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Abstract 

Designing a scalable and portable numerical li- 

brary requires consideration of many factors, includ- 

ing choice of parallel communication technology, data 

structures, and user interfaces. The PETSc librnry 

(Poriable Ettensible Tools for Scientific computing) 

makes use of modern software technology to provide 

a Pezible and portable implementaiion. This talk will 

discuss ihe use of a meia-communicaiion layer (al- 

lowing the user to choose different transport layers 

such as MPI, p 4 ,  pvm, or vendor-specific libraries) for  

poriabtlify, an aggressive data-structure-neutral imple- 

mentation that minimi:es dependence on particular 

data structures (even vectors), permitiing the library 

to adapf fo fhe user rafher than the other way around, 

and the separation of implemenfafion language from 

user-interface language. Examples are presenfed. 

1 Introduction 

Yumerical libraries must have certain features in or- 

der to obtain widespread use in the application com- 

munity. In this paper we will discuss five of these 
principles and particular techniques used in PETSc to 

support them. 

1.1 Adaptive to the  User 

Writing libraries of routines for scientific comput- 
ing, particularly on parallel machines, involves more 
than identifying the appropriate algorithms to use. A 
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library routine needs to meet the needs of applications 

programmers; otherwise, the programmer is likely to 

write their own routines. I t  is important that  the 
library adapt to the application, not the other way 

around. This often requires a commitment of the li- 
brary to use the data-structures of application. Hence 

the need for data-structure-neutral libraries. Other- 

wise the application programmer will be constantly 
recoding the same algorithm for a different data  struc- 

ture. 

1.2 Portable 

The portability of library routines is becoming in- 
creasingly important as codes are being required to 

run on several varieties of parallel computers. One 
part of portability that is often missed is that pro- 
grams should be portable to computers, not just uni- 

processors or parallel processors. The time is nearly 
over when just parallelizing an application will be in- 

teresting in and of itself. Portablity of libraries must 

also mean portable across programming languages. In 
order to obtain maximal reuse, the same libraries must 
be useable from several languages. 

1.3 Extensible 

Extensibility of the library to allow for new a lga  
rithms and implementations to be used in an appli- 
cation without rewriting the application code is also 
important. 

1.4 Scalable 

A library and its underlying implementation must 

allow for and encourage scalable algorithms and im- 
plementations. But most algorithms often reach max- 

imum performance a t  a finite number of nodes (See 

1). In order to provide optimal performance in this 
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Figure 1: Comparison of scalable and partially scal- 

able algorithms. Compares scalable iteration (4 iter- 
ations) with domain decomposition (0( 1) iterations) 

but logp cost per iteration. 

case, a library must be prepared to easily use a subset 
of the available processors when solving a problem. 

1.5 Efficient 

A final but important issue is that of efficiency. 
There is more to this than just careful coding or using 
level 3 BLAS. In many cases, it is important to pro- 

vide the option to  aggregate operations so that they 
may be performed more efficiently. An example of 
this is in sparse-matrix assembly. In many cases, the 

sequence of operations that  a user follows is to build 
a sparse matrix, adding one or more elements at a 

time. No other operation is performed on the sparse 

matrix until the user completes the assembly process. 
There are significant performance gains to be realized 
by deferring the actual update to the sparse matrix 

until the end of the assembly process. Thus, a library 

organization that encourages this sort of aggregation 

of operations without imposing much if any burden 
on the applications programmer will be more efficient 

than one that does not. 

In the following sections, we will describe some of 

the techniques that we have used in our library, PETSc 

(Portable Extensible Tools for Scientific computing). 

Section 2 discusses an method for separating the math- 

ematics of an algorithm from its implementation. Sec- 

tion 3 discusses how we have approached the issue 

of writing portable programs for distributed-memory 

parallel computers. Section 4 gives some examples of 

the use of our library. More information may be found 

in [l], [2], and [3]. 

2 Data-structure neutral design 

Often, a library routine will define the data struc- 

tures to be used for the input and output arguments. 

While this maybe acceptable in the case of common, 

frequently used data structures, it is becoming increas- 

ingly less useful as applications begin to use more so- 

phisticated data structures. This is a problem for both 

existing and new applications. 

In existing applications, the application program- 

mer has already chosen data structures. A library 
that can not adapt to these data structures may put 

too much burden on the application programmer. The 

application programmer will then spend considerable 

time recoding the algorithms, rather than using the 
library. 

More and more new applications are choosing data 
structures specific to  that application; these data 
structures may be irregular or arranged in unexpected 
ways. As in the case of existing applications, the li- 
brary must be prepared to work with these data struc- 

tures rather than insisting on a particular arrange- 
ment. 

A common argument that many programmers give 
for not using libraries is that the appropriate al- 
gorithm can be coded directly into the application, 
adapting the algorithm to the application's data struc- 
tures. This, however, requires a complete detailed un- 
derstanding of all incorporated algorithms, by the ap- 

plication programmer. With the trend toward using 
more sophisticated, mathematical algorithms, this is 
impossible. The net result is only simple, less efficient 
algorithms are used, when more effective ones are ac- 

tually needed. 

One important advantage that a library can offer 

is the ability to transparently make use of new algo- 
rithms. For example, a new Krylov method for the 
iterative solution of linear equations could be used 
by simply relinking the application. Another source 

of new algorithms (and implementations) are propri- 
etary libraries (e.g., IBM's ESSL [4]). Applications 

programmers are often faced with using these libraries 
and sacrificing portability or not using then and sacri- 

ficing performance. A library that is extensible to  new 

methods can offer applications programmers a good 

way to get the best of both worlds: with little (if any) 



change to  the source code, the programmer can select 
either a proprietary or portable implementation of an 

algorithm. 

In order to  maximize the range of applications to 

which a library can be applied, it is crucial to  ex- 

ploit the fact that the mathematical expression of an 
algorithm does not imply a specific data structure. 

We emphasize that this applies not just to potentially 

complicated data structures (such as sparse matrices) 

but to such simple structures as vectors. 

A key to the development of portable and exten- 

sible libraries is the use of data-structure neutral de- 

sign. By this we mean that  code should be written 

to operate on the natural objects (matrices, vectors, 

graphs) without reference to their representation as 

data-structures. For example, our Krylov methods 
package is independent of the data-structure used for 
the vectors; they can dense and contiguous in mem- 
ory (the usual assumption in other Krylov methods 

implementations), sparse (e.g., a partial oct-tree), or 

distributed (among many nodes in an MPP). 

In order for the data  structure neutral approach 
to be effective it must provide all of the functional- 

ity the application programmer needs, while maintain- 
ing high efficiency. The general functionality can be 
achieved by providing a way to convert into and out of 
a canonical representation on which the less used oper- 
ations will be performed. For the more common oper- 
ations associated with a data-structure, code must be 
provided to perform these operations. We call these 
common operations the primifives. Efficiency can be 
achieved by providing an adequately large set of prim- 
itive operations. This is discussed below, in more de- 
tail, in the context of our implementation of sparse 
matrices. 

Because the set of operations may be large (for ex- 
ample, our vector set includes more than 15 basic oper- 

ations), an important implementation issue concerns 

how all of this information is passed to the routines 

that need to perform these operations. Another im- 

portant, but often overlooked, issue concerns how new 

operations can be added in a backward-compatible 

fashion. Our solution to  these problems is to use an 

encapsulation of this data  into an object that  we call 

a contezt. A context contains the data structure and 

the operations on it. This object hides the details of 
an implementation (or algorithm!) and permits the 

programmer to deal with the mathematical problem 

rather than the details of a specific implementation. 

The basic approach is to create a context, modify 

that context (by setting various options or hints), use 

the context to solve a problem, and finally destroy 

Table 1: Table of required sparse matrix operations 

Routine I Operation 

create 

destroy 

creat e s p l i t  

gathertorow 

gatheraddtorow 

scat t  erf romrow 

Create a new matrix 

Destroy a matrix (recover 

space) 

Create a structure to hold a 

factored form of the matrix 

Insert a row into the matrix 

Add to  a row of the matrix 

Extract a row from the matrix 

the context in order to free any resources (such as 

memory) used. 

Because a context is an opaque object (an object 
whose contents are hidden from the application code), 
it is relatively easy to extend the choices of methods 

by adding new options to the context wifhout changing 

ezisting codes! To do this, new methods and perhaps 
new data structures are defined. For example, to add 

a new Krylov method, i t  is necessary only to write the 
routine to perform the operations and to register that 
with the routine that creates Krylov method contexts. 

We explore these abstract concepts more concretely 
with two examples taken from PETSc. The first is our 
implementation of sparse matrices. The  second is our 
implementation of Krylov space iterative methods. 

In our implementation of sparse matrices each stor- 
age format must have provided with it the matrix 
primitives listed in Table 1. In addition, a wide vari- 
ety of operations, such as matrix-vector multiply and 
incomplete factorization, may be (but are not required 
to  be) defined for each matrix type. Occassionally one 

may require an operation on a sparse matrix which is 
not one of the matrix primitives. These specialized 

operations may be implemented by first converhg 
to the canical form using SpToCanonical, perform- 

ing the needed operation and then converting back 

via SpFrornCanonical. Obviously this involves some 

additional overhead, however for little used operations 

this overhead is minimal. If one of the specialized op- 

erations is used often then it will be optimized and 
become an additional matrix primitive. 

We have followed the same approach with our 

Krylov-space package (KSP) for the iterative solution 

of linear systems. Each Krylov method is described by 

a context that contains contexts for vector operations 
(thus allowing the same Krylov code to  be used for 
uniprocessors and MPPs), the matrix operations, the 

iterative state (e.g., maximum number of iterations 



program main 
e x t e r n a l  amult , binv  

inc lude  "it e r / f  it e r  . h" 
double p r e c i s i o n  x( l oo ) ,  y(  100) 

i n t e g e r  i t c t x ,  i ts  

i t c t x  = ITCreate( ITCG ) 

c a l l  DVSetDefaultFunctions( 

C 

+ ITVectorContext( i t c t x  ) , 
+ 100 ) 

c a l l  ITSetRelativeTolerance(itctx,l.d-10) 
c a l l  ITSetIterations(itctx,25) 
c a l l  ITSetAmult ( i t c t x ,  amult , n)  
c a l l  ITSetBinv( i tc tx ,b inv ,  n) 

c a l l  ITSetSolut i o n ( i t c t x ,  x) 
c a l l  ITSetRhs ( i t c t x , b )  

c a l l  ITSetUp( i tc tx)  

c a l l  i t s  = ITSo lve ( i t c tx )  

c a l l  ITDes t roy ( i t c tx )  
end 

Figure 2: Simple Fortran program to solve a linear 
system with CG 

and convergence criteria), and any information spe- 
cific to that method (e.g., number of direction vectors 

for GMRES). 

Figure 2 shows a Fortran program for solving a lin- 
ear system with KSP. The  routines I T S e t I t e r a t i o n s  

and ITSetRelativeTolerance are examples of op- 

tional calls. Defaults are supplied for all parameters by 
ITCreate; these defaults may be overridden by calling 

routines for those specific parameters. This approach 

makes it easy to add additional features; in addition, 
it can simplify the presentation to potential users be- 

cause advanced features (such as graphical display of 

the residual, which is available in KSP) need not be 

presented to beginning users. 

By replacing the functions amult, binv, and the 

call to DVSetDef au l tFunc t ions  by its parallel equiva- 
lent DVPSetDef au l tFunct  ions,  this program becomes 

parallel. 

3 Portable parallel code 

The approach that we have taken for program- 

ming distributed-memory parallel computers is to de- 
fine a message-passing interface that maps efficiently 
onto most existing systems. Thus, we consider our 

system a "meta" message-passing system that sup- 

101 r e c v s t a r t  <Tag l> [buggy.c:17] 

111 r e c v s t a r t  <Tag l> Cbuggy.c:171 

Figure 3: Sample trace output from Chameleon, show- 

ing deadlock in a two processor program 

ports a variety of transport layers including p4, PVM, 

and vendor-specific systems such as Intel nx, TMC 

CMMD, and IBM EUI. Because this system supports 
a variety of transport layers, and because it can also 
be used to run programs written in one transport layer 

under a different transport layer, we call the system 

Chameleon. Chameleon also provides support for a 
common startup interface and correctness and perfor- 

mance debugging, as well as for user-defined subsets 
of processors called procsets. 

An important recent development is the creation 

of a message-passing interface (MPI). To Chameleon, 
MPI is another transport layer. MPI does offer 
some important enhancements over existing message- 
passing systems, such as message communicators (sep- 
arate contexts or message-passing domains) and non- 
contiguous data, and Chameleon needs to provide ac- 
cess to these functionalities. 

Chameleon also addresses a number of issues that 
MPI explicitly avoids, such as debugging and profiling 

aids, the program invocation environment, and paral- 

lel I/O. For example, using a command-line switch, 
Chameleon can be instructed to generate a trace of all 
message-passing operations (Figure 3). 

Chameleon offers excellent performance. The 
BlockSolve code of Jones and Plassman [SI, winner 

of the 1992 Gordon Bell Prize for Speedup, is written 
using Chameleon. 

A portable message passing system, however, is 

only the first step in producing application oriented 
software libraries. Ideally, the software libraries will 

come with standard parallel data-structures which 

the application programmer may use without directly 

writing message passing code. In addition, it should 

include mechanisms which allow the application pro- 

grammer to easily construct new parallel data struc- 
tures easily. By providing a hierarchy of libraries, 

PETSc is able to handle the most technically oriented 

application programmer who choses to directly pro- 

gram using the message passing paradigm, as well as 

the more result oriented programmer who would like 

to ignore all architectural issues, but still obtain good 
performance. 

To demonstrate this we will consider briefly our im- 



typedef s t r u c t  € 
/* Number of l o c a l  ind ices  and t h e i r  

i n t  n l ,  *g; 

/* Hap from l o c a l  t o  global  */ 
void (*ltog) (1 , *ltogctx;  

/* Map from global  t o  l o c a l  */ 
void (*gtol)  () , rg to l c tx ;  

/* Map from global  t o  owner */ 
void (*gtop) (1 , *gtopctx; 

/* Generic context */ 
void *ctx; 

/* Routine t o  f r e e  any storage */ 
void (*destroy) ( ) ; 

/* Procset f o r  a l l  members of mapping */ 
ProcSet *pset;  

1 PSPHapping; 

global  values */ 

Figure 4: Sparse-matrix mapping data  

plementation of distributed sparse matrices. Since the 
distributed sparse matrices are based on many of the 
same matrix primitives as the sequential version, ap- 
plication codes can easily be moved between sequential 
and parallel machines. 

A distributed sparse matrix can be described in 
many ways. We will consider here only a row-oriented 
distribution; other distributions are similar. In a row- 
oriented distribution, each processor is responsible for 

some rows of the matrix. These rows need not be con- 
tiguous. One way to specify and to represent such 

a matrix is for each processor to hold a rectangu- 
lar matrix, with the number of rows being the num- 
ber of “local” rows and the number of columns being 

the number of “global” columns. When using a row- 

oriented sparse matrix format, this requires storage 
proportional to the number of non-zeros in the ma- 
trix. In addition, a mapping from local to global rows 

is needed. 

In our package, the local rows can be represented 

with a sparse matrix represented in a data-structure- 

neutral way, allowing the choice of local representation 

to be made to fit the problem. In particular, spe- 

cial code or vendor-specific uni-processor sparse ma- 

trix implementations may be used. 

To perform a parallel operation such as matrix- 
vector product, additional information is needed. In 

particular, a mapping from global row to local row 

on a processor is required. We handle this by defin- 

ing a set of mapping operations, shown in Figure 4. 

PSPHat *pmat ; 

i n t  m x = 4  

PSPHapping *pmap ; 

pmap = PSPHapCreate( PSAllProcs, n l ,  g );  

PSPHapSetDef a u l t s (  pmap ) ; 

pmat = PSPHatCreate( pmap, PSAllProcs, 

PSPHatStartAsmble( pmat ) ; 

f o r  (i=PImytid; i<mx; i+=np) { 

... 

=, = 1; 

PSPHatAddElm( pmat, i, i, (doub1e)i ) ;  

i f  ( i  > 0) 

i f  ( i  < mx - 1) 

1 

PSPHatAddElm( pmat, i ,  i-1, -1.0 1; 

PSPHatAddElm( pmat, i, i+l, -1.0); 

PSPHatEndAsmble( pmat ) ; 

Figure 5: Creation of a distributed matrix with each 

processor contributing some rows 

However, since providing all of these routines can be 
a burden on the average user, we provide a default set 
of routines that use a distributed data-server that op- 

erates semi-synchronously (for portability). However, 
if the user can provide these mappings independently, 

she can provide the routines for the mappings cxplic- 
itly. An example is a regular mesh decomposition; in 
this case, all of the mappings can be easily computed 

without any global information or communication. 
Additional tools are used to schedule and perform 

and communications necessary for these operations. 
For example, much of the matrix-vector product code 
is shared with parallel vector scatter/gather. 

At a higher level, there are additional routines to 

do the specification and assembly of a distributed ma- 
trix without requiring that the “local” parts be dis- 
tributed by the user. These allow a matrix to be spec- 

ified element-wise, with the process of generating the 

matrix (involving caching of modifications and occa- 

sional communication) hidden from the user. This is 
sketched in Figure 5. 

Since scientific computing today is done using sev- 

eral different programming languages it is imperative 

that the same libraries be usable from all of the lan- 

guages used by application programmers. I t  is a waste 

of resources to provide two or more complete sets of 

source code in different languages. PETSc is written 
in C, in order to make the PETSc library available to 

Fortran (and in the future, perhaps other languages) 

we have implemented a set of routines which translate 



worker( argc,  argv 

i n t  argc ; 

char **argv; 

c 
PSpMat *pmat ; 

PSVctx *ctx; 

PSVMETBOD pmethod = PSVNOPRE; 

ITMETHOD itmethod = ITGMRES; 

SpMat * m a t  ; 

i n t  mx, my, s i ,  e i ,  sj, e j ;  

i n t  *l idx;  

double *b, *x; 

i n t  i t s  ; 

/* Figure out my part; of t he  matrix and generate it */ 
mx = 16; 

my = 16; 

SYArgGetInt( %argc, argv, 1, "-yu" D kmx > ;  

SYArgGetInt ( bargc, argv, 1 , "-my" , dtmy 1; 
pmethod + PSVJacobi; 

PSVGetMethod( bargc, argv, I, "-psv", Lpmethod > ; 
ITGetMethod( &argc, argv, 1 , "-itmethod", Litmethod ) ; 

PSVGetZdStripDecomp( mx, my, &si, hi, bsj, & e j ,  PSAllProcs > ;  

mat = FDBuildLaplacian2dBndySub( mx, my, 0.0, 0.0, 0.0, s i ,  e i .  sj, e j  >; 

l i d x  = PSVGet2dMapping( mx, my, s i ,  e i ,  sj, e j  1; 
pmat = PSpCreate( m a t ,  l i d x  );  

ctx 

PSVSetAccellerator( c t x ,  itmethod ) ; 

PSVSetUp( ctx > ;  

= PSVCreate( pmat, pmethod 1; 

/* Actually solve t h e  problem */ 
b = (double *)MALLOC( I n  * sizeof(doub1e) ) ;  CHKPTR(b) ; 

i t s  = PSVSolve( c t x ,  b ,  x 1; 
i f  (PImytid == 0) 

x = (double *)MALLOC( I n  * sizeof(doub1e) 1; CHKPTR(X) ; 

pr in t f  ( I'C%d] Completed i n  %d i terat ions\n" ,  PImytid, i ts  >; 

PSVDestroy( c tx  ); 

r e tu rn  errs; 

3 

Figure 6: Code to solve a linear system in parallel 
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Figure 7: Display for 8 processors showing the communication activity of a running parallel program 

the calling sequences of C functions into corresponding 

Fortran functions. Note that we do not translate the 

C programs, instead the user calls a Fortran stub, gen- 

erated automatically at installation time, which calls 

the corresponding C routine. The stub handles the ap- 

propriate conversion of pointers to values, etc. With 
this approach any changes in the C source are imme- 
diately reflected in the Fortran version. The manual 

task of maintaining two interfaces is almost completely 
eliminated. 

The construction of documentation for the soft- 
ware is also handled in the same way. In the source 
code associated with each subroutine are specially for- 
mated comments. A text processing program is used 
to format the comments in a variety of ways: to Unix 
man pages, to latex format and to emacs help for- 

mat. Since the comments are in the actual source 
code, any changes to the source result in revised doc- 
umentation. A common problem in many software 
packages is the the documentation always lags behind 
the actual library by one revision. This will not hap- 
pen with the automatic generation of documentaion 

from the source. 

4 Examples 

In this section we present an example of code writ- 
ten using the PETSc package. These illustrate our 

points that a library can, with a consistent interface, 

provide a variety of different algorithms that solve the 

same mathematical problem to the applications pro- 

grammer. 

Figure 6 shows a parallel linear system solver that 
provides a wide variety of Krylov methods coupled 
with preconditioners. The  same interface (and even 

code!) can handle direct and iterative methods. If 

a new Krylov method or preconditioning technique 

were discovered, this program would only need to  

be relinked; not a line would change (note that the 

program uses the command line to  choose the actual 

method). The matrix for this example is build with 

FDBuildLaplacian2dBndySub which is a routine for 
building distributed sparse matrices. 

One of the features that Chameleon provides is the 

ability to attach user-defined operations to each com- 
munication operation. Chameleon uses this feature 
to provide the user with runtime graphical informa- 

tion on the progress of a parallel program. Output for 
an eight-processor parallel job is shown in Figure 7. 
This display provides a useful diagnostic aid for de- 
veloping programs; even for production programs, the 
overhead of this display (updated every few seconds) 
is relatively small. 
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