t.

Furthermore, since multiplier takes 3 clock cycles, S2 cannot be scheduled to start

before cycle t+3. Finally, since there is only one multiplier, S3 cannot be scheduled

to start before cycle t+3 either, although there is no data dependency between S1

33

1 void block::thread() {

2 int accu = 0;

3 wait();

4 while(1) {

5 int a = In.read();

6 Out.write(a + accu);

7 wait();

8 int b = In.read();

9 Out.write(b * b);

10 accu = In.read();

11 wait();

12 }

13 }

Figure 4.1: An example of a SystemC thread, which has two superstates in the

while loop.

and S3 (or S3 is scheduled at clock cycle t, then S1 can not be scheduled before

cycle t + 3). On the other hand, since there are two adders, S2 and S4 can be

scheduled concurrently.

For untimed C/C++ designs, scheduling transformation can assign any clock

cycle to an I/O operation as long as control/data dependencies and resource con-

straints as discussed above are met. However, most high-level descriptions of hard-

ware designs also specify partial timing. For example, SystemC designs can have

default I/O timing constraints that are usually specified by wait statements. Be-

havioral synthesis tools usually provide the user the flexibility to explore different

architectures by picking different I/O scheduling modes [26] as discussed below.

1. Cycle-Fixed mode: In this mode, the user explicitly specifies the timing of

the I/O operations, and the scheduling transformation cannot change or

34

O

I
+accu

In

Out

I
*

O

I

accu

In

Out O

I
+

I

*
O

I

clk

Cycle
Fixed

Superstate
Fixed

Figure 4.2: Cycle-fixed and superstate-fixed scheduling mode for the while loop

in thread in Fig. 4.1.

refine this timing. This is applied typically at design interfaces which imple-

ment communication protocols (possibly with other external interfaces), and

the cycles when data must be read or written is governed by the protocol.

Fig. 4.2 shows an example of cycle-fixed scheduling for the thread in Fig. 4.1.

Note that the number of states is 2, which is the same as the design before

scheduling.

2. Superstate-Fixed mode: In this mode, the user specifies wait statements.

The scheduler comprehends these wait statements to be the boundaries of

“superstates”, which impose constraints on scheduling I/O operations as fol-

lows. Informally, a superstate is a sequence of operations, possibly scheduled

over multiple clock cycles, with the requirements that (1) no I/O operation

in a superstate can be moved across the superstate boundary, and (2) all I/O

writes must be scheduled at the last clock cycle assigned to operations in the

superstate. Fig. 4.2 shows an example of its use for thread in Fig. 4.1. Here

we assume that the multiplication takes two cycles, we can see that the read

in line 10 and the write in line 9 are scheduled to the third clock cycle.

35

3. Free-Floating mode: The scheduling transformation can assign any I/O op-

eration to any clock cycle (possibly switching their program order), even add

or delete clock cycles, as long as control/data dependencies are maintained.

4.2 FORMALIZATION

In order to formalize the validation requirement to certify scheduling transforma-

tions, we need a notion of correspondence between IRs before and after scheduling.

In this section, we develop the formalization of this notion. Note that the notion

we require for certifying a specific scheduling application depends on the scheduling

mode for the application.

Assumptions and Conventions. Our notion of correspondence relates execu-

tions of IRs before and after scheduling. Consequently, it depends on a formal

semantics of IRs. Our formalization uses the Control/Data Flow Graph (CDFG)

defined below. It is widely used as design representations in research on compiler

and intermediate languages. Our formalization assumes that (1) the set Vo of oper-

ations in an IR is a subset of a fixed set O of all operations; and (2) all operations

in O are defined through operational semantics over abstract machine states. We

also assume the IR to be naturally decomposed into a collection of basic blocks

Vb. These assumptions are standard in formalization of control constructs for pro-

gramming language semantics. Furthermore, O is assumed to contain standard

variable read and write operations with the usual meaning, and a wait operation

that specifies a transition in the operational model with no effect on the under-

lying machine state. Given a set V of operations, we define the active subset of

V , denoted by V [N] to be the subset of V excluding all wait statements. Finally,

we restrict operations in O to be in Single Static Assignment (SSA) form. This is

also standard for IRs generated by compiler transformation, e.g., LLVM imposes

this restriction. Consequently, for each operation o ∈ Vo there is a unique basic

36

block in Vb containing o. Control and data flows are determined by data depen-

dencies via usual read-after-write paradigm: for o1, o2 ∈ O, o2 depends on o1 if

(1) o1 appears before o2 in the program order, and (2) o2 reads the value of some

variable written by o1. Following conventions from program analysis, the control

flow graph of an IR is a directed graph GC , (Vb, Ec) where an edge e ∈ Ec from

basic block b0 to b1 represents a control dependency of b1 on b0, and the data flow

graph is the directed graph GD , (Vo, Ed) where an edge e ∈ Ed from operation o1

to o2 represents a data dependency of o2 on o1. For convenience we assume that

for any wait operation w and any write operation o preceding w in the IR, there

is an edge from o to w in GD; correspondingly, for any read or write operation o′

following w, there is an edge from w to o′.

Definition 4.1 (CDFG). The CDFG is a triple G , (GC , GD, R), where Gc ,

(Vb, Ec) is a control flow graph, GD , (Vo, Ed) is a data flow graph, and R is a

mapping R : Vo → Vb.

Informally, for each operation o ∈ Vo, R(o) represents the basic block for o.

The mapping is well-defined by the uniqueness assumption.

The goal of scheduling transformation is to assign to each operation a clock

cycle of execution. For this paper, we assume that the set of operations does not

change due to scheduling, and the control/data flow remains unaffected. This is

justified since operations are typically modified by compiler transformation before

scheduling, which can be certified through a separate equivalence checking tech-

nique as achieved by previous work [74]. Furthermore, control and data flow in

behavioral synthesis are typically modified by either compiler transformations or

pipelining, which can also be separately certified [34].

We formalize the timing associated with an operation execution with the notion

of a state transition partition (STP) defined below. In the following definition, it

is convenient to interpret the pair (Pi, τi) as the directive that (active) operations

37

in Pi are scheduled at clock cycle τi.

Definition 4.2 (STP). Let Vo be a set of operations. A state transition partition

of Vo is a finite set of pairs {(Pi, τi) : i = 1 . . . k}, where each Pi is a sequence of

operations over Vo[N] and the following conditions hold:

1.
⋃k

i=1 Pi = Vo[N];

2. Pi ∩ Pj = ∅ for i 6= j;

3. τi ∈ N with τi 6= τj for i 6= j.

If the pair (P, τ) is a member of STP S then for any operation o ∈ P we

represent τ as τS[o] and P as PS[o], dropping the subscript when there is no

ambiguity.

STP can be viewed as a grouping of active operations in Vo by associating

them to a clock cycle for execution. Note that each partition is specified as a

sequence rather than a set. The reason is that due to control/data dependencies

one cannot execute all the operations together even if all of them can be completed

(perhaps sequentially) within one clock cycle. It is convenient to view each par-

tition Pi as a sequence requiring that if an operation o appears before o′ then o′

cannot be scheduled for execution before o. We utilize this restriction in defining

trace compatibility below, which relates operations in STP with the control/data

flow requirements specified by a CDFG. Informally, we want that the operation

scheduling must respect the data and control dependencies in the CDFG, i.e., an

operation o can be scheduled at cycle τ only after any operations o depends on

have completed, either in a previous cycle or earlier in the same cycle.

Definition 4.3 (Operation Precedence). Given an STP S over a set of operations

Vo, and two operations o1, o2 ∈ Vo, we say o2 follows o1 in Vo if either (1) τ [o2] >

τ [o1], or (2) τ [o1] = τ [o2] and o2 appears after o1 in P [o1].

38

Definition 4.4 (Trace Compatibility). Let G , (GC , GD, R) be a CDFG over the

set of operations Vo and basic blocks Vb, and let S , {(P, τ)} be an STP over Vo.

We say that S is compatible with G is the following conditions hold for each pair

of operations oi and oj in Vo[N]:

1. If there is a path from oi to oj in GD then then oj follows oi in S.

2. If there is a path from R(oi) to R(oj) in GC then oj follows oi in S.

In addition to respecting control/data flow requirements from CDFG specified

by the definition of Trace Compatibility, scheduling must also satisfy the I/O

restrictions as specified by the scheduling mode. Formally, we capture the I/O

restrictions for each scheduling mode by further restricting for I/O operations the

timing constraints.

The most “rigid” scheduling mode is cycle-fixed. We formalize its requirement

in the following definition. Informally, the definition requires that the I/O opera-

tions be scheduled strictly following the timing constraints specified by the user.

Definition 4.5 (Valid Cycle-Fixed Schedule). Let S , {(Pi, τi), i = 1, . . . , k} over

an operation set Vo and G , (GC , GD, R) be a CDFG. We say that P is a valid

cycle-fixed schedule with respect to G if S is compatible with G, and the following

additional condition holds:

Let o1 and o2 be two read or write operations such that R(o1) = R(o2).

Suppose that there is a path Π in GD from o1 to o2 that has n wait

operations. Then τ [o2] = τ [o1] + n.

The scheduling requirements for the superstate-fixed mode are the most elab-

orate. We formalize them below.

Definition 4.6 (Valid Superstate-Fixed Schedule). Let S , {(Pi, τi), i = 1, . . . , k}

over an operation set Vo and G , (GC , GD, R) be a CDFG. We say that P is a

39

valid superstate-fixed schedule with respect to G if S is compatible with G, and

additional timing conditions hold which are specified as follows. Let oi and oj be

two read or write operations such that R(oi) = R(oj). Suppose that there is a

path Π in GD from oi to oj that has n wait operations. Then τ [oj] ≥ τ [oi] + n. In

addition, let o1, o2, o3 be operations such that R(o1) = R(o2) = R(o3), o1 and o2

are write operations, and o3 is a wait operation. Suppose that there are paths Π1

and Π2 in GD from o1 to o3 and o2 to o3 such that there is no intermediate wait

operation. Then:

1. P [o1] = P [o2].

2. Let o be any operation such that R(o) = R(o1) and there is a path Π from o

to o1 (resp., o2) in GD. Then τ [o] ≤ τ [o1] (resp., τ [o] ≤ τ [o2]).

3. Let o be any operation such that either (1) there is a path Π from o1 (resp.,

o2) to o in GD, or (2) there is a path Π′ from R(o1) to R(o) in GC (resp.,

o2). Then τ [o1] ≤ τ [o] and τ [o2] ≤ τ [o].

We ensure that the scheduling does not “squeeze” I/O operations by removing

clock cycles. In addition, conditions 1 – 3 ensure that any write operation is

scheduled in the last before any user-provided wait operation. Note that unlike

the cycle-fixed mode, scheduling can introduce additional wait operations in this

mode, thereby “stretching” operation scheduling to more cycles than specified by

user-provided wait operations.

Finally, for free-floating mode, since there is no additional restriction on I/O

operations, a valid schedule is one that satisfies Trace Compatibility.

40

4.3 VALIDATION APPROACH

4.3.1 Validating Trace Compatibility

Let G be the CDFG of a design and S be the STP after scheduling for a set Vo of

operations. Our approach to control/data dependency checking (and hence free-

floating mode scheduling) is to first define a dependency graph G∆, consolidating

the control and data dependencies. The dependency graph G∆ = (V∆, E∆) where

V∆ is a set of operations, E∆ is a tuple 〈oi, oj, C〉, which is interpreted to mean

that operation oj depends on oi under condition C. Condition C is a conjunction

of Boolean variables. Note that dependency graph G∆ not only captures the

data dependencies of a design, but also includes control dependencies through the

condition encoded in each edge. Constructing the graph requires a traversal of

CDFG G, identifying for each operation o ∈ Vo, the condition under which o is

executed. This can be done efficiently using def-use chain analysis [10], exploiting

the SSA form of the operations: since the left-hand-side of every assignment is

unique we can trivially identify variable dependency chains. Finally, to check if

the control/data dependencies are satisfied in S, it is sufficient that for each pair

of operations oi and oj, oj follows oi in S under condition C.

According to Definition 4.4, S is compatible with G if control and data depen-

dencies are preserved in S. Therefore we can validate the trace compatibility by

comparing the dependency graphs of S and G.

4.3.2 Validating I/O Timing

The I/O timing is important for partially timed designs (e.g. wait statements ex-

plicitly specified in SystemC). Even for untimed C/C++ designs, some behavioral

synthesis tools allow the user to specify a protocol region of design to instruct the

scheduling transformation to preserve the timing of the I/Os within the region.

Within the protocol region, the scheduling transformation will not re-order the

41

void dut::my_thread() {
 initialize();
 while(true) {
 wait();
 a = 1;
 if(x) {
 wait();
 b = a + 1;
 } else {
 wait();
 c = a + b;
 wait();
 d = c + 1;
 }
 }
}

s0

s1

s2 s3

s4

(a) (b)

Figure 4.3: Extract superstates of a thread in SystemC. (a) my thread is a thread

of module dut, wait statements are the boundary of superstates in SystemC. (b)

Superstates and their transitions of my thread.

I/O operations, and will not insert wait statements. The wait statements specify

the boundary of superstates.

For Cycle-Fixed and Superstate-Fixed modes, we need to additionally validate

the I/O timing requirements. In order to check the timing requirements, it will be

convenient to call the partitions in the STP S to be states and the set of operations

between any two user-specified wait operations in a CDFG G to be superstates.

Fig. 4.3 (a) shows an example of a module dut in SystemC, where my thread

is a thread of dut. Fig. 4.3 (b) shows the superstates and their transitions in

my thread.

Let an execution trace π = [ss1, s
s
2, . . . , s

s
i , . . .] of a CDFG G , (GC , GD, R) be

a sequence execution of superstates following control flow in GC . Let an execution

trace π′ = [sg1, s
g
2, . . . , s

g
j , . . .] of an STP S be a sequence of operation segments,

42

Algorithm 2: Check-Cycle-Fixed-Mode(G, S)

1 ss← Build-Superstates(G)

2 T1 ← Compute-Traces(ss)

3 T2 ← Compute-Traces(S)

4 foreach π = [ss1, s
s
2, . . . , s

s
m] ∈ T1 do

5 C ← Extract-Trace-Cond(π)

6 [sg1, s
g
2, . . . , s

g
n]← Find-Trace(T2, C)

7 assert m = n ⊲ have the same number of cycles

8 for i← 0 to m do

9 assert Has-1-1-Mapping(Frw(s
s
i), Frw(s

g
i))

10 return true

such that operations in each segment belong to the same partition. Note that

traces π and π′ can be infinite due to loops structures. Since we have already

checked the control and data dependencies of G and S in Section 4.3.1, we know

the loop structures are preserved by the scheduling transformation. Thus, when

computing the traces of G and S, we can break loop back-edges temporarily. As a

result, traces in G and S will be finite.

Let Frw be a projection function, which takes a superstate ssi or operation

segment sgi , outputs only read and write operations. Similarly, let Fw be another

projection function, which only outputs write operations.

We are now ready to formally specify our algorithm for Cycle-Fixed and Superstate-

Fixed modes:

From the requirements of Cycle-Fixed mode, the number of superstates after

scheduling must be equal to the number of scheduled states. Algorithm 2 checks

if STP S is a valid Cycle-Fixed scheduling of CDFG G. Function Build-Super-

states build superstates ss from G. The superstates can be obtained easily by

43

traversing G in a depth-first search manner while accumulating operations. A new

superstate is built when we encounter a wait operation. Then function Com-

pute-Traces computes all traces in ss and S. Note that we temporarily break

loop back-edges, therefore there will be finite number of traces for ss and S. For

each trace π ∈ T1, functions Extract-Trace-Cond and Find-Trace will pair

up traces in ss and S according to the trace condition C. We assert that each

paired traces should be executed in the same number of cycles, and within each

cycle, function Has-1-1-Mapping checks that I/O operations have one-to-one

mappings between each superstate ssi and operation segment s
g
i . If there are no

assertion failures after checking all traces, Algorithm 2 returns true, meaning that

STP S is a valid Cycle-Fixed scheduling of CDFG G.

Algorithm 3: Check-Superstate-Fixed-Mode(G, S)

1 ss← Build-Superstates(G)

2 T1 ← Compute-Traces(ss)

3 T2 ← Compute-Traces(S)

4 foreach π = [ss1, s
s
2, . . . , s

s
m] ∈ T1 do

5 C ← Extract-Trace-Cond(π)

6 π′ = [sg1, s
g
2, . . . , s

g
n]← Find-Trace(T2, C)

7 start← 0

8 for i← 0 to m do

9 end← Find-Shortest-Segments(π′, start, ssi)

10 seg ← [sgstart, . . . , s
g
end]

11 assert Has-1-1-Mapping(Frw(s
s
i), Frw(seg))

12 assert Has-1-1-Mapping(Fw(s
s
i), Fw(s

g
end))

13 start← end+ 1

14 return true

44

Algorithm 3 checks if STP S is a valid Superstate-Fixed scheduling of CDFG

G. Similarly, the algorithm computes the traces of G and S. Each superstate may

be “stretched” into multiple state after scheduling. For each trace pair π ∈ T1 and

π′ ∈ T2, we use function Find-Shortest-Segments to find the corresponding

trace segments that were “stretched” from a particular superstate. Function Find-

Shortest-Segments(π′, start, ssi) finds the trace segments seg = s
g
start, . . . , s

g
end

with minimum length which starts from start and ends at end, such that Fio(s
s
i) ⊆

Fio(seg). We then assert that I/O operations have one-to-one mappings between

each ssi and trace segments seg, which means that all I/O operations are within

the bound of the superstate. We finally assert that write operations have one-

to-one mappings between ssi and trace segment s
g
end (the last segment in seg),

which means that all write operations within a superstate are scheduled to the

last “stretches” state.

4.4 EXPERIMENTAL RESULTS

Table 4.1: Summary of Evaluation on S2CBench Benchmark

App. Domain Design Lines of C Lines of RTL # Processes. # Functions. Time (s)

Security AES CIPHER 429 3941 1 11 8.89

KASUMI 415 3602 2 5 0.44

MD5C 467 4105 1 7 9.72

SONW 3G 522 3121 1 11 1.54

Media Proc. QSORT 204 865 1 1 0.07

SOBEL 269 1191 1 2 0.15

ADPCM 270 370 1 3 0.05

FIR 176 561 1 2 0.07

DECIMATION 422 3267 1 1 9.14

INTERPOLATION 231 1721 1 1 0.18

IDCT 450 4266 2 2 1.08

DISPARITY 634 4355 4 4 9.06

We have implemented our scheduling validation algorithms in OCaml. We

45

1 void block::thread() {

2 int accu = 0;

3 wait();

4 while(1) {

5 Out.write(a);

6 Out.write(a+1);

7 wait();

8 }

9 }

1 void block::thread() {

2 int accu = 0;

3 wait();

4 while(1) {

5 Out.write(a);

6 add state(); // an extra cy

cle is added

7 Out.write(a+1);

8 wait();

9 }

10 }

(a) (b)

Figure 4.4: An example of incorrect scheduling of signal I/O. (a). Design before

scheduling, where a signal output Out is written twice with different values, how-

ever, only the last write is visible and valid. (b). The design after scheduling,

where two writes of Out are scheduled to two different cycles. For simplicity, we

use function add state() to represent the scheduling transformation will add a

new state on that line.

applied scheduling validation algorithms to designs from S2CBench [66], which is a

publicly available behavioral synthesis benchmark suite containing 13 ESL designs

written in synthesizable SystemC. The designs were synthesized by a commercial

synthesis tool. We conducted our experiments on a workstation with Debian 7.1

running on a 2.93 GHz Intel Xeon X3470 processor with 8 GB of memory. Table 4.1

shows the statistics of the experiments. We can validate each of the 12 designs

within 10 seconds. In the benchmark, the FFT design is not shown, because the

floating point data type in it is not accepted by the synthesis tool.

46

1 void block::thread2() {

2 var = 0; // var is a variable

3 Out.write(0); // output

4 sig.write(0); // sig is a signal

5 wait();

6 while(1) {

7 var ++;

8 sig.write(var);

9 sc_uint<16> j = sig.read();

10 Out.write(j);

11 wait();

12 }

13 }

1 void block::thread2() {

2 var = 0; // var is a variable

3 Out.write(0); // output

4 sig.write(0); // sig is a signal

5 wait();

6 while(1) {

7 var ++;

8 sig.write(var);

9 add state(); // an extra cycle

is added

10 sc_uint<16> j = sig.read();

11 Out.write(j);

12 wait();

13 }

14 }

(a) (b)

Figure 4.5: An example of incorrect scheduling of signal I/O. (a). Design before

scheduling, where a local signal sig is written and then read at the same cycle.

The read statement takes the old value. (b). The design after scheduling, where

the write and read statements are scheduled to two different cycles, then the read

takes the new value. For simplicity, we use function add state() to represent the

scheduling transformation will add a new state on that line.

SystemC allows users to model time and concurrency. In particular, according

to the SystemC standard [6], if a given signal is written multiple times within an

evaluation phase, the last write wins. That means all writes other than the last one

is invisible in the simulation. The scheduling transformation must preserve signal

behavior during scheduling. We found two bugs in the synthesis tool which violate

the specification of SystemC. For simplicity, we provide the simplified version of

the programs, showing both pre- and post-scheduling designs in SystemC for easy

understanding.

47

Fig. 4.4(a) shows a design before scheduling, where Out is an output sig-

nal of type sc uint<16>. According to the specification, the write statement

Out.write(a) in line 5 is invisible and invalid, therefore should be eliminated. In

another word, the only observable behavior should be the write statement in line

6. However, as shown in Fig. 4.4(b), the scheduling transformation scheduled the

two writes into two different states. In this case, both of the two writes are ob-

servable, which violates the SystemC standard. Algorithm 3 detects this violation

by checking that the two write statements are scheduled to two different states.

Fig. 4.5 shows another scheduling bug. According to the SystemC standard, If

a signal is written and read during the same evaluation phase, the old value will be

read. The value written will be available in the subsequent evaluation phase. In

Fig. 4.5(a), signal sig is written and read in the same cycle. Therefore variable j

will take the old value of sig. However, after scheduling, as shown in Fig. 4.5(b),

the read of sig is scheduled to the next cycle after the write. Variable j will take

the new value of sig instead of the old one.

4.5 RELATED WORK

Anderson [11] reports an early effort on the verification of as soon as possible

scheduling transformation using theorem proving. Narasimhan et al. [55] used the-

orem proving approach to verification of force-directed list scheduling algorithm for

resource-constrained scheduling in high-level synthesis. Karfa et al. [42] develops

techniques for more automated equivalence checking on scheduling transformation.

This framework converts the designs before and after scheduling transformation

into Finite State Machine with Datapath (FSMD) models, then checks the equiv-

alence of two FSMD models. The major difference between the above approaches

and our research is the observation that scheduling transformations can be extri-

cated from compiler transformations and handled as a verification of partitioning.

48

This permits efficient static checking to validate these transformations, obviat-

ing expensive theorem proving or symbolic simulation techniques used in previous

work. The efficiency is critical in enabling application of our approach on large-

scale designs.

4.6 SUMMARY

Scheduling transformation is an important synthesis phase that significantly affects

the quality of the synthesis results. Therefore scheduling transformation usually

uses complex algorithms to satisfy user-specified timing and resource constraints.

In this chapter, we propose a simple and efficient approach to validating scheduling

transformations in behavioral synthesis. We characterize different widely used

scheduling modes, formalize equivalence relations to compare designs scheduled by

different modes, and propose efficient algorithms to validate designs scheduled by

each mode. Experiments on 12 synthesizable designs in S2CBench show that our

approach can successfully validate all designs within a few seconds. Furthermore,

our approach detected bugs in a commercial behavioral synthesis tool.

49

Chapter 5

SCALING BACK-END RTL GENERATION CHECKING

5.1 EQUIVALENCE CHECKING FRAMEWORK

Previous work [36, 64] developed a sequential equivalence checking (SEC) frame-

work for behavioral synthesis. Fig. 5.1 shows the framework. It uses a formal

structure, Clocked Control/Data Flow Graph (CCDFG), as a uniform design ab-

straction after scheduling transformation, and takes the generated RTL circuit,

together with equivalence mapping points obtained from the behavioral synthesis

tool.

CCDFG Single Clock Cycle
Simulation of CCDFG

Equivalent?

Circuit Single Clock Cycle
Simulation of Circuit

Equivalence
Mapping

Input
Constraints

Yes. Fixed Point Computation
or Execution up to Given Bound

No

Figure 5.1: Dual-rail cycle-based symbolic simulation of a CCDFG and RTL cir-

cuit.

The key ingredients of the framework were (1) the use of a formal structure,

CCDFG as a uniform design abstraction, (2) a certified sequence of high-level

transformations to reduce the abstraction gap, (3) an SEC algorithm based on dual-

rail symbolic simulation between CCDFG and RTL, and (4) optimizations that

50

enable compositional application of SEC exploiting internal cutpoints and modular

structures. Experimental results reported successful certification of synthesized

designs with tens of thousands of lines of RTL for ESL specifications of a number

of cryptographic algorithms.

Unfortunately, the above approach cannot directly handle certification of de-

signs from other domains that involve considerably less structure. In particular,

one key requirement to achieve compositionality in SEC is the availability of equiv-

alent internal operations or modules between the abstract CCDFG and the corre-

sponding RTL, which are then used as cutpoints. However, we found that for many

synthesized ESL designs, there are very few internal operations that preserve such

equivalence in the presence of design and implementation optimizations, thus un-

dermining compositionality and hence scalability. We present techniques for SEC

between ESL designs and synthesized RTL, in the presence of optimizations that

violate local equivalences of internal signals. Our key observation is that there are

two key sources of local inequivalence between CCDFG and RTL:

• Operation Gating: Behavioral synthesis tools often optimize the RTL by

introducing control structures or “guards” to ensure that certain operations

are executed only when their results are relevant to downstream computation,

and turned off otherwise. Such gated operations are functionally equivalent

to the behavioral specification only under these guards. This makes such an

operation difficult to identify; more problematically, it precludes the naive

approach of using it as a cutpoint by verifying it in isolation and replacing

it with an uninterpreted function in the CCDFG and RTL.

• Global Variables: Global variables are used commonly in ESL as a design

optimization: the user can then define some design functionalities as implicit

side effects of other design modules, reducing the lines-of-code in ESL de-

scription and thus improving compactness. Unfortunately, global variables

51

break the compositional approach of verifying modules compositionally, since

the side effects on these variables must be accounted for during SEC.

In the next two sections, we present algorithms to enable compositional SEC

for behavioral synthesis in the presence of the above design and implementation

optimizations.

5.2 HANDLING OPERATION GATING OPTIMIZATION

The idea of operation gating is to add controlling predicates so that an operation

is not executed when the value computed is irrelevant to downstream computa-

tion. Behavioral synthesis tools generate optimized RTL with operation gating to

facilitate power-friendly hardware systems [21]. The transformation itself is com-

plex, and its details are not germane to this paper. The characteristic of operation

gating that is relevant to equivalence checking is that some operations have explic-

itly generated gating predicates in the synthesized RTL, when no such predicate

appears in the CCDFG. The effects of the operation on the CCDFG and the RTL

are then equivalent only when the gating predicate holds.

Consider synthesizing the code fragment shown in Fig. 5.2(a). According to

the semantics of C, the multiplication operation in Line 3 (and the assignment of

the result to c) must be executed regardless of the value of b. However, the result

of multiplication is only relevant to the eventual return value f when the value of

b is 1. In the RTL shown in Fig. 5.2(c), the multiplication operation is therefore

gated by condition b′ so it is only executed when b′ has the value 1.

Unfortunately, operation gating breaks compositionality. Recall from Sec-

tion 5.1 that a key optimization involved in scaling up SEC for behavioral synthesis

is the utilization of cutpoints. Cutpoints entail pre-verification of equivalence be-

tween corresponding internal variables in the CCDFG and the RTL, which are

then replaced by (equivalent) symbolic variables. However, since the output of a

52

1 int foo(int a) {

2 bool b = a > 0;

3 int c = a * 3;

4 int d = a / 3;

5 int e = b ? c : d;

6 int f = e + a;

7 return f;

8 }

(a)

>

a

?

* /c d

e +

b

f

(b)

Mux

a¶

0

3

3

d¶

b¶

e¶

f¶

Mul

CE

Div

CE

Add
>

c¶

(c)

Figure 5.2: Operation gating example. (a) C code. (b) Data flow graph. (c)

Schematic of generated RTL

gated operation is only equivalent when the gating condition is satisfied, its use

as a cutpoint will cause the pre-verification to report inequivalence, breaking the

compositional SEC flow.

To address this issue, we develop a relaxed checking algorithm for compositional

SEC between a CCDFG G and a circuit M that tolerates local, “irrelevant” in-

equivalences for individual variables. The key idea is to continue dual-rail symbolic

53

simulation even when a local inequivalence is encountered, but keep track of these

inequivalences so that we can check if they are irrelevant during subsequent sym-

bolic simulation. Algorithm 4 provides a high-level presentation of our approach.

Here tk denotes the scheduling step in clock cycle k, EMap maps an operation

op in CCDFG to combinational node in M , and xk, sk, ik denote CCDFG state,

circuit state, and inputs in clock cycle k respectively. At any point, the algorithm

maintains a set, called InEqSet, of currently encountered variable inequivalences.

For our example, in Fig. 5.2, InEqSet will record the inequivalent pairs 〈c, c′〉

and 〈d, d′〉 between the CCDFG and the RTL when simulating Lines 3 and 4 re-

spectively. During subsequent symbolic simulation, whenever an equivalence is

discovered between variables in G and M , we check if that makes any of the in-

equivalences currently in InEqSet irrelevant. For instance, when simulating Line 5

we find that e and e′ are equivalent irrespective of the inequivalences between 〈c, c′〉

and 〈d, d′〉, making these two inequivalences irrelevant. When symbolic simulation

terminates, one of two outcomes is possible.

• InEqSet is empty, meaning all inequivalences encountered have been re-

solved (i.e., found irrelevant). The algorithm then reports G and M to be

equivalent.

• InEqSet still contains some inequivalences. This means that some operations

found inequivalent during symbolic simulation remain relevant even after fix-

point is reached. Thus the algorithm returns G and M to be inequivalent

(and outputs the unresolved inequivalences).

Algorithm 4 makes use of two key subroutines, Find-Gating-Info and Re-

solve-InEq to do the analysis of irrelevance of local inequivalences. To describe

these subroutines we first need a key definition below. For this definition, recall

that a Data Flow Graph (DFG) is a directed graph GD = (V,E), where each v ∈ V

is a variable in the program, each edge (x, y) ∈ E represents a data dependency,

54

Algorithm 4: Relaxed-Checking(G,M)

1 k ← 0 ⊲ Set clock cycle to 0

2 InEqSet← ∅ ⊲ Empty inequivalence set

3 GInfo ← Find-Gating-Info(G)

4 while not (checking bound or fix-point reached) do

5 xk+1 ← Sim-CCDFG(G, tk, xk, ik)

6 sk+1 ← Sim-RTL(M, sk, EMap(ik))

7 foreach opg ∈ tk do

8 opm ← EMap(opg) ⊲ find the op in circuit M

9 if not Is-Equal(opg, opm) then ⊲ SMT query

10 InEqSet← InEqSet ∪ {〈opg, opm〉}

11 else

12 Resolve-InEq(InEqSet,GInfo, opg, opm)

13 k ← k + 1

14 if |InEqSet| = 0 then ⊲ All inequivalences resolved

15 return true

16 else

17 print InEqSet ⊲ Report all inequivalences

18 return false

meaning the value of variable y depends on the value of variable x. Furthermore,

we will assume that each node in GD is labeled with an operation (e.g., add, mul,

etc.).1

Definition 5.1 (Post Dominance). Let GD be a Data Flow Graph for a design,

and u and v be two variables. We say that u is post-dominated by v in GD iff u 6= v

1This assumption is valid in our case since the instructions in a CCDFG are in static single
assignment (SSA) form; thus each variable can be uniquely associated with one operation.

55

and any path that starts from u goes through v.

Remark 5.1. Post-dominance is a common concept in compiler literature [27],

although it is typically defined with respect to the Control Flow Graph instead of

the DFG as above. The definition extends to a CCDFG G by taking GD to be

the DFG component of G. Given a variable mapping EMap, we can also extend

the notion to the circuit M : a variable u′ in the circuit is post-dominated by v′

if and only if (1) there are variables u and v in G that are mapped to u′ and v′

respectively, and (2) u is post-dominated by v. Thus we will often call 〈u, u′〉 to

be post-dominated by 〈v, v′〉.

The definition of post dominance guarantees that every path from u in GD

must go through v, e.g., in the example in Fig. 5.2(b), the variables c and d are

post-dominated by e. Let 〈u, u′〉 be post-dominated by variables 〈v, v′〉 in G and

M respectively. Then if v and v′ are equivalent, it follows that from the perspective

of any pair of corresponding variables 〈x, x′〉 that are descendants of 〈v, v′〉, the

equivalence or inequivalence of 〈u, u′〉 does not matter. For instance, in Fig. 5.2,

if e and e′ are equivalent, then the inequivalence of c and c′ is irrelevant. This

observation leads to the theorem below that is an easy consequence of data flow.

Theorem 5.1. Suppose G is a CCDFG and M is a circuit such that the following

hold: (1) variables 〈v, v′〉 are equivalent in G and M , and (2) 〈u, u′〉 are post-

dominated by 〈v, v′〉 respectively. Let 〈x, x′〉 be arbitrary corresponding descendants

of 〈v, v′〉. Then the equivalence between u and u′ is irrelevant to the equivalence of

x and x′.

We now discuss the two subroutines.

Find-Gating-Info. This subroutine finds the potential gating information for a

CCDFG G. A potential gating information is a list of pairs 〈v, U〉 where v is a

variable and U is a set of variables such that each variable u ∈ U is post-dominated

56

by v. Theorem 5.1 guarantees that if v is equivalent to v′ in G and M then the

inequivalences of variables in U are irrelevant. Our implementation exploits the

underlying LLVM constructs and information from the synthesis to efficiently de-

termine relevant post dominance information. In particular, LLVM has a special

select instruction of the form y = select cond x1 x2; the synthesis tool typ-

ically targets the condition variable of select instructions for operation gating.2

Function Find-Gating-Info crawls over the data flow graph of CCDFG G, first

identifying each select instruction; for each y it then finds all variables that are

post-dominated by y recursively.

Resolve-InEq. This function tries to resolve inequivalences in InEqSet using the

gating information found by Find-Gating-Info. Let 〈v, v′〉 be determined to be

equivalent during symbolic simulation. Then we find the set U such that 〈v, U〉 is a

pair computed by Find-Gating-Info. From the above discussion, inequivalences

involving variables in U are irrelevant, therefore dropped from InEqSet.

5.3 HANDLING GLOBAL VARIABLES

Modular design provides several advantages by breaking the design into modules.

One key optimization presented in previous work [36] is modular analysis. The

basic idea is to check each module individually in a bottom up manner.

• For each module M , check the equivalence of CCDFG and RTL.

• When checking module M ′ that calls M , replace the invocation of M in both

CCDFG and RTL by equivalent uninterpreted functions.

However, global variable usages break this modular view, and one must account

for side effects on these variables while performing modular analysis. Note that

2U need not be the complete set of variables post-dominated by v. This permits us to merely
consider conditions in the LLVM select instruction as potential gating information. This runs
the risk of possible spurious SEC failures. However, in our experience, this check has been
sufficient.

57

Algorithm 5: Get-Extended-Signature(f)

1 I ← Parameters(f)

2 O ← Outputs(f)

3 VG ← Find-All-Globals(f)

4 foreach v ∈ VG do

5 switch Usage-Type(v) do

6 case R : I ← I ∪ {v} ⊲ read-only

7 case W : O ← O ∪ {v} ⊲ write-only

8 case RW : ⊲ read-and-write

9 I ← I ∪ {v}

10 O ← O ∪ {v};

11 return 〈I, O〉

while the side effects are implicit for high-level design descriptions (and hence

CCDFGs), they are explicit on the synthesized RTL since the synthesis tool usually

places the global variable on the interface when generating RTL.

We employ the similar approach to handling global variables as proposed in Sec-

tion 3.3. Different from the approach employed in front-end, where sub-functions

are invoked in the form of function calls, sub-modules in the RTL are instantiated

as sub-module. We compute an extended signature for a module that accounts for

globals explicitly. Algorithm 5 shows how to compute the extended signature of a

module. The key idea is to analyze the module to determine the globals used in the

module. The parameters of the module are then extended to include read-only and

read-write globals among the inputs and write-only and read-write globals among

the outputs. Extended signatures explicitly account for global variables during

modular analysis.

58

5.4 EXPERIMENTAL RESULTS

Table 5.1: Summary of CHStone Benchmark for Equivalence Checking of Back-end

RTL Generation

App. Domain Design
Lines of code

C Functions RTL Modules
C RTL

Arithmetic DFADD 526 3722 17 5

DFDIV 436 5192 19 4

DFMUL 376 3115 16 2

DFSIN 755 11224 31 8

Microprocessor MIPS 232 2944 1 1

Media Processing ADPCM 541 14935 15 5

GSM 393 5598 12 4

JPEG 1692 32846 30 17

MOTION 583 6168 13 5

Security AES 716 11869 11 7

BLOWFISH 1406 17420 6 4

SHA 1284 18819 8 4

5.4.1 Performance Evaluation

We have applied our framework to certify synthesized RTL for all the ESL designs

in the CHStone benchmark. CHStone is a publicly available benchmark suite for

behavioral synthesis, that includes twelve designs selected from different applica-

tion domains. We used a commercial behavioral synthesis tool to synthesize the

RTL. The most complex design in the benchmark is JPEG which has more than

32K lines of RTL code. For our experiments we have used the benchmark designs

as is with one modification: two designs, JPEG and MOTION, used double pointers

59

Table 5.2: Summary of Evaluation on CHStone Benchmark for Equivalence Check-

ing of Back-end RTL Generation

Design Operation Gating
Global Variablesa

Time (s) Memory (MB)
R W RW

DFADD Yes 4 0 1 174.9 169.34

DFDIV Yes 4 0 1 6946.1 594.87

DFMUL Yes 4 0 1 63.5 75.31

DFSIN Yes 6 0 1 7151.3 603.50

MIPS No 1 0 0 250.4 125.21

ADPCM No 15 19 63 68.2 105.45

GSM Yes 4 0 0 49.6 83.07

JPEG Yes 30 14 17 2187.3 375.90

MOTION Yes 9 0 4 1515.1 408.77

AES Yes 4 0 5 170.7 106.59

BLOWFISH No 3 0 4 44.9 91.89

SHA No 3 0 4 6.0 89.04

aR means read-only, W means write-only, and RW means read-and-write.

to represent two-dimensional arrays; these were modified to eliminate the double-

pointer and represent the arrays explicitly. The reason has to do with the quirks

of the synthesis tool used in this experiment. The synthesis tool inlines functions

that have double pointers, thus flattening the module structure in the synthesized

RTL. In addition to generating significantly larger RTL, this also destroys the

module structure in the synthesized design. Since scalability of modular analysis

(in the presence of design optimizations) is the key target of the experiments, we

found the original designs unsuitable as targets for evaluation. The experiments

60

were conducted on a workstation with 3GHz Intel Xeon processor and 8GB mem-

ory. For each design, we checked the equivalence between its CCDFG and RTL

via dual-rail symbolic simulation, which symbolically simulates the CCDFG and

RTL clock cycle by clock cycle. After each clock cycle, we checked the equality

of mapped variables in the CCDFG and RTL by the MathSAT SMT solver [13].

We also applied cutpoints, cut-loop, and modular analysis optimizations when

checking each design.

Table 5.1 and 5.2 show the results of the experiments. The JPEG design takes

about 36 minutes with 375.9 MB memory usage. The maximum certification time

is required for DFSIN, which takes around 119 minutes with 603.5 MB memory

usage. The experiment results demonstrate that independent of application do-

main our framework scales up to designs of practical complexity. No other SEC

framework to our knowledge can handle behaviorally synthesized designs at this

scale. Furthermore, only MIPS can be certified without handling operation gating

and global variable optimizations.

5.4.2 A Behavioral Synthesis Bug

Our experiments found a bug in the synthesis tool during the certification of the

MOTION design, which is a C implementation of a motion vector decoding algorithm

for MPEG-2. Fig. 5.3 shows the source code fragment that triggers the bug.

Here ld Bfr is a global variable. In function Get Bits, the return value Val is

computed by right-shifting ld Bfr. After Val is computed, ld Bfr is updated in

the subroutine Flush Buffer. The update performed by Flush Buffer does not

affect the return value. Fig. 5.4(a) shows the RTL implementation synthesized by

the behavioral synthesis tool. The global variable ld Bfr is synthesized to a register

outside of module Get Bits. The output of Get Bits is thus a combinational

circuit with ld Bfr as input. Therefore, when sub-module Flush Buffer produces

a new data for ld Bfr, the new data is propagated to the output in the same clock

61

1 void Flush_Buffer(int N) {

2 // modify the global variable

3 ld_Bfr = update(N, ld_Bfr);

4 }

5 unsigned int Get_Bits(int N){

6 unsigned int Val;

7 Val = ld_Bfr >> (32 - N);

8 Flush_Buffer(N);

9 return Val;

10 }

Figure 5.3: Simplified C source code of the MOTION example.

cycle, leading to a wrong output.

The bug is caused because behavioral synthesis applies aggressive transfor-

mations to minimize resource usage. As can be seen by comparing Figs. 5.4(a)

and 5.4(b), the synthesis tool in this case eliminates a register without correctly

taking into account the side effect on the global variable. Such subtleties reinforce

the need for SEC for certification of synthesized RTL designs. The bug has been

confirmed by developers of the synthesis tool and fixed in a new release.

5.5 RELATED WORK

Recently increasing sophistication of behavioral synthesis has resulted in several

SEC optimizations to scale up certification of synthesized RTL [34, 36, 41, 45, 47].

For instance, Koebl et al. [44] provide a good overview of research in SEC between

high-level and RTL designs. Vasudevan et al. [70] introduce sequential compare

points as a set of observable signals to be compared between high-level designs

and RTL. There are commercial tools [16, 45] that can apply SEC between RTL

and high-level (C/C++/SystemC) models. However, we have found no published

62

Flush_Buffer

FSM

>>

REG

ld_Bfr

Get_Bits

Output

(a)

REG

Flush_Buffer

FSM

>>
REG Output

ld_Bfr

Get_Bits

Missed

logic

(b)

Figure 5.4: Bug found in the MOTION example, where an important register is

eliminated. (a). Wrong RTL (b). Correct RTL

results on approaches to handling design and implementation optimizations in

any certification framework for behavioral synthesis. There has however been re-

search on handling such optimizations in SEC comparing RTL and netlist designs.

Baumgartner et al. [12] discuss an approach for invariant generation to address the

conditional equivalence checking problem for optimizations including clock gating

63

and power gating. Moon et al. [54] propose equivalence checking techniques that

exploit well-partitioned circuit structures.

5.6 SUMMARY

In this chapter, we presented algorithms that enables compositional SEC for behav-

ioral synthesis in the presence of the two design and implementation optimizations.

1. We develop an algorithm for relaxed SEC that includes identification and

compositional use of gated variables. The approach tolerates local, “irrele-

vant” inequivalences between gated variables and their RTL counterparts, as

long as the inequivalences are resolved during symbolic simulation of down-

stream computation.

2. We develop an approach to modeling the side effects of global variables ex-

plicitly and show how the approach can then be used with modular analysis.

The algorithms, albeit not individually complex, have been carefully developed

to (1) exploit the constraints and invariants available from the behavioral synthesis

process, and (2) reinforce the available SEC optimizations, facilitating smooth

integration. As a result, our back-end SEC scales to practical designs: it can

handle all designs of the CHStone benchmark, some of which have more than

32K LoC synthesized RTL. We do not know of any other tool that can handle

diverse designs at this scale, and the algorithms presented here are crucial to this

scalability. Finally, we found a subtle bug in an optimization of the behavioral

synthesis tool itself, demonstrating both the need for certification of behaviorally

synthesized designs and the importance of SEC in general and our framework in

particular to achieve such certification.

64

Chapter 6

INTERFACE SYNTHESIS CHECKING

Previous chapters mainly focus on module level (block level) equivalence checking

in behavioral synthesis. We reason about the equivalence between the high-level

design and the synthesized low-level implementation on a module-by-module ba-

sis. In this chapter, we focus on the interfaces between modules in a design. In

particular, we focus on detecting deadlocks introduced by interface synthesis.

Most behavioral synthesis tools support interface synthesis, which allows the

user to map the interfaces of a high-level design to some pre-defined interface com-

ponents [28, 33, 73], e.g., the user can map an array on the argument list of a

high-level function to a memory interface in the RTL. Interface synthesis may add

additional RTL ports with associated I/O handshaking protocols. Some interface

components have complicated timing and communication protocols. Interface syn-

thesis is also a complex and error-prone process. In practice, bugs appear often on

the interfaces between different modules in a design.

In the high-level sequential programs in C, functions communicate with each

other through arguments passing and global variables sharing, and functions are

executed one at a time. However, in the synthesize hardware, there can be concur-

rent blocks that are connected by synthesized interfaces of different types. Con-

verting a high-level sequential specification into concurrent RTL blocks that are

connected with interfaces of different handshaking protocols may introduce dead-

locks. In this chapter, we first introduce different commonly used interfaces and

their handshaking protocols. We then discuss the deadlock situations, and present

an approach to detection of deadlocks.

65

6.1 INTERFACE SYNTHESIS

For C based designs, a function communicates with the other part of the system

through global variables, function arguments, and function return value. Interface

synthesis transforms each individual function argument and the return value into

RTL interfaces with user-specified communication protocols. Fig. 6.1 shows an

example of interface synthesis of a C function into an RTL block. We can see that

the input and outputs are synthesized into interfaces with different handshaking

protocols.

Most high-level synthesis tools support different handshaking protocols: e.g. no

handshaking (Pnone), one-way handshaking (Pack and Pvld), two-way handshaking

(Pack-vld), streaming (Pfifo) and memory (Pmem) interfaces:

void func(int *IN, // input
 int *O1, // output
 int *O2) // output
{
 int t = *IN;
 *O1 = t + 1;
 *O2 = t + 2;
}

func

IN

IN_vld

clk

O1

O1_ack

O2

O2_vld

O2_ack

(a) (b)

Figure 6.1: Example of interface synthesis. (a). A simple C function with one

input and two outputs. (b). Synthesized block diagram of the C function. Input

IN has an associated valid signal IN vld to indicate when IN is ready to be read.

Output O1 has an associated acknowledge signal O1 ack to allow the downstream

block to acknowledge block ‘func’ that the output data O1 has been read. Output

O 2 has both valid and acknowledge signals.

• Pnone: wire or register interface will be created. There is no additional signal

generated to indicate when data is read or written.

66

clk

IN 5

IN vld

O1 6

O1 ack

O2 7

O2 vld

O2 ack

Figure 6.2: Timing diagram of the synthesized block ‘func’.

• Pack: for an input port, an additional output port is created to acknowledge

the upstream block that the data has been read. Similarly, for an output port,

an additional input port will be created to acknowledge the downstream block

that the data has been read. The output will be held until the acknowledge

signal is received. For example, the output O1 of the C function ‘func’ in

Fig. 6.1(a) is synthesized with the protocol Pack. An additional input port

O1 ack, as shown in Fig. 6.1(b), is generated. We can see from the timing

diagram shown in Fig. 6.2 that the value 6 is held until signal O1 ack goes

to high. It is worth noting that when using Pack protocol, a block cannot

write any data until the previous data is received by the downstream block.

• Pvld: an additional port will be created to indicate that the data is ready to

be read. When a block tries to read a value from an upstream block, it waits

until the associated valid signal goes to high. For example, the input IN of

the C function ‘func’ in Fig. 6.1(a) is synthesized with the protocol Pvld.

An additional input port IN vld, as shown in Fig. 6.1(b), is generated. In

the timing diagram shown in Fig. 6.2, we can see that signal IN vld goes to

high at the third clock cycle, which indicates that the value 5 on the port IN

is valid to be read.

67

• Pack-vld: this two-way handshaking protocol combines the protocol Pack and

Pvld, which not only indicates when the data is valid to be read, but also

allows the downstream block to acknowledge the data has been read. For

example, the output O2 in Fig. 6.1 is synthesized with Pack-vld protocol.

From the timing diagram in Fig. 6.2, we can see that the value 7 stays valid

and held (for three cycles in this example) by block func until block func

receives the acknowledge signal from the downstream block.

FIFO

data_out

read

clk

data_in

write

full

reset

empty

read
port

write
port

Figure 6.3: Block diagram of a FIFO with read and write ports. Signals empty

and full indicate the emptiness and fullness of the FIFO.

clk

reset

data in D1 D2

write

full

data out D1 D2

read

empty

Figure 6.4: Timing diagram of a FIFO with depth of 2.

• Pfifo: this interface protocol is often used for streaming data between two

blocks. Fig. 6.3 shows the block diagram of a FIFO (first-in, first-out) with a

read and a write port. Each FIFO has a user-specified depth. Signal empty

68

goes to low if the FIFO is empty. Similarly, signal full goes to low if the

FIFO is full. Fig. 6.4 shows the timing diagram of a FIFO with depth of 2.

Suppose the FIFO is empty initially, then after two writes to the FIFO, the

FIFO is full (signal full goes to low). It becomes empty again after two

reads. No reads can be performed when FIFO is empty, and no writes can

be performed when the FIFO is full. In other words, reading of an empty

FIFO or writing to a full FIFO is a blocking operation.

• Pmem: this interface protocol, which is often used for array arguments in C, is

synthesized to connect to memories (ROMs and RAMs) in RTL implemen-

tations.

6.2 DEADLOCK DETECTION

6.2.1 Deadlock Example

C/C++ based untimed designs are required to be single-threaded programs by

most behavioral synthesis tools . In reality, hardware blocks synthesized from

functions may run concurrently. Designers can synthesize concurrent hardware

blocks by applying constraints to single-threaded C/C++ functions or interfaces

to improve throughput. However, making blocks run concurrently may introduce

deadlocks. Among all available interfaces, FIFOs are often used to implement

streaming behavior between blocks. Since FIFO read and write may be block-

ing operations, insufficient depth of FIFOs may lead to system deadlock. Most

practical designs require designers to manually set the depth of each FIFO [28].

Consider an example shown in Fig. 6.5 and Fig. 6.6. Fig. 6.6 shows the syn-

thesized design with three blocks: BLOCK1, BLOCK2 and BLOCK3 from the high-level

specification shown in Fig. 6.5. Interfaces B, C and D are FIFOs of depth of 1, 2

and 1, respectively. Suppose that BLOCK1 has a fixed latency of 1. It tries to push

a new value to FIFO B and a new value to FIFO C at every clock cycle. Suppose

69

1 void BLOCK1(int *I, int *O1, int *O2) {

2 int t = *I;

3 *O1 = t + 1;

4 *O2 = t - 1;

5 }

6 void BLOCK2(volatile int *I, int *O) {

7 int t = *I;

8 t += *I;

9 t += *I;

10 *O = t/3;

11 }

12 void BLOCK3(int *I1, int *I2, int *O) {

13 *O = *I1 + *I2;

14 }

15 void top(int A, int E) {

16 int B, C, D;

17 BLOCK1(&A, &B, &C);

18 BLOCK2(&B, &D);

19 BLOCK3(&D, &E);

20 }

Figure 6.5: A design in C with three blocks.

BLOCK2 has a latency of 3, it reads three values (one at each clock cycle), and then

pushes the average of the three values into the FIFO D. BLOCK3 reads the values

from FIFO C and D at the same clock cycle, and returns the sum of the two values

as output E. Suppose input A is available all the time. BLOCK1 stalls after pushing

two values to FIFO C, because FIFO C is full. BLOCK2 now has already read two

values from FIFO B, and is waiting for the third value in order to calculate the

average. BLOCK2 stalls because FIFO B is empty, since BLOCK1 stalls and cannot

70

BLOCK1A

BLOCK2
BLOCK3

B D

C

E

(a)

BLOCK1A

BLOCK2
BLOCK3

B D

C

E

full

emptyempty

(b)

Figure 6.6: Deadlock example: a synthesized design with three blocks. Interface C

is a FIFO of depth of 2. Interfaces B and D are FIFOs of depth of 1. (a). FIFOs

are initialize to be empty. (b). Status of FIFOs when the design deadlocks.

produce more data to FIFO B. BLOCK3 stalls because FIFO D is empty. As a re-

sult, the design deadlocks because every block is waiting for other blocks to make

progress in order to continue the execution.

From the above example, we can see that synthesizing concurrently running

blocks from a sequential specification could introduce deadlocks. It is a non-trivial

task to analyze the possibilities of deadlock situations of a design when the design

contains complex logic. Therefore, a deadlock detection approach is highly desired.

71

6.2.2 Deadlock Detection Algorithm

Assertion-based verification is a widely used verification methodology in hardware

design community. Designers use assertion languages, such as Property Specifica-

tion Language (PSL) [2] and SystemVerilog Assertions (SVA) [7], to capture the

intent of a design, and use simulation or formal verification tools to verify that the

design correctly implements that intent. In the context of deadlock detection, de-

signers usually manually write the assertions in RTL to capture the deadlocks in a

particular design in practice. However, synthesized RTL implementations from be-

havioral synthesis tools are generally not human readable. Systematically writing

sufficient assertions to capture deadlocks and debugging deadlocks in behaviorally

synthesized RTL designs are often difficult. Therefore, it is highly desired to design

an algorithm to automatically generate the assertions for detection of deadlocks

in the synthesized RTL designs. Since we can obtain the types of interfaces and

the variables mappings between the CCDFG and the RTL design from the syn-

thesis report, it is feasible to automatically generate the assertions to capture the

deadlock conditions in the synthesized RTL designs.

Definition 6.1 (Blocking Interface). An interface I of a module A is said to be a

blocking interface of A if I/O operations in A of the interface I may need to wait

until a certain condition is satisfied.

An I/O operation on a blocking interface is called a blocking I/O operation.

For example, reading data from an interface with Pvld protocol is a blocking I/O

operation, because it may need to wait until the associated valid signal is high.

Similarly, writing data to an interface with Pack protocol, reading or writing data

from an interface with two-way handshaking protocol or Pfifo are also blocking

I/O operations.

Definition 6.2 (Interface Dependency). Suppose that blocks A and B are con-

nected with an interface I. We say A depends on B if there is blocking I/O

72

operation on interface I in A.

For example, if block A has an output with interface protocol Pvld, and block

B takes A’s output as input, then B depends on A. Because when B reads the

input, it may need to wait until the data is available. However, A does not depend

on B in this case, because there is no acknowledge signal from B, thus A can

output at any time. If A and B are connected with an interface with Pack-vld or

Pfifo protocol, then A and B depend on each other.

With the definition of interface dependency, given a multiple-block design that

are connected with a set of interfaces, we can construct a dependency graph G =

(V,E), where G is a directed graph, V is the set of blocks in the design, each

edge (bi, bj) ∈ E denotes that block bi depends on block bj. Fig. 6.7 shows the

dependency graph of the three-block design shown in Fig. 6.6. Since interface B,

C and D are FIFOs, each block depends on the other two blocks. Therefore, there

may be deadlock situations.

BLOCK1

BLOCK2 BLOCK3

Figure 6.7: Dependency graph of Fig. 6.6.

A set D = {B1, . . . , Bm } of m (m > 1) blocks in a top-level design T is

deadlocked if the following conditions hold:

• The inputs are available for T.

• Each block is waiting for the availability of some I/Os.

73

• No block can make any I/Os available while waiting.

Intuitively, at certain clock cycle, the inputs are available to the design. How-

ever, none of the blocks can make progress, and every block is waiting for other

blocks to make progress in order to continue its own execution.

Let G be the dependency graph of a multi-block design. If there are any strongly

connected components [23] in graph G, then there are deadlock possibilities in the

design [65]. There are linear-time algorithms [23,30,68] to find strongly connected

components of a directed graph. Note that We also need to identify a set of blocks

Si that can reach a strongly connected component S. Because some blocks in the

strongly connected component S depend on blocks in Si, progresses made in Si

may resolve the deadlock situation in S. Therefore, in order to claim that there is

a deadlock in S, we must make sure that blocks in Si are also not making progress.

A

B

D

C

E

F

Figure 6.8: Dependency graph example

Consider an example shown in Fig. 6.8. Fig. 6.8 shows the dependency graph

of a design which consists of six blocks. There is a strongly connected component

{ B, C, D, E }. The strongly connected component depends on block F. Therefore,

when claiming that there is a deadlock in { B, C, D, E }, we need to consider the

status of block F.

Now we introduce the deadlock condition generation algorithms. Let the top-

level block T = { b1, . . . , bn } contain n concurrently running sub-blocks. Algo-

rithm 6 generates deadlock assertions from T . Condition inputs available asserts

that inputs of T are available. In other words, the design T deadlocks not because

74

Algorithm 6: Gen-Dead-Lock-Assertions(T)

1 { b1, . . . , bn } ← T

2 { I1, . . . , Ik } ← Get-Inputs(T)

3 inputs available←
∧k

i=1 Is-Available(Ii)

4 G← Build-DepGraph(b1, . . . , bn) ⊲ build the dependency graph of blocks

5 Scc← Find-Scc(G) ⊲ find strongly connected components

6 Lock ← ∅

7 foreach C = 〈V,E〉 ∈ Scc do

8 V ′ ← Find-Nodes-that-Scc-Reaches(G,C)

9 Lock ← Lock ∪ { V ∪ V ′ }

10 foreach { v1, . . . , vm } ∈ Lock do

11 stall cond←
∧m

i=1 Generate-Stall-Assertions(vi)

12 Output-Assertion(inputs available ∧ stall cond)

Algorithm 7: Generate-Stall-Assertions(block)

1 〈CCDFG,RTL〉 ← block

2 cond← ∅

3 foreach state ∈ CCDFG do

4 foreach op ∈ state do

5 if Is-Blocking-IO-Operation(op) then

6 I ← Get-Interface(op)

7 assertion← (RTL.current state = state) ∧Not-Available(I)

8 cond← cond ∪ assertion

9 return
∨|cond|

i=1 cond[i]

of unavailability of inputs of T . Variable G is the dependency graphs of the blocks

of T , and Scc contains the strongly connected components of G. For each of the

75

strongly connected components, we expand the node set V to include nodes that V

can reach. Then Lock contains the expanded sets of nodes that may contain dead-

locks. For each set of nodes { v1, . . . , vm } that may have deadlock, we generate

stall assertions of each node vi. stall cond is a conjunction of the stall conditions

of nodes { v1, . . . , vm }. We then output the assertion by combining the condition

inputs available with stall conditions stall cond.

Function Generate-Stall-Assertions in Algorithm 7 generates the stall

condition assertions on a given block. It iterates over all the states in the CCDFG,

and finds all blocking I/O operations of within a state. Function Not-Available

asserts that the interface I is not available, and the blocking operation op is waiting

for the availability of I. The assertion means that if the state machine of the RTL

is at the state where I will be read or written but is not available, then the state

machine stalls at the state, and waits for I until it becomes available. The return is

a union of all stall conditions, which means the block stalls if any of the condition

holds.

After generating the assertions that capture deadlock conditions, we can use

simulation or formal verification tools to catch the assertions. There are commer-

cially available mature RTL simulation tools, e.g., “Incisive Enterprise Simulator”

from Cadence, “Questa Simulation” from Mentor Graphics, and “VCS” from Syn-

opsys, as well as formal verification tools, e.g., “Incisive Formal Verifier” and

“JasperGold Formal Property Verification App” from Cadence, “Questa Formal

Verification” from Mentor Graphics, “VC Formal” from Synopsys.

6.3 EXPERIMENTAL RESULTS

We evaluated the effectiveness of the deadlock detection approach on two case

studies: DCT and YUV Filter. The experiments were conducted on a workstation

with Debian 7.1 running on a 2.93 GHz Intel Xeon X3470 processor with 8 GB of

memory. We use “Questa Simulation” as the simulator to simulate the synthesized

76

RTL augmented with our generated assertions.

pre
process DCT post

process

...

FIFO A FIFO B

FIFO C

Figure 6.9: Block diagram of DCT example.

Fig. 6.9 shows the diagram of the DCT design. It consists of three blocks: block

‘pre-process’ processes the input raw data; block ‘DCT’ does the discrete cosine

transform on the pre-processed data; and block ‘post-process’ does some analysis

of the data before and after the transformation. This design has 136 lines of C

code, and 1966 lines of synthesized Verilog code. The depths of FIFO A and FIFO

B were set to 2. We also experimented with different depths of FIFO C, the design

would deadlock if the depth of C was less than 512. It took 1.93 seconds and 16.52

MB of memory to catch the deadlock assertion.

RGB2YUVRGB Image
Process YUV2RGB

stats

FIFO A FIFO B

FIFO C

FIFO D

Figure 6.10: Block diagram of YUV Filter example.

Fig. 6.10 shows the diagram of the YUV Filter design, which consists of four

blocks. The design first converts the input stream of RGB model to YUV model,

77

applies some transformation on the stream of YUV model, converts the stream

back to RGB model, and does some statistics of the filter. The design has 276

lines of C code, and 5360 lines of synthesized Verilog code. The depths of the

FIFOs are all set to 2. It took 46.16 seconds and 60.71 MB of memory to catch

the deadlock assertion.

The two case studies all have a fork-then-join structure in the block diagrams.

If the latencies are not balanced in different paths of a design, the design will

deadlock. However, if the blocks have variable latencies, it is difficult to determine

the existence of deadlocks statically. Deadlocks also often happen in designs with

feedback loop structures. The automatically generated assertions will help the

designers to detect the deadlocks either by dynamic simulation or by static formal

verification tools.

6.4 RELATED WORK

In the context of distributed systems and databases, deadlocks happen whenever

two or more processes are competing for limited resources. The processes are

holding resources (thus preventing other processes from using them) while waiting

for other resources. Deadlock detection is a well-studied problem in distributed

systems and databases [9, 46]. Most approaches utilize the wait-for graph which

captures the resource dependencies among processes. In a wait-for graph, nodes

are used to represent processes, each edge (p, q) represents that process q is holding

a resource that process p needs, therefore p is waiting for q. If there are circular

waits among processes, then there are possibilities for deadlocks to happen. Graph

cycle detection algorithms are often used for deadlock detection.

Deadlock detection is important for concurrent programming [8]. For example,

there has been research on detecting deadlocks of concurrent Java programs [25].

This approach translates Java programs into Promela [39] language, and uses

SPIN [40] model checker to perform formal analysis of deadlocks.

78

SystemC [6] is one of the most popular languages for system-level modeling. It

allows the designers to model concurrency through modules and processes. Events,

channels and shared variables can be used for module-level and inter-process com-

munications. There has been research on data race detection of SystemC designs

using static analysis approach [53]. One major issue with static analysis of dead-

locks is that it may produce false alarms. There also has been research on formal

deadlock checking of SystemC designs [18]. Symbolic simulation techniques are

used to generate formulas for deadlock conditions.

6.5 SUMMARY

Behavioral synthesis generates high-performance RTL implementations by taking

advantage of the concurrent nature of hardware resources. Converting a sequential

high-level design into a multi-block concurrent implementation interconnected by

synthesized interfaces with different handshaking protocols may introduce dead-

locks. To detect the deadlocks, the designers often manually write assertions that

can capture the deadlocks, and use either simulation or formal verification tools to

catch the assertions. However, the synthesized RTL implementations are generally

not human readable, they are intended to be consumed by downstream tools, not

by designers. Therefore, manually writing sufficient assertions about deadlocks

requires heavy human effort. We present an assertion-based verification approach

to detecting deadlocks of the synthesized RTL implementations. Our algorithms

take the design representation after the scheduling transformation and the result of

the interface synthesis from the synthesis tool, automatically generate SystemVer-

ilog assertions that can capture deadlock situations. For behavioral synthesis tool

vendors, this approach can be implemented in the back-end when generating RTL

implementations. Optionally, the users can instruct the behavioral synthesis tool

to generate the assertions along with the RTL implementations for further verifi-

cation purposes.

79

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

Equivalence checking support is critical to the adoption of behavioral synthesis

tools. In this dissertation research, we present an end-to-end scalable equiva-

lence checking framework for the entire behavioral synthesis flow, which includes

front-end compiler transformations, scheduling transformation, and back-end RTL

generation. We design and develop the equivalence checking frameworks and al-

gorithms for different phases of the behavioral synthesis flow. This dissertation

makes the following specific contributions:

• Design and develop an equivalence checking framework for front-end compiler

transformations via symbolically exploring paths of the source and target

programs of each transformation applied.

• Develop efficient algorithms to validate scheduling transformations, including

validating control and data dependencies and I/O timing of partially timed

SystemC designs.

• Develop several techniques to handle design and implementation optimiza-

tions employed by behavioral synthesis tools. They are essential to the scal-

ability of the back-end checker.

• Develop an assertion-based verification approach to detecting deadlocks in-

troduced by concurrent RTL blocks that are interconnected by synthesized

interfaces with various handshaking protocol.

80

According to experiments on the CHStone [37] benchmark synthesized by an

open-source behavioral synthesis tool named LegUp [17], our front-end transfor-

mation equivalence checker scales to large-size designs. We are able to validate

more than 75% of transformations applied by LegUp to CHStone benchmark. We

evaluate our scheduling transformation validation approach on 12 synthesizable

SystemC based designs in S2CBench [66] benchmark. The results show that our

approach is efficient, and is able to validate the scheduling transformations on de-

signs in S2CBench benchmark under 10 seconds. Our back-end checker handles

global variables and tolerates local and irrelevant in-equivalences introduced by

operation gating in the behavioral synthesis. The optimizations we developed are

essential to make our back-end equivalence checker scale to real industrial-size de-

signs. We detected a real bug in a widely used commercial behavioral synthesis

tool, reported the bug to the developer. They fixed the bug in their next release.

Case studies show that our assertion-based deadlock detection approach is able to

catch deadlocks introduced by parallelization of RTL blocks that are connected by

synthesized interfaces.

7.2 FUTURE WORK

One future direction is to extend our SEC framework to handle more aggressive

transformations. The fact that we still cannot certify 25 percent of the transfor-

mations in CHStone shows that there is significant room for improvement. The

future extensions include 1) equivalence checking for transformations spanning

multiple procedures or functions, 2) handling transformations that modify struc-

tures of loops, perhaps through domain-specific SEC optimizations. Recall that

a key reason for our inability to handle the transformations where SEC fails is

the inapplicability of cut-loop, which requires equivalence for each iteration of cor-

responding loops of the two programs. There is a need for ways to loosen that

restriction so that transformations such as partial loop unrolling can be certified.

81

Scheduling transformation that involves pipelining (either loop pipeline or func-

tion pipeline) is not address in this dissertation. My colleagues have done a lot

of research on using equivalence checking and theorem proving techniques to ver-

ify loop pipelining [34, 60, 61] and function pipelining [35] in behavioral synthesis.

Their approach is to generate a reference pipeline model by taking the pipelining

parameters that are provided by the behavioral synthesis tool, and use SEC to

check the equivalence between the reference model and the generated RTL. An

interesting future work is to view the pipelining process as a generic transforma-

tion which manipulates the CDFG, and directly check the equivalence between the

sequential CDFG and the pipelined CDFG.

For interface synthesis, currently we only focus on deadlock detection of concur-

rent RTL blocks interconnected by synthesized interfaces with various handshaking

protocols. The correctness verification of interface synthesis has not been explored.

For example, array arguments in a C function can be mapped to memory interfaces.

Optimizations such as 1) partitioning an array in to multiple small memories or

registers, 2) combining multiple arrays into one single memory interface, 3) chang-

ing the word-width of a memory interface are also interesting and challenging to

verify.

82

REFERENCES

[1] Bambu: A Free Framework for the High-Level Synthesis of Complex Applica-

tions, http: // panda. dei. polimi. it .

[2] IEEE Standard for Property Specification Language (PSL). IEEE Std 1850-

2005, pages 1–143, 2005.

[3] C-to-Silicon Compiler User Guide, 11.10, 2011.

[4] Catapult C Reference Manual, 2011.

[5] Cynthesizer Reference Guide, 4.1, 2011.

[6] IEEE Standard for Standard SystemC Language Reference Manual. IEEE

Std 1666-2011 (Revision of IEEE Std 1666-2005), pages 1–1163, Jan 2012.

[7] IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,

and Verification Language. IEEE Std 1800-2012 (Revision of IEEE Std 1800-

2009), pages 1–1315, Feb 2013.

[8] R. Agarwal, S. Bensalem, E. Farchi, K. Havelund, Y. Nir-Buchbinder, S. D.

Stoller, S. Ur, and L. Wang. Detection of deadlock potentials in multithreaded

programs. IBM J. Res. Dev., 54(5):520–534, September 2010.

[9] Rahul Agarwal and Scott D. Stoller. Run-time Detection of Potential Dead-

locks for Programs with Locks, Semaphores, and Condition Variables. In

Proceedings of the 2006 Workshop on Parallel and Distributed Systems: Test-

ing and Debugging, PADTAD ’06, pages 51–60, New York, NY, USA, 2006.

ACM.

http://panda.dei.polimi.it

83

[10] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools. Addison Wesley, 1st edition, January 1986.

[11] D.P. Anderson and J. Ainscough. The verification of scheduling algorithms. In

IEE Colloquium on Structured Methods for Hardware Systems Design, pages

7/1–7/5, 1994.

[12] J. Baumgartner, H. Mony, M. Case, J. Sawada, and K. Yorav. Scalable con-

ditional equivalence checking: An automated invariant-generation based ap-

proach. In Formal Methods in Computer-Aided Design, 2009. FMCAD 2009,

pages 120–127, Nov 2009.

[13] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,

and Roberto Sebastiani. The mathsat 4 smt solver. In Proceedings of the 20th

International Conference on Computer Aided Verification, CAV ’08, pages

299–303, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] R.E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[15] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex systems programs. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX

Association.

[16] Calypto Design Systems. Sequential Equivalence Checking: A new approach

to functional verification of datapath and control logic changes, 2007.

[17] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-

moona, Jason H. Anderson, Stephen Brown, and Tomasz Czajkowski. Legup:

84

High-level synthesis for fpga-based processor/accelerator systems. In Pro-

ceedings of the 19th ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays, FPGA ’11, pages 33–36, New York, NY, USA, 2011.

ACM.

[18] Chun-Nan Chou, Chang-Hong Hsu, Yueh-Tung Chao, and Chung-Yang

Huang. Formal deadlock checking on high-level SystemC designs. In 2010

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 794–799, November 2010.

[19] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang.

High-level synthesis for FPGAs: from prototyping to deployment. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

30(4):473–491, April 2011.

[20] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang.

High-level synthesis for FPGAs: from prototyping to deployment. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

30(4):473–491, April 2011.

[21] Jason Cong, Bin Liu, Rupak Majumdar, and Zhiru Zhang. Behavior-level

observability analysis for operation gating in low-power behavioral synthesis.

ACM Trans. Des. Autom. Electron. Syst., 16(1):4:1–4:29, November 2010.

[22] Jason Cong and Zhiru Zhang. An efficient and versatile scheduling algorithm

based on SDC formulation. In Proceedings of the 43rd annual Design Au-

tomation Conference, DAC ’06, pages 433–438, New York, NY, USA, 2006.

ACM.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, 3rd Edition. The MIT Press, Cambridge,

Mass, 3rd edition edition, July 2009.

85

[24] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In

Proceedings of the Theory and Practice of Software, 14th International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-

Verlag.

[25] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection tool

for concurrent Java programs. Software: Practice and Experience, 29(7):577–

603, June 1999.

[26] John P. Elliott. Understanding Behavioral Synthesis: A Practical Guide to

High-Level Design. Kluwer Academic Publishers, Boston, 1999 edition edition,

May 1999.

[27] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-

dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,

9(3):319–349, July 1987.

[28] Michael Fingeroff. High-Level Synthesis Blue Book. Xlibris, United States,

May 2010.

[29] R. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of

Computer Science, Proceedings of Symposia in Applied Mathematcs, volume

XIX, pages 19–32, Providence, Rhode Island, 1967. American Mathematical

Society.

[30] Harold N. Gabow. Path-based depth-first search for strong and biconnected

components. Information Processing Letters, 74(34):107–114, May 2000.

[31] Patrice Godefroid. Compositional dynamic test generation. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

86

Programming Languages, POPL ’07, pages 47–54, New York, NY, USA, 2007.

ACM.

[32] E. Goldberg, M. Prasad, and R. Brayton. Using SAT for Combinational

Equivalence Checking. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe, DATE ’01, pages 114–121, Piscataway, NJ, USA,

2001. IEEE Press.

[33] Sumit Gupta, Rajesh Gupta, Nikil D. Dutt, and Alexandru Nicolau. SPARK:

A Parallelizing Approach to the High-Level Synthesis of Digital Circuits.

Springer Science & Business Media, May 2007.

[34] Kecheng Hao, Sandip Ray, and Fei Xie. Equivalence checking for behaviorally

synthesized pipelines. In Proceedings of the 49th Annual Design Automation

Conference, pages 344–349, New York, NY, USA, 2012. ACM.

[35] Kecheng Hao, Sandip Ray, and Fei Xie. Equivalence checking for function

pipelining in behavioral synthesis. In Design, Automation & Test in Eu-

rope Conference & Exhibition, DATE 2014, Dresden, Germany, March 24-28,

2014, pages 1–6, 2014.

[36] Kecheng Hao, Fei Xie, Sandip Ray, and Jin Yang. Optimizing equivalence

checking for behavioral synthesis. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’10, pages 1500–1505, 3001 Leuven,

Belgium, Belgium, 2010. European Design and Automation Association.

[37] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. Pro-

posal and quantitative analysis of the CHStone benchmark program suite for

practical c-based high-level synthesis. Information and Media Technologies,

4(4):740–752, 2009.

87

[38] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commu-

nications of the ACM, 12(10):576–583, 1969.

[39] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall, 1991.

[40] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw. Eng.,

23(5):279–295, May 1997.

[41] A.J. Hu. High-level vs. rtl combinational equivalence: An introduction. In

Computer Design, 2006. ICCD 2006. International Conference on, pages 274–

279, Oct 2006.

[42] Chandan Karfa, D. Sarkar, C. Mandal, and P. Kumar. An Equivalence-

Checking Method for Scheduling Verification in High-Level Synthesis. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

27(3):556–569, March 2008.

[43] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, July 1976.

[44] A. Koelbl, Yuan Lu, and A. Mathur. Embedded tutorial: Formal equivalence

checking between system-level models and rtl. In Proceedings of the 2005

IEEE/ACM International Conference on Computer-aided Design, ICCAD ’05,

pages 965–971, Washington, DC, USA, 2005. IEEE Computer Society.

[45] Alfred Koelbl, Reily Jacoby, Himanshu Jain, and Carl Pixley. Solver technol-

ogy for system-level to rtl equivalence checking. In Proceedings of the Confer-

ence on Design, Automation and Test in Europe, DATE ’09, pages 196–201,

3001 Leuven, Belgium, Belgium, 2009. European Design and Automation As-

sociation.

88

[46] Eric Koskinen and Maurice Herlihy. Dreadlocks: Efficient Deadlock Detec-

tion. In Proceedings of the Twentieth Annual Symposium on Parallelism in

Algorithms and Architectures, SPAA ’08, pages 297–303, New York, NY, USA,

2008. ACM.

[47] Sudipta Kundu, Sorin Lerner, and Rajesh Gupta. Validating high-level syn-

thesis. In Proceedings of the 20th International Conference on Computer Aided

Verification, CAV ’08, pages 459–472, Berlin, Heidelberg, 2008. Springer-

Verlag.

[48] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.

Symdiff: A language-agnostic semantic diff tool for imperative programs. In

Proceedings of the 24th International Conference on Computer Aided Verifi-

cation, CAV’12, pages 712–717, Berlin, Heidelberg, 2012. Springer-Verlag.

[49] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason.,

43(4):363–446, December 2009.

[50] S. Malik, A.R. Wang, R.K. Brayton, and A. Sangiovanni-Vincentelli. Logic

verification using binary decision diagrams in a logic synthesis environment. In

, IEEE International Conference on Computer-Aided Design, 1988. ICCAD-

88. Digest of Technical Papers, pages 6–9, November 1988.

[51] G. Martin and G. Smith. High-Level Synthesis: Past, Present, and Future.

IEEE Design Test of Computers, 26(4):18 –25, August 2009.

[52] MathWorks. HDL Coder: Generate Verilog and VHDL code for FPGA and

ASIC designs, http: // www. mathworks. com/ products/ hdl-coder/ , (ac-

cessed June 10, 2015).

[53] M. Moiseev, M. Glukhikh, A. Zakharov, and H. Richter. A static analysis

approach to data race detection in SystemC designs. In 2013 IEEE 16th

http://www.mathworks.com/products/hdl-coder/

89

International Symposium on Design and Diagnostics of Electronic Circuits

Systems (DDECS), pages 54–59, April 2013.

[54] In-Ho Moon, Per Bjesse, and Carl Pixley. A compositional approach to the

combination of combinational and sequential equivalence checking of circuits

without known reset states. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’07, pages 1170–1175, San Jose, CA,

USA, 2007. EDA Consortium.

[55] Naren Narasimhan, Elena Teica, Rajesh Radhakrishnan, Sriram Govindara-

jan, and Ranga Vemuri. Theorem proving guided development of formal as-

sertions in a resource-constrained scheduler for high-level synthesis. Formal

Methods in System Design, 19(3):237–273, November 2001.

[56] George C. Necula. Translation validation for an optimizing compiler. In Pro-

ceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, PLDI ’00, pages 83–94, New York, NY, USA,

2000. ACM.

[57] Rishiyur S. Nikhil. Bluespec: A General-Purpose Approach to High-Level

Synthesis Based on Parallel Atomic Transactions. In Philippe Coussy and

Adam Morawiec, editors, High-Level Synthesis, pages 129–146. Springer

Netherlands, 2008.

[58] A. Parker, D. Thomas, D. Siewiorek, M. Barbacci, L. Hafer, G. Leive, and

J. Kim. The CMU Design Automation System – An Example of Automated

Data Path Design. In Design Automation, 1979. 16th Conference on, pages

73–80, June 1979.

[59] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In

Proceedings of the 4th International Conference on Tools and Algorithms for

90

Construction and Analysis of Systems, TACAS ’98, pages 151–166, London,

UK, UK, 1998. Springer-Verlag.

[60] Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie. Mechanical certification of

loop pipelining transformations: A preview. In Interactive Theorem Proving -

5th International Conference, ITP 2014, Held as Part of the Vienna Summer

of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages

549–554, 2014.

[61] Disha Puri, Sandip Ray, Kecheng Hao, and Fei Xie. Using ACL2 to verify

loop pipelining in behavioral synthesis. In Proceedings Twelfth International

Workshop on the ACL2 Theorem Prover and its Applications, Vienna, Aus-

tria, 12-13th July 2014., pages 111–128, 2014.

[62] David A Ramos and Dawson R. Engler. Practical, low-effort equivalence

verification of real code. In Proceedings of the 23rd International Conference

on Computer Aided Verification, CAV’11, pages 669–685, Berlin, Heidelberg,

2011. Springer-Verlag.

[63] S. Ray, W. A. Hunt, Jr., J. Matthews, and J S. Moore. A Mechanical Anal-

ysis of Program Verification Strategies. Journal of Automated Reasoning,

40(4):245–269, May 2008.

[64] Sandip Ray, Kecheng Hao, Yan Chen, Fei Xie, and Jin Yang. Formal verifica-

tion for high-assurance behavioral synthesis. In Proceedings of the 7th Inter-

national Symposium on Automated Technology for Verification and Analysis,

ATVA ’09, pages 337–351, Berlin, Heidelberg, 2009. Springer-Verlag.

[65] Nicola Santoro. Design and Analysis of Distributed Algorithms. Wiley-

Interscience, Hoboken, N.J, 1 edition edition, October 2006.

91

[66] B.C. Schafer and A. Mahapatra. S2CBench: Synthesizable SystemC bench-

mark suite for high-level synthesis. IEEE Embedded Systems Letters, 6(3):53–

56, September 2014.

[67] Synopsys. Synphony C Compiler High-Level Synthesis from C/C++ to RTL,,

(accessed June 10, 2015).

[68] Robert Tarjan. Depth first search and linear graph algorithms. SIAM Journal

on Computing, 1972.

[69] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality sat-

uration: A new approach to optimization. In Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL ’09, pages 264–276, New York, NY, USA, 2009. ACM.

[70] S. Vasudevan, J. A. Abraham, V. Viswanath, and Jiajin Tu. Automatic de-

composition for sequential equivalence checking of system level and rtl descrip-

tions. In Proceedings of the Fourth ACM and IEEE International Conference

on Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06. Pro-

ceedings., MEMOCODE ’06, pages 71–80, Washington, DC, USA, 2006. IEEE

Computer Society.

[71] K. Wakabayashi. CyberWorkBench: integrated design environment based on

C-based behavior synthesis and verification. In 2005 IEEE VLSI-TSA In-

ternational Symposium on VLSI Design, Automation and Test, 2005. (VLSI-

TSA-DAT), pages 173–176, April 2005.

[72] WebM. G2 VP9 Video Hardware RTLs, http: // www. webmproject. org/

hardware/ vp9 , (accessed November 28, 2014).

[73] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis.

http://www.webmproject.org/hardware/vp9
http://www.webmproject.org/hardware/vp9

92

[74] Zhenkun Yang, Kecheng Hao, Kai Cong, Li Lei, Sandip Ray, and Fei Xie.

Scalable certification framework for behavioral synthesis front-end. In Pro-

ceedings of the 51st Annual Design Automation Conference, DAC ’14, pages

149:1–149:6, New York, NY, USA, 2014. ACM.

[75] Anna Zaks and Amir Pnueli. Covac: Compiler validation by program analysis

of the cross-product. In Proceedings of the 15th International Symposium on

Formal Methods, FM ’08, pages 35–51, Berlin, Heidelberg, 2008. Springer-

Verlag.

[76] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve

Zdancewic. Formalizing the llvm intermediate representation for verified pro-

gram transformations. pages 427–440, 2012.

[77] Lenore Zuck, Amir Pnueli, Yi Fang, and Benjamin Goldberg. VOC: a method-

ology for the translation validation of optimizing compilers. Journal of Uni-

versal Computer Science, 9:2003, 2003.

	Scalable Equivalence Checking for Behavioral Synthesis
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Proposed Equivalence Checking Framework
	Dissertation Outline

	Background
	Behavioral Synthesis
	Symbolic Simulation
	Formal Equivalence Checking

	Front-end Compiler Transformation Checking
	Notations and Definitions
	Equivalence Checking Framework
	Modular Reasoning across Functions
	Handling Loops
	Experimental Results
	Related Work
	Summary

	Validating Scheduling Transformation
	Scheduling Transformation
	Formalization
	Validation Approach
	Validating Trace Compatibility
	Validating I/O Timing

	Experimental Results
	Related Work
	Summary

	Scaling Back-end RTL Generation Checking
	Equivalence Checking Framework
	Handling Operation Gating Optimization
	Handling Global Variables
	Experimental Results
	Performance Evaluation
	A Behavioral Synthesis Bug

	Related Work
	Summary

	Interface Synthesis Checking
	Interface Synthesis
	Deadlock Detection
	Deadlock Example
	Deadlock Detection Algorithm

	Experimental Results
	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References

