
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

Scalable Error Isolation for Distributed Systems
Diogo Behrens, Technische Universität Dresden; Marco Serafini, Qatar Computing Research

Institute; Sergei Arnautov, Technische Universität Dresden; Flavio P. Junqueira, Microsoft
Research Cambridge; Christof Fetzer, Technische Universität Dresden

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/behrens

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 605

Scalable error isolation for distributed systems

Diogo Behrens∗, Marco Serafini⋄, Sergei Arnautov∗, Flavio P. Junqueira‡, Christof Fetzer∗

∗
Technische Universität Dresden, Germany

⋄
Qatar Computing Research Institute, Qatar

‡
Microsoft Research, Cambridge, UK

Abstract

In distributed systems, data corruption on a single node

can propagate to other nodes in the system and cause

severe outages. The probability of data corruption is

already non-negligible today in large computer popula-

tions (e.g., in large datacenters). The resilience of pro-

cessors is expected to decline in the near future, making

it necessary to devise cost-effective software approaches

to deal with data corruption.

In this paper, we present SEI, an algorithm that tol-

erates Arbitrary State Corruption (ASC) faults and pre-

vents data corruption from propagating across a dis-

tributed system. SEI scales in three dimensions: mem-

ory, number of processing threads, and development ef-

fort. To evaluate development effort, fault coverage,

and performance with our library, we hardened two real-

world applications: a DNS resolver and memcached.

Hardening these applications required minimal changes

to the existing code base, and the performance overhead

is negligible in the case of applications that are not CPU-

intensive, such as memcached. The memory overhead

is negligible independent of the application when using

ECC memory. Finally, SEI covers faults effectively: it

detected all hardware-injected errors and reduced un-

detected errors from 44% down to only 0.15% of the

software-injected computation errors in our experiments.

1 Introduction

Distributed systems running in modern data centers must

be tolerant to faults. Since machine and process crashes

are commonly observed, the crash fault model is the one

typically adopted. In fact, many systems critical to Web-

scale online services are successfully using techniques

such as state machine replication [6, 17, 22, 31] to guar-

antee availability despite crash faults.

The crash model does not cover data corruption faults,

which might lead to errors propagating through incor-

rect messages after a fault. Incidents occurring in large

Internet services in the recent past already indicate that

data corruption can cause process state corruption [20],

data loss [2, 3, 4], or in some unlucky case of error prop-

agation, even multi-hour outages of entire services [1].

This is not surprising: several large scale studies show

that faults that would be very unlikely in a small cluster

become much more likely at scale and tend to reappear

more frequently after the first occurrence [25, 32, 43,

44, 50]. There can be several reasons for data corrup-

tion symptoms, for example, manufacturing problems,

overheating, an incorrect use of dynamic voltage scal-

ing, hardware/software incompatibility, or power supply

faults [2, 36]. For example, we used dynamic voltage

scaling while running memcached on a single processor

with a lower voltage level and found that undetected er-

ror propagation occurred in 4 out of 468 runs (see Sec-

tion 7.2). These problems are in fact known to datacenter

operators dealing with large server populations.

New processor generations have traditionally achieved

higher performance through higher circuit density and

lower energy consumption. This approach, however, has

reached physical limits that affect hardware-level relia-

bility negatively [15, 21]. The rate of transient errors for

processors has been rising [14, 16] and it might reach up

to one user-visible failure per day per chip with 16 nm

technology [26, 51].

These trends are already changing the way large-scale

distributed systems are designed today. Mesa, a data

warehousing system for business-critical data used in

Google, uses application-level integrity checks to deal

with transient data corruption during computation, which

is common at scale [28].

We argue that preventing end-to-end error propaga-

tion due to data corruption, including corruption in the

computation, is an important requirement for large-scale

fault-tolerant distributed systems. Application-specific

solutions like the ones used in Mesa leave application de-

velopers with the burden of guaranteeing data integrity.

606 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Instead, we advocate for hardening approaches that en-

able crash-tolerant systems to handle data corruption

with minimal changes to the application code base.

Existing hardening solutions are not sufficiently cost-

effective at scale: they either rely on expensive servers

with hardware-level redundancy [7, 53] or require pro-

cess replication and coordination over multiple physical

machines even to achieve simple error isolation [30]. Re-

cent software-based approaches ensure end-to-end error

isolation in distributed systems without physical repli-

cation, but they still increase the application state by a

factor of two and do not support multithreading [12, 23].

The widespread use of multi-core machines with large

main memory requires solutions that scale well with

many application threads and a large in-memory state.

We introduce Scalable Error Isolation (SEI), a scal-

able hardening algorithm that transforms the processes

of an arbitrary event-based distributed system to ensure

error isolation. With error isolation, local errors cannot

propagate to other processes via output messages in an

undetectable manner. SEI is designed to formally guar-

antee error isolation in the presence of Arbitrary State

Corruption (ASC) faults, a well defined and general fault

model [23]. We have implemented a C library called

libsei to harden distributed systems using the SEI al-

gorithm. Hardening is semi-automated: a developer sim-

ply annotates, using the libsei API, the portions of the

code of a distributed system process that are responsible

for handling messages, as well as the input and output

messages. The compiler then automatically hardens the

implementation by instrumenting it with libsei.

SEI and libsei are scalable in three dimensions. For

memory, the additional state and redundant information

they use is small and independent of the memory usage

of the hardened process. For computation, they support

multithreading and thus cover complex error propagation

patterns among threads sharing the same state. For de-

velopment effort, they enable hardening real-world ap-

plications with minor developer involvement.

SEI detects data corruption in the computation, i.e.,

errors in the arithmetic and logic units of the proces-

sors and in the register files, by processing each mes-

sage twice and comparing the results locally. The SEI

hardening code itself is untrusted, so checks might be in-

correct or skipped due to faults. Consequently, SEI runs

multiple integrity checks for data and control-flow errors.

SEI detects data corruption in memory using compact

error detection codes. These codes can be implemented

in software, but SEI can also leverage hardware-level

mechanisms, such as ECC or Chipkill in DRAM memory

modules, to virtually eliminate the memory overhead.

These hardware mechanisms both perform this part of

the hardening very efficiently and are effective for data

in memory [32, 50]. Given that there is no expectation

that memory error rates will increase [15, 51], they are

likely to remain effective.

To show that hardening existing systems with a small

amount of effort is possible, we have hardened real-

world applications: memcached, a popular in-memory

distributed cache system, and Deadwood, a recursive

DNS resolver. Hardening these systems required a good

understanding of the code base but only small changes.

We conducted extensive fault injection experiments,

both software- and hardware-implemented, and a perfor-

mance evaluation of our hardened applications. We in-

jected faults at hardware level by reducing the CPU volt-

age and observed that SEI detected all errors. We also in-

jected targeted data corruption faults during computation

and found that SEI makes the likelihood of error propa-

gation under these faults negligible: from 44% down to

only 0.15% of the errors.

Performance results show that the overhead depends

on the original bottlenecks of the system. In the case of

memcached, the application is not CPU-bound so there

are spare cycles available for additional processing and

the overhead is negligible. Deadwood, however, is CPU

intensive so its throughput is reduced to nearly one half.

The remainder of this paper is structured as follows.

Section 2 discusses related work. Section 3 introduces

the system and fault models. Section 4 presents the SEI

algorithm. Sections 5 and 6 discuss the libsei imple-

mentation and our experience hardening memcached and

Deadwood. Sections 7 and 8 present our fault injection

and performance results. Section 9 concludes this work.

2 Related work

We now discuss the most related approaches for error

isolation in distributed systems.

Byzantine fault tolerance. Given the body of work on

Byzantine Fault Tolerance (BFT), it is natural to consider

Byzantine faults to cover data corruption [18, 37, 40].

The Byzantine model assumes a powerful adversary, and

consequently a Byzantine-tolerant system is able to cope

with data corruption. Byzantine-tolerant protocols, how-

ever, also tolerate faults that are orthogonal to resilience

against data corruption, such as intrusions or bugs, as

long as replicas use diverse implementations to guaran-

tee fault independence [19]. In particular, intrusions fall

into the domain of security, which is often treated as a

separate concern in data center applications [13].

Deadwood and memcached are instances of a large

class of systems in which integrity (safety) is sufficient

and continuous availability is not strictly necessary. In

the Byzantine model, providing just safety does not sig-

nificantly reduce cost; see for example Nysiad, which

achieves safety through replication and agreement [30].

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 607

The Thema system also shows the additional complex-

ity of building Byzantine-tolerant three-tiered Web sys-

tems [42]. In contrast to BFT, SEI is lightweight, not

requiring replication nor complex agreement protocols.

SEI can still be used to harden replicated systems, e.g.,

replicated state machines based on Paxos [39]. Finally,

BFT primarily targets single-threaded state machines.

Eve runs multithreaded state machines in multi-core sys-

tems by leveraging commutative operations [35]. SEI

supports regular multithreaded applications and does not

rely on commutativity.

Software-level error detection. Software-level error

detection has been subject of a large body of research

work. Most such techniques do not provide end-to-end

guarantees in distributed systems under ASC faults (see

for example SWIFT [48] or [47]). Recent work has pro-

posed using encoded execution to harden distributed sys-

tems and provide end-to-end guarantees [12]. Encod-

ing presents important drawbacks, however. First, it in-

duces a significant overhead, showing a response time in-

creased up to 20 times even at modest request loads. For

a service such as memcached that is sensitive to latency,

such an overhead is not acceptable. Second, encoding

blows up the application state by a factor of two. Op-

timizations for both issues exist [10], but are limited to

state machine replication. In contrast, SEI presents mod-

erate overhead and has a small memory footprint with

hardware error detection codes.

PASC is a hardening algorithm that, like SEI, guaran-

tees coverage of ASC faults, is untrusted, and does not

require physical replication [23]. PASC can be used to

harden state machine replication: a comparison between

BFT and an ASC-tolerant version of Paxos is presented

in Correia et al. [23]. However, PASC is not scalable

in any of the three dimensions indicated by SEI: it does

not support processes with multiple threads, it doubles

the memory requirements of the hardened application,

and it requires implementing the distributed system from

scratch using a fixed template. The first two points limit

its applicability to multithreaded, memory-intensive sys-

tems like memcached. The last point makes it hard to

harden existing code bases, also because all state ac-

cesses must be mediated by a single state object [9].

3 System and fault model

This section presents an informal description of our sys-

tem and fault model, which is an adaptation of the ASC

fault model [23] to multithreaded settings. We refer to

our technical report [11] for a complete formalization.

System model. SEI targets event-based processes of

distributed systems. Processes consist of one or more

threads that spin over three phases:

- Dispatching receives a new event (message) and se-

lects an event handler;

- Handling executes the actual system logic;

- Output sends out messages produced by the event

handler.

Threads read from and write to state variables, which

collectively form the state of the process. These vari-

ables persist across the multiple event handling cycles

and can be shared among threads. A thread might also

have a local state, which encompasses the variables that

are instantiated every time a handler is executed, but

do not persist across handler executions. The state of

a process includes all state that is directly observed by

its threads and used to determine their behavior. In this

work, we consider only state stored in memory, but the

model could also be extended to disk storage.

The event handling logic is deterministic, i.e., the state

updates and outputs it produces depend uniquely on the

input message and the values returned by its reads from

the process state. However, we do not require determin-

istic thread scheduling. Threads can be scheduled in any

order and preempted arbitrarily.

Threads can interact through shared variables, which

are only accessed in critical sections protected by locks.

While this requirement does not cover applications us-

ing lock-free state sharing, it represents a very com-

mon approach. We assume that threads use lock hier-

archies [29], a standard technique to avoid circular waits

and deadlocks. Lock hierarchies determine a fixed total

order among all locks, and threads acquire and release

the locks they need according to this order.

Fault model. We consider a conservative fault model

for transient hardware faults. An Arbitrary State Corrup-

tion (ASC) fault can either crash the process or modify its

state by assigning an arbitrary value to any number of its

variables. A fault can also corrupt the program counter

and make it jump to a different instruction.

This fault model admits worst-case state corruption

scenarios. Faults can modify any number of variables

and assign them any value. Corruption can occur while

data is stored, for example, in main memory, or data is

computed, for example, by the combinational logic of

a processor. Since it is difficult to determine precisely

which part of a process state can be corrupted by a hard-

ware malfunction, a worst-case model is easier to gener-

alize over different applications and platforms.

To guarantee data integrity, the ASC model assumes

that it is possible to implement reliable integrity checks

to detect data corruption while data is stored, for exam-

ple, in memory, or transmitted as a message. Formally,

a variable v in the process state is accessed with the in-

structions read(v) and write(v,val), where val is the new

value of v. The integrity check of a variable v is per-

formed by calling check(v). The model assumes the fol-

608 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

lowing corruption coverage property of integrity checks:

if the current value of a variable v has been determined

by an ASC fault, then check(v) detects the error by eval-

uating to FALSE. The ASC model does not specify how

integrity checks are implemented. Possible options are

Cyclic Redundant Codes (CRC) or hardware techniques

like ECC memory. The corruption coverage property is

consistent with these techniques: check(v) cannot detect

errors if the current value val of v has been written by

a write(v,val) instruction. With an ECC implementation

of integrity checks, errors that are detected and not cor-

rected correspond to check(v) calls returning FALSE right

before read(v) calls. The write(v,val) calls overwrite the

memory locations storing v and update their ECCs.

ASC faults cannot occur infinitely often. An execu-

tion of the system comprises an unbounded number of

thread steps. Such an execution might include an un-

bounded number of faults, but at most one fault occurs

during any event-handling phase of any thread (multi-

ple faults can still occur before that thread starts the next

event-handling phase). This assumption does not limit

the number of faults in an execution, but it limits fault

frequency; we justify this assumption as follows. The

distributed systems we target handle events such as pro-

cessing an incoming message in no more than a few mil-

liseconds. The fault model consequently assumes that no

two faults happen within such a short time window. The

frequency of uncorrectable hardware-level data corrup-

tion previously reported indicates that this assumption

holds with very high probability [32, 43, 50]. It holds

even if we consider hard errors that occur intermittently

at the same memory location [32].

After an ASC fault, computation is expected to con-

tinue according to the specification, although perhaps

from an instruction that is inconsistent with the previous

execution flow and from a wrong state. Transient text-

segment corruption typically results in ASC faults: an

incorrect operation might corrupt some of the operands,

update the wrong variable, or result in an incorrect jump.

Related work on the Ensemble system confirms this ob-

servation [8]. These faults are often enough tolerated by

ASC-hardening, and in fact, the injection of text-segment

faults on an ASC-hardened Paxos implementation has

shown no case of error propagation [23]. In our hard-

ened memcached, text-segment corruption resulted in er-

ror propagation with negligible probability (3 out of 7000

errors). There are, however, some cases of text-segment

corruption, like some corruptions of load and store in-

structions, that cannot be tolerated in our model.

4 The SEI hardening algorithm

The SEI algorithm takes an event-based process as speci-

fied in the previous section and transforms it into a hard-

ened process. A hardened process executes the same ap-

plication logic as the original process, together with ad-

ditional checks against ASC faults.

The SEI algorithm comprises a set of transformation

rules that introduce both redundant execution and addi-

tional verification steps to the original code. To prevent

error propagation, SEI might induce a faulty process to

abort (i.e., crash) if an internal corruption is detected, or

might make a correct process discard a corrupt message

it has received. While a faulty process might still send

out incorrect messages, incorrect messages do not appear

correct to receivers.

In a distributed system where all processes are hard-

ened, SEI guarantees the following properties [11]:

• Error isolation: A correct process discards any cor-

rupt input message.

• Accuracy: Hardening never causes a correct process

to crash or discard a correct input message.

Messages are either correct or corrupt. A correct mes-

sage is informally defined as follows. Let p be a process

and s be the sequence of correct messages p received be-

fore sending a message m. Message m is correct if and

only if there exists a subsequence hm of s, called a gen-

eration history, such that the correct behavior of p after

receiving only hm would be to output m. By induction,

each generation history of each output message that p

produces after sending m extends some generation his-

tory of m. In presence of multiple threads processing

input messages in parallel, there exists also a consistent

interleaving of steps that generates all output messages.

With error isolation, a distributed system designed to

tolerate crashes and message omissions is guaranteed to

also tolerate ASC faults once its processes are hardened.

Accuracy rules out trivial ways to achieve error isolation.

Before discussing details of SEI, we show with an ex-

ample how to harden an event handler against a small

subset of ASC faults by progressively adding checks.

4.1 SEI by example

We illustrate the hardening transformation by presenting

an example in which a simple event handler eliminates

all but the least significant digit (modulo 10) of the state

variable X using a temporary variable V (see Figure 1a).

In this example, a fault might corrupt X before the pro-

cess sends out the message containing X and propagates

the incorrect value of X to another process.

A first improvement is to duplicate instructions and

variables (see Figure 1b). This approach resembles

EDDI [46] and SWIFT [48]. Instruction duplication pre-

vents error propagation if a fault only corrupts one vari-

able (i.e., V , V ′, X , or X ′) before the check of Line 6.

Instruction duplication, however, cannot detect several

other corruption scenarios. As an example, consider

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 609

a) Original code

// handler

V ← X1

V ← V % 102

X ← V3

// send message

send X4

b) Instruction duplication

// handler

if X �= X’ then Abort1

V ← X2

V’ ← X’3

V ← V % 104

V’ ← V’% 105

if V �= V’ then Abort6

X ← V7

X’ ← V’8

// send message

send X9

c) PASC-like

// Execution 1

if X �= X’ then Abort1

V ← X2

V ← V % 103

N ← V4

// Execution 2

if X �= X’ then Abort5

V ← X’6

V ← V % 107

X’ ← V8

// Validation

if N �= X’ then Abort9

// Final update

X ← N10

// send message

send X, CRC(X’)11

d) Simplified SEI

// Execution 1

V ← X if X = X’ else Abort1

V ← V % 102

O ← X if X = X’ else Abort3

X, X’ ← V4

// Reset

N ← V5

X, X’ ← O6

// Execution 2

V ← X if X = X’ else Abort7

V ← V % 108

X, X’ ← V9

C ← CRC(V)10

// Validation

if N �= X then Abort11

// send message

send X, C12

Figure 1: Hardening of a handler that updates a state

variable X via a temporary variable V , then sends X out.

Primed variables are replica variables (e.g., X ′ is a replica

of X). Comparisons among replicas (e.g., if X = X ′) im-

plement the check(v) operation. “←” represents either

read(v) or write(v,val) or a combination of them.

a last-mile fault: a fault corrupting V or X between

Lines 6 and 9. Even adding a further check comparing X

to X ′ before Line 9 does not help because a fault could

still occur after the check.

Another example where instruction duplication falls

short is multi-variable corruption (recall that a single

ASC fault may corrupt any number of variables). By the

corruption coverage property, an ASC fault alone can-

not corrupt X and make check(X) true, i.e., a fault cor-

rupting X and X ′ has to result in X �= X ′. However, if

an ASC fault corrupts X and X ′ between Lines 1 and 2,

then the execution of the subsequent instructions can let

V and V ′ have incorrect but equal values in Line 6. For

example, if initially X = X ′ = 101 and an ASC fault be-

tween Lines 1 and 2 results in X = 10 and X ′ = 20, then

V = V ′ = 0 in Line 6. X is corrupt but equal to X ′ in

Line 9, and consequently the error is propagated.

The next step is to apply the checks in the PASC hard-

ening algorithm [23], which we show in Figure 1c. With

this approach, we first execute all instructions using the

original variables (i.e., X), and then execute all instruc-

tions using the replica variables (i.e., X ′). During the first

execution, the process stores in N the updates to the state

variable X (Line 4). In the second execution, it writes

directly into X ′. Next, the process compares the updates

in N and X ′ and applies them to X . Finally, the process

sends a message containing X and its replica X ′.

The PASC-like approach detects last-mile corruption

scenarios by adding X ′ to the output message. If a fault

corrupts X right before the message is sent in Line 9, the

receiver detects it by comparing X and X ′. In practice, it

is not necessary to send the full value of X ′ and a CRC is

sufficient. Also important, the PASC-like algorithm can

detect multi-variable corruptions: the process detects a

fault corrupting X and X ′ between Lines 1 and 2 via the

check of Line 5, since X is not modified by Execution 1.

If ECC memory is available, the hardware can perform

the checks of Lines 1 and 5. Nonetheless, PASC always

performs check(v) comparisons in software. Having du-

plicated state variables for comparison doubles the mem-

ory footprint of the process state.

SEI leverages the presence of ECC to minimize mem-

ory overhead, but it requires a different algorithm to deal

with the fact that a variable and its replica are not stored

separately (see Figure 1d). During the first execution,

SEI takes a snapshot O of the original value of X . The

new reset phase restores the snapshot and stores the state

updates in N. The second execution is then executed

again on the original state. This snapshot-and-reset strat-

egy introduces additional hardening-specific data struc-

tures, which could be corrupted by ASC faults. We dis-

cuss next how to deal with these corruptions. Hardening

of multithreaded applications, another major improve-

ment of SEI over PASC, is also covered in Section 4.2.

4.2 SEI algorithm description

We now present the SEI algorithm and informally argue

its correctness in the presence of some ASC faults. For

a more detailed description and a complete correctness

proof, we refer to our technical report [11].

Overview. SEI modifies all the three phases executed by

event-driven threads (see Section 3). Hardening the dis-

patching and output phases consists of attaching a mes-

sage replica c to every message m, e.g., in the form of

a CRC. The core challenge is hardening the event han-

dling phase. SEI replaces the original event handler with

a hardened event handler consisting of five phases: an

initialization phase (I), a first-execution phase (E1), a re-

set phase (R), a second-execution phase (E2), and a final

validation phase (V) (see Figure 2).

Figure 3 describes these phases in more detail. The op-

erations in Phases I, R, and V are under the control of SEI

and independent of the event handler code. Phases E1

and E2 execute the original event handling code of the

application; SEI only inserts additional checks and op-

erations according to Rules R1-R9. Some rules are ac-

tions taken before or after statements of the original

610 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

E

Original event handler

mi mo

I → E1 → R → E2 → V

Hardened event handler

mi,ci mo,co

automatic

transformation

Figure 2: SEI transformation of an event handler E.

handler (denoted using before/do and after/do construc-

tions), others are statements of the original handler that

are replaced (denoted using replace/with constructions).

Phase I initializes SEI-internal data structures if the

input message mi matches its CRC ci, otherwise it dis-

cards mi. Phase E1 updates the state and generates one

or more output messages mo. Phase R restores the state

prior to the event handler execution E1. Phase E2 up-

dates the state again and generates the CRC co sent with

each message mo. Phase V compares the state updates of

E1 and E2, aborting the process if they mismatch.

We start by describing SEI for single-threaded applica-

tions and then extend the description to include our mul-

tithreading support.

Internal data structures. During Phase E1, SEI takes a

snapshot of the current value of variables before they are

updated for the first time and stores them in a snapshot

buffer O (Rule R2). Before Phase E2, it runs a reset phase

(Phase R), which stores the current state of the variables

updated by Phase E1 in a new-value buffer N, and re-

stores the original values in O. The new value buffer

is compared during Phase V with the update buffer U ,

which is created during Phase E2 (Rule R6), to make

sure that the same set of variables is modified.

ASC faults during event handling. SEI executes event

handlers twice to detect computation errors. To give

some intuition on how SEI detects faults, say a process

executes all phases in order I → E1 → R → E2 → V,

and the internal data structures used by SEI for harden-

ing are not corrupt. By the fault frequency property (Sec-

tion 3), we have at most one fault during these steps, so

either Phase E1 or E2 is fault-free. The integrity checks

of Rules R1 and R5 guarantee that a fault-free execution

of E1 or E2 does not read values corrupted by a fault.

Although SEI does not require ECC, an implemen-

tation of SEI can leverage ECC in the memory hierar-

chy because R1 (and its counterpart R5 in Phase E2) can

be efficiently checked by the hardware (we perform the

check when reading the variable). If the thread reaches

Phase V and executes it correctly, then the latest state up-

dates and output messages are correct. Note that even if

a fault corrupts one of the two event handlers and skips

Phase I

if CRC(mi) �= ci then1

discard mi and return2

initialize SEI variables3

increment checking barrier4

Phase R

store current values of updated1

variables in N

restore original values from O using2

write(v,val)

Phase E1 (generate output mo)

before read(v) doR1:

if ¬check(v) then Abort

replace write(v,val) withR2:

if first write to v then
add old value of v to O

write(v,val)

before acquire lock L doR3:

add L to Q

replace release lock L withR4:

if not holding L then Abort

Phase E2 (generate CRC co for mo)

before read(v) doR5:

if ¬check(v) then Abort

replace write(v,val) withR6:

add v to U

write(v,val)

after write(v,val)with v ∈ mo doR7:

if last write to v then
append val to CRC co

before acquire lock L doR8:

add L to Q

replace release lock L withR9:

if not holding L then Abort

Phase V

if ¬check(U) or ¬check(N) or ¬check(v) for each v in N then Abort1

if CRC(mi) �= ci then Abort2

if CRC(mo) �= co for each output message mo then Abort3

if current state inconsistent with the updates in N then Abort4

if N and U do not contain the same set of variables then Abort5

release all locks in Q6

wait at checking barrier7

Figure 3: Rules and actions for each of the phases of a

hardened handler. The pairs before/do, after/do, and re-

place/with indicate operations of the original event han-

dler that are intercepted. The Rules R2 and R6 are de-

scribed in more detail in Figure 4.

Phase V, the recipient of the message can still use mo and

co to verify that the outputs of E1 and E2 match.

Control-flow gates. SEI can handle much more com-

plex fault scenarios. Due to control-flow faults, a se-

quence of instructions may be executed multiple times,

in full or in part, or may be skipped altogether. We

use control-flow gates, similar to PASC, to detect incor-

rect control-flow jumps from one phase of the hardened

event handler (Figure 2) into another. We show a sim-

plified example in Figure 4a, in which we use a control-

flow variable cf (initially set to FALSE) to detect control-

flow faults jumping from some phase P1 to its subsequent

phase P2 and the other way around. Both phases, and thus

Lines 1 and 5, represent multiple instructions. If a fault

jumps from some instruction in P1 to some instruction in

P2, then cf is not TRUE at Line 6, causing the process to

abort. Likewise, if a fault jumps from some instruction

in P2 to some instruction in P1, then cf is already TRUE at

Line 2, causing the process to abort. Our technical report

contains a more detailed description of gates and covers

many more control flow scenarios, including cases where

faults corrupt the control-flow variables.

Corruption of SEI-internal data structures. SEI also

tolerates faults corrupting SEI-internal data structures.

We now discuss two example scenarios. First, consider

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 611

a) Control-flow gate example

// one phase

some phase P11

if read(cf) = TRUE then2

Abort3

write(cf ,TRUE)4

// another phase

subsequent phase P25

if read(cf) = FALSE then6

Abort7

b) Detailed hardening Rules R2 and R6

replace write(v,val) withR2:

if read(Oc(v)) = FALSE then1

write(Ov(v),read(v))2

if read(Oc(v)) = TRUE then Abort3

write(Oc(v),TRUE)4

if read(v) �= read(Ov(v)) then Abort5

write(v,val)6

if read(Oc(v)) = FALSE then Abort7

replace write(v,val) withR6:

write(U(v),TRUE)1

write(v,val)2

if read(U(v)) = FALSE then Abort3

Figure 4: Control-flow gates and details of SEI-internals.

the example of a cross-execution propagation: if a fault

occurs during the first execution (i.e., Phase E1) and a

variable update is not recorded in O, then the update

will not be reset. As a consequence, the second exe-

cution (i.e., Phase E2) could run incorrectly. Figure 4b

shows the detailed pseudocode of Rule R2. We split the

data structure O in two maps Ov and Oc. For each vari-

able v updated during Phase E1, a variable Ov(v) keeps

the old value of v while a variable Oc(v) determines (with

a boolean) whether the old value of v is already contained

in Ov(v) or not. Technically, Ov(v) and Oc(v) are also

variables in the process state. Before updating a vari-

able v, the process stores the current value of v into Ov(v)
if Oc does not contain v yet, i.e., read(Oc(v)) = FALSE.

After updating v, the process checks that now Oc con-

tains v in Line 7. This guarantees that if v is updated in

Line 6, then by fault frequency either (a) no fault occurs

before the update in the current (hardened) event handler

execution, so the original value of v is stored into Ov(v),
or (b) no fault occurs after the update in the current (hard-

ened) event handler execution, so the process crashes if

it detects the absence of an entry for v in Oc. A simi-

lar pattern is used to update variable U (see Rule R6 in

Figure 4b) and during Phase R to update the map N (see

technical report for details).

As another example, consider a snapshot buffer cor-

ruption: if a variable v is updated multiple times dur-

ing Phase E1 and a fault occurs, then a newer value of v

could be written into Ov(v) instead of the original value.

To deal with this problem, SEI first writes the value of

v into Ov(v) in Rule R2 and later marks v as contained

(Lines 2 and 4 of Figure 4b). Between these two oper-

ations, SEI checks that v is not contained in Oc yet, and

aborts the process otherwise. Say v is updated a second

time. After the first update of v, read(Oc(v)) = TRUE,

otherwise the process would have aborted in Line 7;

hence, the condition of Line 1 in the second update of v

is false. If Ov(v) is anyway overwritten in Line 2 during

the second update, a fault must have changed the control

flow to skip Line 1; by the fault frequency assumption,

Line 3 executes correctly and aborts the process.

Computation scalability. Threads in a multithreaded

application share the memory space of the process, but

they can also have a set of private variables (stack and

thread-local variables). Concurrently executing threads

and sharing variables make single-threaded hardening

techniques, like the one of Correia et al. [23], unsuitable

for multithreaded applications. Consider two threads t1
and t2 that access the same set of shared variables. If

a fault occurs, thread t1 could write an incorrect value

in a shared variable v. Thread t2 could then read from

v in the first execution of the event handler code with-

out being able to detect the error through integrity check.

Thread t1 could then write an incorrect value into v again

just before t2 reads v in its second execution of the event

handler code. The main consequence is that t2 may ex-

perience a situation that, in a single-threaded setting, is

equivalent to multiple state corruptions during the same

(hardened) event handler execution.

The basic requirement of SEI to prevent this type of

situations is that the threads of the original application

access shared state only within critical sections protected

by locks, as discussed in Section 3. Furthermore, in the

presence of multiple locks, threads avoid deadlocks by

acquiring and releasing the locks they need according to

a predefined total order (or hierarchy).

SEI prevents error propagation across threads through

shared state using three techniques: deferred lock releas-

ing, validated locking, and checking barrier. Deferred

lock releasing prevents error propagation among threads

as long as no two threads enter the same critical section.

A thread hardened with SEI postpones lock release oper-

ations during Phases E1 and E2 (Rules R4 and R9). The

thread releases its locks only after Phase V, which guar-

antees that a thread only reads validated state updates

from another thread. Deferred lock releasing results in

longer critical sections, but this is not a problem for live-

ness since we target applications using lock hierarchies

to avoid deadlocks.

Validated locking addresses situations when a control-

flow error causes two threads to enter the same criti-

cal section. SEI ensures that the process crashes before

any message is sent in such cases. During Phase E1,

SEI records the locks a thread acquires (Rules R3 and

R8). When SEI intercepts release operations in Phase E1

or E2, it verifies that the thread actually holds the lock

(Rules R4 and R9). If the verification fails, then the pro-

cess crashes.

Consider threads t1 and t2 entering the same critical

section C. Let S be the process state when t2 executes the

first operation of C. Since t1 and t2 are in the same critical

section, there must have been a fault during the execution

of the current event handler of t1 or t2 before S. By fault

frequency, there is no fault after S in the current hardened

event handler execution of t1 or t2. Given S and C, there

612 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

while (1) {
ilen = recv_msg_and_crc(imsg , &crc);
// hardened event handler
if (__begin(imsg , ilen , crc)) {

do_something_here(msg);
omsg = create_a_message_here (&olen);
__output_append(omsg , olen);
__output_done (); // finalize CRC
__end ();

} else continue; // discard invalid input
send_msg_and_crc(omsg , olen , __crc_pop ());

}

Figure 5: Example of event loop and hardened handler.

is a unique set of locks that will be eventually released

after C. At the state S, at most one of the two threads

holds all necessary locks in the set. While releasing the

locks, either t1 or t2 detects that it does not hold the nec-

essary locks and crash the process. This verification step

is still not sufficient, however. Say t1 does not hold the

necessary locks but t2 does. Even if t1 crashes the process

upon exiting C, t2 might still have time to exit C correctly

and send an incorrect message before the crash.

The checking barrier is designed to prevent this last

problem. It guarantees that if two threads execute a crit-

ical section concurrently, like t1 and t2 in the previous

example, they do not send out any message before both

have exited their critical sections and checked their locks.

Each thread is associated to a concurrency counter, ini-

tially zero. When starting the execution of an event han-

dler, a thread increments its own counter (Phase I). After

comparing all state modifications in Phase V, the thread

increments its counter again. If the counter value of any

thread is odd, then it indicates that the thread (e.g., t2
in the previous example) might hold locks that have not

been yet released and verified. After incrementing its

counter, a thread takes a snapshot of the current coun-

ters for all threads and waits until all threads have ei-

ther an even counter (they have released and verified all

their locks and are ready to complete the execution of the

event handler) or a counter higher than the snapshot (they

have already started the next event handler execution).

The checking barrier’s caveat is the additional assump-

tion that a single fault cannot make a thread skip the bar-

rier increment (Line 4 of Phase I), enter a critical section

in Phase E1 or E2 without acquiring a lock, and write an

incorrect value onto a variable, because this would create

an undetectable error for other threads. This scenario did

not arise in our fault injection experiments.

5 SEI-hardening implementation

We now present libsei,1 a library designed to automat-

ically harden crash-tolerant distributed systems. libsei

does not require re-developing the system from scratch,

1http://bitbucket.org/db7/libsei

enabling existing code to be hardened with minimal ef-

fort, as we discuss in this section and in Section 6.

Hardening code with libsei. Hardening an event

handler using libsei only requires: (i) marking the

beginning and the end of an event handler using the

macro functions begin() and end(); (ii) calling

output append(var, var len) to indicate that a

variable var is added to the current output messages;

(iii) calling output done() to indicate that the out-

put message is complete and its CRC can be final-

ized and added to the output buffer; (iv) appending

CRCs to output messages after retrieving them by call-

ing crc pop(); and finally (v) starting the compiler as

described below. The developer must enclose all oper-

ations modifying the process state with begin() and

end(). During run time, the event handler executes

twice with mechanism similar to setjmp/longjmp [33]

implemented in libsei. Dispatching and output phases

are external to libsei and do not require interaction

with the library. Note that output append() and

output done() can be called multiple times to gen-

erate multiple output messages in one handler.

Figure 5 shows the pseudo-code of a typical event-

based process. The functions provided by libsei are

prefixed with “ ”; all remaining code is part of the pre-

existing code base that needs to be hardened. Apart from

adding some annotations and adding CRCs to messages,

which is good practice anyway, there is not much a de-

veloper needs to do for hardening.

When the hardened system runs with multiple threads,

the function barrier() returns false if the thread

should wait for another thread to complete the execution

of its handler. The developer is responsible for calling

barrier() and blocking the output while it returns

false. In Section 6, we discuss how to mitigate the over-

head of blocking on the checking barrier.

Development effort. Scaling to large or existing code

bases requires minimizing the development effort of us-

ing libsei. A major challenge is storing snapshots and

state updates transparently. Instead of letting the devel-

oper notify the hardening library about state accesses,

libsei automatically intercepts memory operations us-

ing a compiler transformation available out-of-the-box.

In particular, we use transactional memory (TM) sup-

port of GCC, which is available from version 4.7 [27].

The TM compiler option redirects all memory operations

within begin() and end() markers to a standard-

ized application binary interface (ABI) [34]. Note that

libsei provides the ABI but does not implement or rely

on a TM algorithm. libsei merely executes procedures

that store snapshots, state updates and perform valida-

tion, as described in Section 4.

libsei allows the developer to choose what event

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 613

handlers are and to protect only the important variables.

For example, if a piece of code only manipulates a per-

formance statistics variable, the developer might decide

to keep the code outside any event handler since the vari-

able does not contain critical data for the application

safety. Also, libsei supports local handlers, helping

the developer to call event handlers without explicitly

receiving a message by marking the event handler with

begin nm(), taking no messages as argument.

libsei internals. libsei tracks lock acquisitions and

memory management by wrapping the pthread mutex

interface, malloc() and free(). After calling these

functions in Phase E1, libsei saves the arguments and

return value of the calls in a queue. In Phase E2, after

checking the arguments to be the same as in Phase E1,

it returns the values in the queue to the caller. Dealloca-

tions, similarly to lock releases, are postponed to the end

of Phase V. In general, any function performing an ex-

ternal action – e.g., sending a message – called inside an

event handler has to be wrapped since it will be executed

twice; the compiler terminates with an error otherwise.

Among others, libsei currently wraps sendto() and

sendmsg(), postponing their calls until the end of the

second execution. No wrapper is necessary for external

actions performed outside the event handler.

By default, libsei relies on memory error detection

codes to keep variable replicas and execute check oper-

ations. This allows us to nearly eliminate the CPU and

memory overhead of these operations.

6 Hardening real-world code bases

We have hardened two applications implemented in C:

memcached and Deadwood. memcached is a popular

multithreaded in-memory key-value cache [24], highly

optimized for performance, that exposes a get/set in-

terface to remote clients. memcached is essentially a

large hashtable with an LRU eviction logic with linked

lists to evict items. Deadwood is the single-threaded re-

cursive DNS resolver of MaraDNS [49]. We have used

memcached 1.4.15 and Deadwood version 3.2.05.

There are three main steps to harden a code base.

Step 1: Event handlers annotation. The initial chal-

lenge is choosing the right code lines to introduce the

event handler markers. A good understanding of the

code base is necessary to determine what state is per-

sistent across the processing of multiple requests. In

memcached, we marked 8 event handlers and added 7

lines related to the CRC of messages. More than 120

functions were automatically instrumented. In Dead-

wood, we marked 2 handlers and added 8 lines of

code. More than 170 functions were automatically in-

strumented.

Step 2: Code base adaptation. Instrumentation is par-

ticularly simple in distributed systems that are logically

organized as a collection of event handlers. These are

common and Deadwood is a good example; we had to

adapt only 2 code lines of Deadwood, moving a buffer

to the heap to enable the reset of updates. Standard

distributed computing algorithms such as the ones for

state machine replication are typically specified and im-

plemented as event-based algorithms as well. In some

distributed system implementation, however, identifying

a clean event-based pattern may be more challenging.

Hardening required modifying and adding about 60 code

lines to memcached because it does not always follow

the pattern “dispatching, handling, output”. One exam-

ple is when an event handler of a get request retrieves

an item: after sending the content of the item back to

the client in the output phase, memcached decrements

the reference counter of the item, which, being part of

the state, should also be modified in hardened handlers.

For such cases we have used local event handlers (see

begin nm() in Section 5).

Another issue is that SEI currently only supports lock-

based synchronization (see Section 4). The slab allocator

of memcached, for example, uses ad hoc synchroniza-

tion, so we disabled it for the hardened version. We left

it enabled for the original version, however.

Step 3: Performance tuning. In some cases, the TM

compiler might “over-protect” the code from the SEI’s

point of view. In Deadwood, dozens of strings are al-

located and freed in the scope of a single handler; al-

though these strings are in the heap memory, they are

local variables of the handler and do not have to be

protected. The developer can inform libsei to ignore

writes into a region of memory, e.g., into a string, by

calling ignore addr(addr, size). Moreover, if a

complete function only modifies local variables, the in-

strumentation of the function can be disabled by declar-

ing it with the SEI LOCAL attribute.

To mitigate the effect of the checking barrier on the

system scalability, the developer can adapt the system to

handle other requests while a thread is waiting for other

threads to complete the execution of concurrent event

handlers. In memcached, a thread always serves another

connection if sending a message would block the thread

on the socket. We consequently fake a “would-block”

case when a thread has to wait for the barrier. The caveat

of this solution is the further 40 lines of code added to

memcached. Alternatively, one can disable the barrier

altogether, allowing threads to complete the handler ex-

ecution without waiting for other threads. This solution

requires no additional code change, but assumes locks

cannot be skipped by ASC faults. We have implemented

and evaluated both approaches and report results next.

614 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Group Fault Description

CF CF IP register changes (control-flow fault)

DF

WREG register value changes after it is written

WVAL memory value changes after it is written

WADDR calculated address changes before write

RADDR calculated address changes before read

RD
RREG register value changes before it is read

RVAL memory value changes before it is read

Table 1: Fault types supported by our tool.

7 Fault coverage evaluation

The evaluation of SEI comprises two parts: fault cover-

age and performance. In this section, we report our fault

coverage results; the performance results appear in Sec-

tion 8. In the interest of space, we focus in this paper on

the memcached results and briefly mention Deadwood

experiments only to reinforce these results. Our techni-

cal report [11] contains all results for Deadwood.

To assess fault coverage, we performed two groups of

experiments. First, we perform an extensive software

fault injection campaign. Our goal is to determine (1)

whether SEI effectively guarantees error isolation; and

(2) how memory and computation scalability affect fault

coverage. The second part consists of hardware fault in-

jection using the dynamic voltage scaling of a processor.

Our goal here is to collect evidence that our approach can

indeed detect and isolate real, physically induced faults.

7.1 Software fault injection

Setup and methodology. In our fault injection exper-

iments, we follow the approach of Basile et al. [8] and

Correia et al. [23] injecting single bit flips. We have

implemented a tool with Intel’s Pin dynamic binary in-

strumentation framework [41] to inject faults during run-

time. Our tool can inject three groups of faults described

in Table 1. A control-flow (CF) fault flips a bit of the

instruction pointer. A fault in the data-flow (DF) group

affects the computation: WREG and WVAL represent

incorrectly computed values that are respectively written

into a register or a memory location, e.g., an addition

that results in a wrong value and is stored in a regis-

ter; WADDR and RADDR represent computational er-

rors while calculating an indexed address for reading or

writing from memory. Finally, a fault in the RD group

directly corrupts a register (RREG) before being used or

a memory location (RVAL) before being read.

Field studies show that most memory faults are de-

tected by ECC [32, 50]. Injected RVAL faults, however,

automatically overwrite both, the value and its ECC.

Hence, RVAL faults represent worst-case scenarios in

which the ECC memory is not able to detect data corrup-

tion as assumed by corruption coverage (see Section 3).

Group Variant Undetected Det/SEI Det/other Total

CF

mc 9.66% - 90.34% 6690

mc-sei 0.06% 14.70% 85.23% 6515

mc-sei-dup 0.00% 9.87% 90.13% 6594

DF

mc 44.18% - 55.82% 15180

mc-sei 0.15% 57.55% 42.29% 20264

mc-sei-dup 0.00% 45.81% 54.19% 15991

RD

mc 33.04% - 66.95% 10614

mc-sei 0.52% 46.78% 52.70% 11508

mc-sei-dup 0.00% 49.13% 50.87% 11442

Table 2: Errors classified in undetected, SEI-detected,

and detected with other mechanisms. Total errors out of

8,000 executions for each fault-variant combination.

To speed up our experiments and make the results re-

producible, we have modified memcached to read com-

mands from an input-trace file and write responses into

an output-trace file by wrapping functions reading from

and writing to sockets. To compare the output trace, we

first create a golden run output-trace file. We perform

two sets of experiments. The first set studies the fault

coverage of SEI and the effects of leveraging hardware

error detection codes in the implementation. We run,

with a single thread, the unhardened memcached (mc),

the SEI-hardened variant (mc-sei) with hardware error

detection codes, and a further SEI-hardened variant (mc-

sei-dup) with duplicated state assuming no error detec-

tion codes in hardware. The second set of experiments

investigates whether the computational scalability aspect

of our implementation affects the fault coverage. In this

set, we run mc-sei and mc-seil with 4 threads; mc-seil has

the checking barrier disabled and assumes that locks are

not skipped. We perform 8,000 executions for each fault

type and each single-threaded variant, with a subtotal of

64,000 executions for the DF group, 24,000 for the RD

group, and a total of 168,000 executions (see Table 2).

For the multithreaded experiments, we perform a total of

80,000 executions (see Table 3).

In each run, one fault is injected at a randomly selected

instruction inside or outside the event handler including

shared libraries; Pin cannot, however, instrument instruc-

tions inside syscalls. A fault that causes a trace deviation,

e.g., an unexpected message or a shorter trace, produces a

manifested error. The errors we report are all manifested,

consequently we refer to them as just errors henceforth.

Fault coverage and memory scalability. We initially

experimented with a single thread to observe the effects

of faults without the effects of concurrent access. Table 2

summarizes the results of our fault injection experiments

with a single thread. The right-most column shows, for

each fault-variant combination, the total number of er-

rors out of the total of each group. Errors are detected

or undetected, shown as percentage of the total number

of errors. Undetected errors are corrupt output messages

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 615

that cannot be detected by the client. They correspond

to error propagation scenarios where the error isolation

property is violated. Detected errors are further divided

into det/SEI, i.e., errors detected and isolated by libsei,

for example, crashes initiated by the library or invalid

messages detectable at the client; and det/other errors,

i.e., errors detected or isolated by other mechanisms, for

example, crashes due to segmentation fault or assertions,

infinite loops, and also error messages or partial mes-

sages detectable at the client. Note that each error prop-

agation percentage is relative to the total observations in

each fault group. They do not express probabilities since

the real frequency of CF, DF, and RD faults is unknown.

Hardening memcached drastically decreases the unde-

tected errors. The native mc variant shows from 9% up

to 44% undetected errors, depending on the fault group.

In contrast, the mc-sei variant shows at most 0.15% un-

detected errors for DF faults and 0.52% for RD faults.

The latter result indicates SEI is also resilient to fault

scenarios where the ECC memory does not detect data

corruption. Hardening Deadwood shows similar trends,

reducing undetected errors, for example, from 32.38%

down to at most 0.12% for the DF group.

Like PASC [23], mc-sei-dup uses software-duplicated

state and detects all injected faults. As this work focuses

on the use of hardware error detection, we now analyze

how errors manifest specifically on the mc-sei variant.

Detected non-silent errors. Since hardening cannot

guarantee fail-stop behavior, some errors are non-silent:

clients perceive them as unexpected messages. A mes-

sage is invalid if the message CRC does not match the

message payload. From 0.7% up to 3.4% of the errors in

mc-sei are invalid messages, representing the majority of

non-silent errors. Some messages also arrive truncated at

the client, e.g., when memcached crashes before writing

the complete message out. Interestingly, memcached it-

self produces error messages, for example, when a fault

makes memcached think it is out of memory. Truncated

and error messages constitute up to 1.2% of the errors.

As shown in Table 2, undetected errors (i.e., corrupt but

valid messages) represent up to 0.52% of the errors and

are the only cases that can violate error isolation. We

now study these cases in detail.

Undetected errors analysis. Analyzing the log files of

our experiments, we identified pointer corruption as the

major source of undetected errors in mc-sei. Leverag-

ing hardware error detection, as SEI does, has the side

effect that variables and their replicas (the ECC data)

are stored in the same memory location and accessed

together by the processor. A fault corrupting a pointer

to a variable in an undetectable manner causes both, the

variable and its replica, to become corrupt, invalidating

the fault diversity assumption. It is consequently a type

Group Variant Undetected Det/SEI Det/other Total

CF
mc-sei 0.02% 13.78% 86.20% 6366

mc-seil 0.05% 12.84% 87.11% 6330

DF
mc-sei 0.16% 58.58% 41.26% 19484

mc-seil 0.28% 58.61% 41.11% 19088

Table 3: Errors for 4-threaded executions classified in

undetected, detected with SEI, and detected with other

mechanisms. Total errors out of 8,000 executions for

each fault-variant combination.

of fault not covered by our fault model. The very low

overhead of libsei and the results presented above (a

drop of undetected errors from 44.18% to only 0.15%)

are encouraging, however. Note also that using software

replication overcomes this problem because we use two

separate pointers for the value and its replica. Using soft-

ware replication constitutes a trade-off between memory

footprint and fault coverage (see mc-sei-dup in Table 2).

To understand a typical scenario of error propagation,

consider the following instructions, which are executed

upon completion of sending a reply:

// item *it = *(c->icurr);
mov (%rax),%rax
mov %rax,-0xe0(%rbp)

After replying to a get request, memcached decre-

ments the reference counter of the retrieved item. The

object c is the connection, and *(c->icurr) is the ad-

dress of the retrieved item, which is kept in the hashtable.

The first instruction stores the address of the current item,

*(c->icurr), into register rax. The second instruc-

tion moves the address into the stack, i.e., into the tar-

get address -0xe0(%rbp). In our logs, a WADDR fault

flipped the calculated address, making the mov operation

write the pointer just after the stack. The execution pro-

ceeded to decrement the reference counter, which is ex-

ecuted in a hardened local event handler. The pointer

used, however, was the wrong pointer because the ad-

dress -0xe0(%rbp) still pointed to an old item in the

hashtable. The old item had its reference counter decre-

mented and was freed since its reference counter reached

zero. The memory location was later reused for another

entry of the hashtable, resulting in two item entries (keys)

pointing to the same item object in memory incorrectly.

Computational scalability effects. Table 3 shows the

results for our multithreaded experiments. The re-

sults indicate that (1) multithreaded executions do not

present more undetected errors than single-threaded ex-

ecutions; and (2) although mc-seil assumes locks cannot

be skipped, it does not show substantially more unde-

tected errors than mc-sei. In particular, CF faults, which

can potentially jump over locks, resulted in less than

0.1% of undetected errors in both variants.

616 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

Variant Undetected Det/SEI Det/other Total

mc-sei 0 11 457 468

mc 4 - 464 468

Table 4: Errors when undervolting CPU.

7.2 Hardware fault injection

Software fault injection can reproduce fault cases very

precisely, making it easier to analyze and understand fail-

ures. However, there is the risk of introducing a bias, and

consequently, we have also used hardware fault injection

to reproduce realistic and unbiased failure scenarios.

We perform hardware fault injection by using the dy-

namic voltage and frequency scaling (DVFS) support of

an AMD FX based multi-core CPU (Bulldozer). DVFS

can be used to undervolt cores, reducing the voltage be-

low the predefined value while keeping the frequency

constant. The scenario of our experiments could be the

effect of misconfiguration of power-saving options or of

a power supply failure. Note that future microprocessors

are also expected to run at lower voltage, thus increasing

the likelihood of data corruption [15].

We experimented with variants mc and mc-sei running

a single thread. After launching the application, we low-

ered the voltage between 100 and 150 mV of the nomi-

nal CPU voltage (1.225 V). Table 4 shows the outcome

of 936 observations. The application often crashed in

at most 40 seconds of execution. In addition to crash-

ing, the machine froze very often, explaining the reduced

number of experiments performed.

The vast majority of errors were crashes caused by

segmentation faults, invalid instruction errors, and other

errors detected by the operating system. In mc-sei,

2.35% of the errors (11 cases) were detected by libsei,

and we observed no undetected errors. In mc, 0.85%

of the errors (4 cases) were undetected. Although not

conclusive, the experiment indicates that (1) undetected

errors, i.e., corrupt messages, can happen due to hard-

ware faults; and (2) some of these faults manifest as ASC

faults and are successfully detected by libsei.

8 Performance evaluation

Setup and methodology. We run the memcached with

a hashtable of 2 GB on a 12-core 2.66 GHz Intel Xeon

X5650 machine (Linux 3.8 kernel). We use 8 client ma-

chines with a similar configuration (8-core 2 GHz Xeon)

connected via Gigabit Ethernet. Each client machine

runs one instance of Facebook’s mcblaster workload

generator [38]. Each mcblaster instance measures av-

erages of the throughput and response time for 60 s.

The workload can be configured with value size in

bytes. One client machine with 64 connections is started

●
●

●

●

●

●
●

●

●
●

●
●

●
● ●

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

8
 B

1
2
8
 B

2
5
6
 B

1 2 4 6 8

threads

th
ro

u
g
h
p
u
t

(k
.r

eq
/s

)

●

●
●

● ● ●

●

● ● ● ● ●

● ● ● ● ● ●

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

8
 B

1
2
8
 B

2
5
6
 B

10 100 1k 10k 100k 1M

key range, log(key)

th
ro

u
g
h
p
u
t

(k
.r

eq
/s

)

● mc−seil mc−sei mc

Figure 6: Throughput of get requests varying threads

(with key range of 1000) and key range length (with 8

threads) for different value sizes (8, 128 and 256 bytes)

for each memcached thread. Clients randomly select (us-

ing uniform distribution) the next key to be issued from

the integer set {1, . . . ,K} where K is called key range. Fi-

nally, the load is the aggregated number of requests per

second issued by all clients. Clients mainly issue get

requests since they represent the vast majority of opera-

tions in typical workloads [5, 45, 52].

We consider the following memcached variants: mc,

mc-sei and mc-seil. Stock memcached has an important

bottleneck due to a global lock protecting the LRU evic-

tion list, i.e., cache lock, which is known to affect scal-

ability [5]. We have improved this bottleneck to increase

scalability by having all our variants of memcached ac-

quiring the cache lock with trylock(), and only up-

dating the list if there are no concurrent updates. Even

with this bottleneck improvement, mc still does not scale

above 8 threads, so we limit our experiments to up to 8

threads. Finally, to avoid modifying the workload gen-

erator, the hardened memcached variants compute 32-bit

CRCs as prescribed by the algorithm, but do not send

them along with messages. The expected performance

impact of 4 bytes of CRC is negligible when added.

Deadwood is a single-threaded server. It follows a

similar setup, but with up to 20 client machines running

nsping to query the IP of 100 popular websites.

Computation and memory scalability. Figure 6 (left)

represents the scalability limit for memcached when

varying the number of threads from 1 to 8. The y-axis

depicts the maximal throughput that can be achieved

while keeping the average response time across all re-

quests below 1 ms, a realistic response time target for

memcached. We also vary the value size from extremely

small messages (8 B) to medium messages (256 B). With

larger value sizes, fewer threads are necessary to achieve

the maximal throughput with any variant; all variants

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 617

achieve their maximal throughput with 8 threads. With

value sizes larger or equal to 128 B and 8 threads, mc-sei

and mc-seil show negligible throughput overhead. With

a value size of 8 B and 8 threads, the overhead is 25%

for mc-sei and 20% for mc-seil. mc-seil shows a lower

overhead than mc-sei due to the disabled SEI’s barrier.

Figure 6 (right) depicts the maximal throughput

achieved when varying the key range and the value size

with 8 threads. Few keys introduce contention between

the threads, since they access the same buckets, acquir-

ing at least 2 locks per request. Critical sections become

longer due to hardening. Consequently, the scalability

with queries spanning very few keys, e.g., 10 keys, is

limited. Such scenario could also represent a workload

with a few hot keys. We expect, however, a memcached

instance to host and serve many thousands of differ-

ent keys. As we distribute the workload across more

keys, there is less contention and consequently more op-

portunity for concurrent execution. The overhead with

1 M keys and 8 B value sizes, for example, is about 25%

for both mc-sei and mc-seil. The overhead becomes neg-

ligible with larger value sizes and more than 100 keys.

Regarding memory overhead, each thread requires

about 30 KiB for hardening-related data structures.

Single-thread scenarios. libsei is designed to amor-

tize its overhead with the number of threads. Multi-

threading can release pressure on the CPU, making it

more likely for the system to become network bound. We

now consider single-threaded scenarios with Deadwood

and memcached running with one thread – see [11] for

details on these experiments.

When the system is not overloaded, the response time

overhead of mc-sei is small. For example, at a load of

10 k.req/s, the difference of response time between mc

and mc-sei varies from 2% to 7% depending on the size

of the messages – we experimented with values of 8 B up

to 8 KiB. In Deadwood, depending on the response size,

hardening incurs an overhead from 13% up to 21% in the

response time for loads of 1 k.req/s.

Deadwood becomes CPU bound very quickly. As a

result, the throughput overhead under maximal request

load reaches 40% to 50%. Using the timestamp counter

of the processor, we measured the average number of

cycles Deadwood consumes for a single request in the

dispatch, handling, and output phases (averaged over

10,000 requests). Table 5 shows the percentage of CPU

cycles spent in each phase relative to the native variant.

The dispatch and output phases do not increase signif-

icantly with hardening. The hardened handling phase

takes, however, 2.4 times the number of the cycles of

the native counterpart. This overhead is caused by the

double execution of the event handler, by the code instru-

mentation, and by the checks in libsei. Since the du-

plicated part constitutes only 27% of the used cycles, the

Variant Dispatch Handling Output Total Cycles

Native 41.75% 27.51% 30.74% 100% 83 k

SEI-hardened 42.71% 66.81% 31.47% 141% 117 k

Overhead +0.94% +39.30% +0.73% +41%

Table 5: Average CPU cycles consumed for a single re-

quest relative to the native Deadwood variant.

cycle-overhead of processing a single message by hard-

ened Deadwood is only 41%.

In contrast, mc-sei is not likely to saturate even with

a single thread. For 1 KiB large values, mc-sei has an

overhead of 20%. For 4 KiB or larger values, both mc-

sei and mc are network bound and show no significant

difference in the throughput.

Overall, even in single-threaded scenarios we ob-

served no more than 50% overhead. The low overhead

is due to the hardening of application event handlers, but

not the underlying software components, such as the op-

erating system. SEI expects faults in these components to

manifest as ASC faults, corrupting the application state

or its messages. According to our fault injection ex-

periments, SEI is sufficient and a “duplicate everything”

strategy is not strictly necessary. We expect long event-

handling phases, however, to induce higher overheads.

9 Conclusion

We have proposed a novel algorithm for ASC hardening,

SEI, that can leverage mechanisms provided in hardware,

such as error correction codes in memory modules, to

minimize overhead. The exercise of hardening an exist-

ing system like a DNS server and memcached exposed

a number of challenges, mostly related to deviations to

the structure our algorithm expects. Yet, we were able

to harden it with some reasonable amount of effort. SEI

introduces a negligible overhead in applications that are

not CPU-bound and is effective in avoiding error prop-

agation. The residual error propagation observed in our

fault injection results is due to pointer corruption, which

SEI is vulnerable to when using hardware ECC. It is sub-

ject of future work to design new techniques or exten-

sions that are able to overcome this limitation while us-

ing ECC memory for systems that are potentially more

susceptible to pointer corruption.

Acknowledgments

This work was partially supported by the state of Sax-

ony under grant of ESF 100111037 and by the German

Research Foundation (DFG) within the Cluster of Ex-

cellence “Center for Advancing Electronics Dresden”.

We would like to thank our reviewers and our shepherd

Richard Mortier for the useful feedback.

618 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

References

[1] AMAZON. Amazon S3 availability event: July

20, 2008. http://status.aws.amazon.com/

s3-20080720.html, July 2008.

[2] AMAZON. New defective S3 load balancer cor-

rupts relayed messages. https://forums.aws.

amazon.com/thread.jspa?threadID=22709,

June 2008.

[3] AMAZON. Odd data corruption during download.

https://forums.aws.amazon.com/thread.

jspa?messageID=86214, Apr. 2008.

[4] AMAZON. Single-bit corruption of a small percent-

age of S3 data. https://forums.aws.amazon.

com/thread.jspa?messageID=262676, July

2011.

[5] ATIKOGLU, B., XU, Y., FRACHTENBERG, E.,

JIANG, S., AND PALECZNY, M. Workload analy-

sis of a large-scale key-value store. In Proceedings

of the 12th ACM SIGMETRICS/PERFORMANCE

joint international conference on Measurement and

Modeling of Computer Systems (New York, NY,

USA, 2012), SIGMETRICS ’12, ACM, pp. 53–64.

[6] BAKER, J., BOND, C., CORBETT, J. C., FUR-

MAN, J. J., KHORLIN, A., LARSON, J., JEAN,

LÉON, M., LI, Y., LLOYD, A., AND YUSH-

PRAKH, V. Megastore: Providing scalable, highly

available storage for interactive services. In 5th Bi-

ennial Conference on Innovative Data Systems Re-

search (CIDR) (2011).

[7] BARTLETT, W., AND SPAINHOWER, L. Commer-

cial fault tolerance: A tale of two systems. IEEE

Transactions on Dependable and Secure Comput-

ing 1, 1 (2004), 87–96.

[8] BASILE, C., LONG, W., KALBARCZYK, Z., AND

IYER, R. Group communication protocols under

errors. In Proceedings of the 22nd IEEE Sym-

posium on Reliable Distributed Systems (2003),

pp. 35–44.

[9] BEHRENS, D., FETZER, C., JUNQUEIRA, F. P.,

AND SERAFINI, M. Towards transparent harden-

ing of distributed systems. In Proceedings of the

9th Workshop on Hot Topics in Dependable Sys-

tems (2013), HotDep’13.

[10] BEHRENS, D., KUVAISKII, D., AND FETZER, C.

HardPaxos: Replication Hardened against Hard-

ware Errors. In IEEE 33rd International Sympo-

sium on Reliable Distributed Systems (SRDS), 2014

(Oct. 2014), pp. 232–241.

[11] BEHRENS, D., SERAFINI, M., ARNAUTOV, S.,

JUNQUEIRA, F., AND FETZER, C. Scalable er-

ror isolation. Tech. Rep. TUD-FI15-01-Februar

2015, ISSN 1430-211X, Technische Universität

Dresden, Fakultät Informatik, Feb. 2015. http:

//bitbucket.org/db7/libsei.

[12] BEHRENS, D., WEIGERT, S., AND FETZER, C.

Automatically tolerating arbitrary faults in non-

malicious settings. In Proceedings of the Sixth

Latin-American Symposium on Dependable Com-

puting (LADC) (April 2013), pp. 114–123.

[13] BHATOTIA, P., WIEDER, A., RODRIGUES, R.,

JUNQUEIRA, F., AND REED, B. Reliable data-

center scale computations. In Proceedings of the

4th International Workshop on Large Scale Dis-

tributed Systems and Middleware (New York, NY,

USA, 2010), LADIS ’10, ACM, pp. 1–6.

[14] BORKAR, S. Designing reliable systems from un-

reliable components: The challenges of transistor

variability and degradation. IEEE Micro 25, 6

(2005), 10–16.

[15] BORKAR, S., AND CHIEN, A. A. The future of

microprocessors. Communications of the ACM 54,

5 (2011), 67–77.

[16] BORKAR, S., ET AL. Microarchitecture and de-

sign challenges for gigascale integration. In MI-

CRO (2004), vol. 37, pp. 3–3.

[17] BURROWS, M. The chubby lock service for

loosely-coupled distributed systems. In OSDI ’06:

Proceedings of the 7th symposium on Operating

systems design and implementation (Berkeley, CA,

USA, 2006), USENIX Association, pp. 335–350.

[18] CASTRO, M., AND LISKOV, B. Practical Byzan-

tine fault tolerance and proactive recovery. ACM

Transactions on Computer Systems 20, 4 (2002).

[19] CASTRO, M., RODRIGUES, R., AND LISKOV, B.

BASE: Using abstraction to improve fault toler-

ance. ACM Transactions Computer Systems 21, 3

(Aug. 2003), 236–269.

[20] CHANDRA, T. D., GRIESEMER, R., AND RED-

STONE, J. Paxos made live: an engineering per-

spective. In Proceedings of the twenty-sixth annual

ACM symposium on Principles of distributed com-

puting (New York, NY, USA, 2007), PODC ’07,

ACM, pp. 398–407.

[21] CONSTANTINESCU, C. Trends and challenges in

vlsi circuit reliability. IEEE Micro 23, 4 (2003),

14–19.

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 619

[22] CORBETT et al.. Spanner: Google’s globally-

distributed database. In Proceedings of the 10th

USENIX conference on Operating Systems Design

and Implementation (Berkeley, CA, USA, 2012),

OSDI’12, USENIX Association, pp. 251–264.

[23] CORREIA, M., FERRO, D. G., JUNQUEIRA, F.,

AND SERAFINI, M. Practical hardening of crash-

tolerant systems. In 2012 USENIX Annual Techni-

cal Conference (2012).

[24] DANGA INTERACTIVE, INC. memcached – a dis-

tributed memory object caching system. http:

//memcached.org.

[25] DINABURG, A. Bitsquatting: DNS hijacking with-

out exploitation. In Defcon 19 (2011).

[26] FENG, S., GUPTA, S., ANSARI, A., AND

MAHLKE, S. Shoestring: Probabilistic soft error

reliability on the cheap. In Proceedings of the Fif-

teenth Edition of ASPLOS on Architectural Support

for Programming Languages and Operating Sys-

tems (New York, NY, USA, 2010), ASPLOS XV,

ACM, pp. 385–396.

[27] Transactional Memory in GCC. http://gcc.

gnu.org/wiki/TransactionalMemory.

[28] GUPTA, A., YANG, F., GOVIG, J., KIRSCH, A.,

CHAN, K., LAI, K., WU, S., DHOOT, S., KU-

MAR, A., AGIWAL, A., BHANSALI, S., HONG,

M., CAMERON, J., SIDDIQI, M., JONES, D.,

SHUTE, J., GUBAREV, A., VENKATARAMAN, S.,

AND AGRAWAL, D. Mesa: Geo-replicated, near

real-time, scalable data warehousing. In VLDB

(2014).

[29] HAMILTON, M. Software development: building

reliable systems. Prentice Hall Professional, 1999.

[30] HO, C., VAN RENESSE, R., BICKFORD, M., AND

DOLEV, D. Nysiad: Practical protocol transfor-

mation to tolerate byzantine failures. In NSDI’07:

Proceedings of the 4th USENIX Symposium on

Networked Systems Design and Implementation

(2007).

[31] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND

REED, B. ZooKeeper: Wait-free coordination for

internet-scale systems. In Proceedings of USENIX

Annual Technical Conference (2010).

[32] HWANG, A. A., STEFANOVICI, I., AND

SCHROEDER, B. Cosmic rays don’t strike

twice: Understanding the nature of DRAM errors

and the implications for system design. In ASPLOS

(2012).

[33] IEEE Std 1003.1 and The Open Group

Base Specifications, Issue 7. http:

//pubs.opengroup.org/onlinepubs/

9699919799/functions/setjmp.html, 2013.

[34] INTEL. Intel Transactional Memory Compiler and

Runtime Application Binary Interface, 2009.

[35] KAPRITSOS, M., WANG, Y., QUEMA, V.,

CLEMENT, A., ALVISI, L., DAHLIN, M., ET AL.

All about eve: Execute-verify replication for multi-

core servers. In OSDI (2012), vol. 12, pp. 237–250.

[36] KERNEL BUG TRACKER. Data corruption

with Opteron CPUs and Nvidia chipsets.

https://bugzilla.kernel.org/show_bug.

cgi?id=7768, Jan. 2007.

[37] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,

A., AND WONG, E. Zyzzyva: Speculative Byzan-

tine fault tolerance. In Proceedings of ACM SOSP

(2007), pp. 45–58.

[38] KWIATKOWSKI, M. mcblaster - load generator

for memcached. http://github.com/fbmarc.

[39] LAMPORT, L. The part-time parliament. ACM

Transactions on Computing Systems (TOCS) 16, 2

(1998), 133–169.

[40] LAMPORT, L., SHOSTAK, R., AND PEASE, M.

The byzantine generals problem. ACM Transac-

tions on Programming Languages and Systems 4, 3

(1982).

[41] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,

KLAUSER, A., LOWNEY, G., WALLACE, S.,

REDDI, V. J., AND HAZELWOOD, K. Pin: building

customized program analysis tools with dynamic

instrumentation. In Proceedings of the 2005 ACM

SIGPLAN conference on Programming language

design and implementation (New York, NY, USA,

2005), PLDI ’05, ACM, pp. 190–200.

[42] MERIDETH, M. G., IYENGAR, A., MIKALSEN,

T., TAI, S., ROUVELLOU, I., AND NARASIMHAN,

P. Thema: Byzantine-fault-tolerant middleware for

Web-service applications. In Proceedings of the

24th IEEE Symposium on Reliable Distributed Sys-

tems (Washington, DC, USA, 2005), SRDS ’05,

IEEE Computer Society, pp. 131–142.

[43] NIGHTINGALE, E. B., DOUCEUR, J. R., AND

ORGOVAN, V. Cycles, cells and platters: an empir-

ical analysis of hardware failures on a million con-

sumer PCs. In Proc. of Eurosys (2011), pp. 343–

356.

620 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[44] NIKIFORAKIS, N., VAN ACKER, S., MEERT, W.,

DESMET, L., PIESSENS, F., AND JOOSEN, W.

Bitsquatting: exploiting bit-flips for fun, or profit?

In Proceedings of the 22nd international confer-

ence on World Wide Web (2013), International

World Wide Web Conferences Steering Committee,

pp. 989–998.

[45] NISHTALA, R., FUGAL, H., GRIMM, S.,

KWIATKOWSKI, M., LEE, H., LI, H. C., MCEL-

ROY, R., PALECZNY, M., PEEK, D., SAAB, P.,

STAFFORD, D., TUNG, T., AND VENKATARA-

MANI, V. Scaling memcache at facebook. In

Proceedings of the 10th USENIX conference on

Networked Systems Design and Implementation

(Berkeley, CA, USA, 2013), nsdi’13, USENIX As-

sociation, pp. 385–398.

[46] OH, N., SHIRVANI, P., AND MCCLUSKEY, E. Er-

ror detection by duplicated instructions in super-

scalar processors. Reliability, IEEE Transactions

on 51, 1 (Mar. 2002), 63–75.

[47] PERRY, F., MACKEY, L., REIS, G. A., LIGATTI,

J., AUGUST, D. I., AND WALKER, D. Fault-

tolerant typed assembly language. In ACM SIG-

PLAN Notices (2007), vol. 42, ACM, pp. 42–53.

[48] REIS, G., CHANG, J., VACHHARAJANI, N., RAN-

GAN, R., AND AUGUST, D. SWIFT: software im-

plemented fault tolerance. In Proceedings of the

International Symposium on Code Generation and

Optimization (Mar. 2005), pp. 243–254.

[49] SAM TRENHOLME AND OTHERS. Deadwood re-

cursive DNS resolver. http://maradns.samiam.

org/deadwood.

[50] SCHROEDER, B., PINHEIRO, E., AND WEBER,

W.-D. DRAM errors in the wild: a large-scale

field study. In Proceedings of the eleventh interna-

tional joint conference on Measurement and mod-

eling of computer systems (New York, NY, USA,

2009), SIGMETRICS ’09, ACM, pp. 193–204.

[51] SHIVAKUMAR, P., KISTLER, M., KECKLER,

S. W., BURGER, D., AND ALVISI, L. Modeling

the effect of technology trends on the soft error rate

of combinational logic. International Conference

on Dependable Systems and Networks (2002), 389.

[52] VENKATARAMANI, V., AMSDEN, Z., BRON-

SON, N., CABRERA III, G., CHAKKA, P., DI-

MOV, P., DING, H., FERRIS, J., GIARDULLO,

A., HOON, J., KULKARNI, S., LAWRENCE, N.,

MARCHUKOV, M., PETROV, D., AND PUZAR,

L. TAO: How facebook serves the social graph.

In Proceedings of the 2012 ACM SIGMOD In-

ternational Conference on Management of Data

(New York, NY, USA, 2012), SIGMOD ’12, ACM,

pp. 791–792.

[53] WOOD, A., JARDINE, R., AND BARTLETT, W.

Data integrity in HP NonStop servers. In Workshop

on SELSE (2006).

