
Scalable, Extensible, and Portable Numerical Libraries

William Gropp'

Mathematics and Computer Science

Xrgonne Yational Laboratory

Argonne, IL 60439

Abstract

Designing a scalable and portable numerical li-

brary requires consideration of many factors, includ-

ing choice of parallel communication technology, data

structures, and user interfaces. The PETSc librnry

(Poriable Ettensible Tools for Scientific computing)

makes use of modern software technology to provide

a Pezible and portable implementaiion. This talk will

discuss ihe use of a meia-communicaiion layer (al-

lowing the user to choose different transport layers

such as MPI, p 4 , pvm, or vendor-specific libraries) for

poriabtlify, an aggressive data-structure-neutral imple-

mentation that minimi:es dependence on particular

data structures (even vectors), permitiing the library

to adapf fo fhe user rafher than the other way around,

and the separation of implemenfafion language from

user-interface language. Examples are presenfed.

1 Introduction

Yumerical libraries must have certain features in or-

der to obtain widespread use in the application com-

munity. In this paper we will discuss five of these
principles and particular techniques used in PETSc to

support them.

1.1 Adaptive to the User

Writing libraries of routines for scientific comput-
ing, particularly on parallel machines, involves more
than identifying the appropriate algorithms to use. A

*This work was supported in part by the Office of Scientific

Computing, U.S. Department of Energy, under Contract W-31-

109- Eng-38

'This work waa supported in part by the Office of Scientific
Computing, U.S. Department of Energy, under Contract "-31-

109-Eng-38 and in part by the Office of Naval Research under

contract ONR N0001492-J1890

by a contractor of the U. S. Government

under contract No. W.31-104ENG.38.

Accordingly, the U. S. Government retains a

nonexclusive, royalty-free license to publish

or reproduce the publashed form of this

contribution. or allow others 10 do so. for

- - -- ,.---r"?z..-'-7--,~*,2L.~ mTT7-7?-?K-r 72-:-~----- -' -

Barry Smith+

Department of Mathematics

University of California, Los Xngeles
Los Angeles, CA 900%

library routine needs to meet the needs of applications

programmers; otherwise, the programmer is likely to

write their own routines. I t is important that the
library adapt to the application, not the other way

around. This often requires a commitment of the li-
brary to use the data-structures of application. Hence

the need for data-structure-neutral libraries. Other-

wise the application programmer will be constantly
recoding the same algorithm for a different data struc-

ture.

1.2 Portable

The portability of library routines is becoming in-
creasingly important as codes are being required to

run on several varieties of parallel computers. One
part of portability that is often missed is that pro-
grams should be portable to computers, not just uni-

processors or parallel processors. The time is nearly
over when just parallelizing an application will be in-

teresting in and of itself. Portablity of libraries must

also mean portable across programming languages. In
order to obtain maximal reuse, the same libraries must
be useable from several languages.

1.3 Extensible

Extensibility of the library to allow for new a lga
rithms and implementations to be used in an appli-
cation without rewriting the application code is also
important.

1.4 Scalable

A library and its underlying implementation must

allow for and encourage scalable algorithms and im-
plementations. But most algorithms often reach max-

imum performance a t a finite number of nodes (See

1). In order to provide optimal performance in this

DISCLAIMER

Portions of this document may be illegible

in electronic image products. Images are

produced from the best available original

document.

Figure 1: Comparison of scalable and partially scal-

able algorithms. Compares scalable iteration (4 iter-
ations) with domain decomposition (0(1) iterations)

but logp cost per iteration.

case, a library must be prepared to easily use a subset
of the available processors when solving a problem.

1.5 Efficient

A final but important issue is that of efficiency.
There is more to this than just careful coding or using
level 3 BLAS. In many cases, it is important to pro-

vide the option to aggregate operations so that they
may be performed more efficiently. An example of
this is in sparse-matrix assembly. In many cases, the

sequence of operations that a user follows is to build
a sparse matrix, adding one or more elements at a

time. No other operation is performed on the sparse

matrix until the user completes the assembly process.
There are significant performance gains to be realized
by deferring the actual update to the sparse matrix

until the end of the assembly process. Thus, a library

organization that encourages this sort of aggregation

of operations without imposing much if any burden
on the applications programmer will be more efficient

than one that does not.

In the following sections, we will describe some of

the techniques that we have used in our library, PETSc

(Portable Extensible Tools for Scientific computing).

Section 2 discusses an method for separating the math-

ematics of an algorithm from its implementation. Sec-

tion 3 discusses how we have approached the issue

of writing portable programs for distributed-memory

parallel computers. Section 4 gives some examples of

the use of our library. More information may be found

in [l], [2], and [3].

2 Data-structure neutral design

Often, a library routine will define the data struc-

tures to be used for the input and output arguments.

While this maybe acceptable in the case of common,

frequently used data structures, it is becoming increas-

ingly less useful as applications begin to use more so-

phisticated data structures. This is a problem for both

existing and new applications.

In existing applications, the application program-

mer has already chosen data structures. A library
that can not adapt to these data structures may put

too much burden on the application programmer. The

application programmer will then spend considerable

time recoding the algorithms, rather than using the
library.

More and more new applications are choosing data
structures specific to that application; these data
structures may be irregular or arranged in unexpected
ways. As in the case of existing applications, the li-
brary must be prepared to work with these data struc-

tures rather than insisting on a particular arrange-
ment.

A common argument that many programmers give
for not using libraries is that the appropriate al-
gorithm can be coded directly into the application,
adapting the algorithm to the application's data struc-
tures. This, however, requires a complete detailed un-
derstanding of all incorporated algorithms, by the ap-

plication programmer. With the trend toward using
more sophisticated, mathematical algorithms, this is
impossible. The net result is only simple, less efficient
algorithms are used, when more effective ones are ac-

tually needed.

One important advantage that a library can offer

is the ability to transparently make use of new algo-
rithms. For example, a new Krylov method for the
iterative solution of linear equations could be used
by simply relinking the application. Another source

of new algorithms (and implementations) are propri-
etary libraries (e.g., IBM's ESSL [4]). Applications

programmers are often faced with using these libraries
and sacrificing portability or not using then and sacri-

ficing performance. A library that is extensible to new

methods can offer applications programmers a good

way to get the best of both worlds: with little (if any)

change to the source code, the programmer can select
either a proprietary or portable implementation of an

algorithm.

In order to maximize the range of applications to

which a library can be applied, it is crucial to ex-

ploit the fact that the mathematical expression of an
algorithm does not imply a specific data structure.

We emphasize that this applies not just to potentially

complicated data structures (such as sparse matrices)

but to such simple structures as vectors.

A key to the development of portable and exten-

sible libraries is the use of data-structure neutral de-

sign. By this we mean that code should be written

to operate on the natural objects (matrices, vectors,

graphs) without reference to their representation as

data-structures. For example, our Krylov methods
package is independent of the data-structure used for
the vectors; they can dense and contiguous in mem-
ory (the usual assumption in other Krylov methods

implementations), sparse (e.g., a partial oct-tree), or

distributed (among many nodes in an MPP).

In order for the data structure neutral approach
to be effective it must provide all of the functional-

ity the application programmer needs, while maintain-
ing high efficiency. The general functionality can be
achieved by providing a way to convert into and out of
a canonical representation on which the less used oper-
ations will be performed. For the more common oper-
ations associated with a data-structure, code must be
provided to perform these operations. We call these
common operations the primifives. Efficiency can be
achieved by providing an adequately large set of prim-
itive operations. This is discussed below, in more de-
tail, in the context of our implementation of sparse
matrices.

Because the set of operations may be large (for ex-
ample, our vector set includes more than 15 basic oper-

ations), an important implementation issue concerns

how all of this information is passed to the routines

that need to perform these operations. Another im-

portant, but often overlooked, issue concerns how new

operations can be added in a backward-compatible

fashion. Our solution to these problems is to use an

encapsulation of this data into an object that we call

a contezt. A context contains the data structure and

the operations on it. This object hides the details of
an implementation (or algorithm!) and permits the

programmer to deal with the mathematical problem

rather than the details of a specific implementation.

The basic approach is to create a context, modify

that context (by setting various options or hints), use

the context to solve a problem, and finally destroy

Table 1: Table of required sparse matrix operations

Routine I Operation

create

destroy

creat e s p l i t

gathertorow

gatheraddtorow

scat t erf romrow

Create a new matrix

Destroy a matrix (recover

space)

Create a structure to hold a

factored form of the matrix

Insert a row into the matrix

Add to a row of the matrix

Extract a row from the matrix

the context in order to free any resources (such as

memory) used.

Because a context is an opaque object (an object
whose contents are hidden from the application code),
it is relatively easy to extend the choices of methods

by adding new options to the context wifhout changing

ezisting codes! To do this, new methods and perhaps
new data structures are defined. For example, to add

a new Krylov method, i t is necessary only to write the
routine to perform the operations and to register that
with the routine that creates Krylov method contexts.

We explore these abstract concepts more concretely
with two examples taken from PETSc. The first is our
implementation of sparse matrices. The second is our
implementation of Krylov space iterative methods.

In our implementation of sparse matrices each stor-
age format must have provided with it the matrix
primitives listed in Table 1. In addition, a wide vari-
ety of operations, such as matrix-vector multiply and
incomplete factorization, may be (but are not required
to be) defined for each matrix type. Occassionally one

may require an operation on a sparse matrix which is
not one of the matrix primitives. These specialized

operations may be implemented by first converhg
to the canical form using SpToCanonical, perform-

ing the needed operation and then converting back

via SpFrornCanonical. Obviously this involves some

additional overhead, however for little used operations

this overhead is minimal. If one of the specialized op-

erations is used often then it will be optimized and
become an additional matrix primitive.

We have followed the same approach with our

Krylov-space package (KSP) for the iterative solution

of linear systems. Each Krylov method is described by

a context that contains contexts for vector operations
(thus allowing the same Krylov code to be used for
uniprocessors and MPPs), the matrix operations, the

iterative state (e.g., maximum number of iterations

program main
e x t e r n a l amult , binv

inc lude "it e r / f it e r . h"
double p r e c i s i o n x(l oo) , y(100)

i n t e g e r i t c t x , i ts

i t c t x = ITCreate(ITCG)

c a l l DVSetDefaultFunctions(

C

+ ITVectorContext(i t c t x) ,
+ 100)

c a l l ITSetRelativeTolerance(itctx,l.d-10)
c a l l ITSetIterations(itctx,25)
c a l l ITSetAmult (i t c t x , amult , n)
c a l l ITSetBinv(i tc tx ,b inv , n)

c a l l ITSetSolut i o n (i t c t x , x)
c a l l ITSetRhs (i t c t x , b)

c a l l ITSetUp(i tc tx)

c a l l i t s = ITSo lve (i t c tx)

c a l l ITDes t roy (i t c tx)
end

Figure 2: Simple Fortran program to solve a linear
system with CG

and convergence criteria), and any information spe-
cific to that method (e.g., number of direction vectors

for GMRES).

Figure 2 shows a Fortran program for solving a lin-
ear system with KSP. The routines I T S e t I t e r a t i o n s

and ITSetRelativeTolerance are examples of op-

tional calls. Defaults are supplied for all parameters by
ITCreate; these defaults may be overridden by calling

routines for those specific parameters. This approach

makes it easy to add additional features; in addition,
it can simplify the presentation to potential users be-

cause advanced features (such as graphical display of

the residual, which is available in KSP) need not be

presented to beginning users.

By replacing the functions amult, binv, and the

call to DVSetDef au l tFunc t ions by its parallel equiva-
lent DVPSetDef au l tFunct ions, this program becomes

parallel.

3 Portable parallel code

The approach that we have taken for program-

ming distributed-memory parallel computers is to de-
fine a message-passing interface that maps efficiently
onto most existing systems. Thus, we consider our

system a "meta" message-passing system that sup-

101 r e c v s t a r t <Tag l> [buggy.c:17]

111 r e c v s t a r t <Tag l> Cbuggy.c:171

Figure 3: Sample trace output from Chameleon, show-

ing deadlock in a two processor program

ports a variety of transport layers including p4, PVM,

and vendor-specific systems such as Intel nx, TMC

CMMD, and IBM EUI. Because this system supports
a variety of transport layers, and because it can also
be used to run programs written in one transport layer

under a different transport layer, we call the system

Chameleon. Chameleon also provides support for a
common startup interface and correctness and perfor-

mance debugging, as well as for user-defined subsets
of processors called procsets.

An important recent development is the creation

of a message-passing interface (MPI). To Chameleon,
MPI is another transport layer. MPI does offer
some important enhancements over existing message-
passing systems, such as message communicators (sep-
arate contexts or message-passing domains) and non-
contiguous data, and Chameleon needs to provide ac-
cess to these functionalities.

Chameleon also addresses a number of issues that
MPI explicitly avoids, such as debugging and profiling

aids, the program invocation environment, and paral-

lel I/O. For example, using a command-line switch,
Chameleon can be instructed to generate a trace of all
message-passing operations (Figure 3).

Chameleon offers excellent performance. The
BlockSolve code of Jones and Plassman [SI, winner

of the 1992 Gordon Bell Prize for Speedup, is written
using Chameleon.

A portable message passing system, however, is

only the first step in producing application oriented
software libraries. Ideally, the software libraries will

come with standard parallel data-structures which

the application programmer may use without directly

writing message passing code. In addition, it should

include mechanisms which allow the application pro-

grammer to easily construct new parallel data struc-
tures easily. By providing a hierarchy of libraries,

PETSc is able to handle the most technically oriented

application programmer who choses to directly pro-

gram using the message passing paradigm, as well as

the more result oriented programmer who would like

to ignore all architectural issues, but still obtain good
performance.

To demonstrate this we will consider briefly our im-

typedef s t r u c t €
/* Number of l o c a l ind ices and t h e i r

i n t n l , *g;

/* Hap from l o c a l t o global */
void (*ltog) (1 , *ltogctx;

/* Map from global t o l o c a l */
void (*gtol) () , rg to l c tx ;

/* Map from global t o owner */
void (*gtop) (1 , *gtopctx;

/* Generic context */
void *ctx;

/* Routine t o f r e e any storage */
void (*destroy) () ;

/* Procset f o r a l l members of mapping */
ProcSet *pset;

1 PSPHapping;

global values */

Figure 4: Sparse-matrix mapping data

plementation of distributed sparse matrices. Since the
distributed sparse matrices are based on many of the
same matrix primitives as the sequential version, ap-
plication codes can easily be moved between sequential
and parallel machines.

A distributed sparse matrix can be described in
many ways. We will consider here only a row-oriented
distribution; other distributions are similar. In a row-
oriented distribution, each processor is responsible for

some rows of the matrix. These rows need not be con-
tiguous. One way to specify and to represent such

a matrix is for each processor to hold a rectangu-
lar matrix, with the number of rows being the num-
ber of “local” rows and the number of columns being

the number of “global” columns. When using a row-

oriented sparse matrix format, this requires storage
proportional to the number of non-zeros in the ma-
trix. In addition, a mapping from local to global rows

is needed.

In our package, the local rows can be represented

with a sparse matrix represented in a data-structure-

neutral way, allowing the choice of local representation

to be made to fit the problem. In particular, spe-

cial code or vendor-specific uni-processor sparse ma-

trix implementations may be used.

To perform a parallel operation such as matrix-
vector product, additional information is needed. In

particular, a mapping from global row to local row

on a processor is required. We handle this by defin-

ing a set of mapping operations, shown in Figure 4.

PSPHat *pmat ;

i n t m x = 4

PSPHapping *pmap ;

pmap = PSPHapCreate(PSAllProcs, n l , g);

PSPHapSetDef a u l t s (pmap) ;

pmat = PSPHatCreate(pmap, PSAllProcs,

PSPHatStartAsmble(pmat) ;

f o r (i=PImytid; i<mx; i+=np) {

...

=, = 1;

PSPHatAddElm(pmat, i, i, (doub1e)i) ;

i f (i > 0)

i f (i < mx - 1)

1

PSPHatAddElm(pmat, i , i-1, -1.0 1;

PSPHatAddElm(pmat, i, i+l, -1.0);

PSPHatEndAsmble(pmat) ;

Figure 5: Creation of a distributed matrix with each

processor contributing some rows

However, since providing all of these routines can be
a burden on the average user, we provide a default set
of routines that use a distributed data-server that op-

erates semi-synchronously (for portability). However,
if the user can provide these mappings independently,

she can provide the routines for the mappings cxplic-
itly. An example is a regular mesh decomposition; in
this case, all of the mappings can be easily computed

without any global information or communication.
Additional tools are used to schedule and perform

and communications necessary for these operations.
For example, much of the matrix-vector product code
is shared with parallel vector scatter/gather.

At a higher level, there are additional routines to

do the specification and assembly of a distributed ma-
trix without requiring that the “local” parts be dis-
tributed by the user. These allow a matrix to be spec-

ified element-wise, with the process of generating the

matrix (involving caching of modifications and occa-

sional communication) hidden from the user. This is
sketched in Figure 5.

Since scientific computing today is done using sev-

eral different programming languages it is imperative

that the same libraries be usable from all of the lan-

guages used by application programmers. I t is a waste

of resources to provide two or more complete sets of

source code in different languages. PETSc is written
in C, in order to make the PETSc library available to

Fortran (and in the future, perhaps other languages)

we have implemented a set of routines which translate

worker(argc, argv

i n t argc ;

char **argv;

c
PSpMat *pmat ;

PSVctx *ctx;

PSVMETBOD pmethod = PSVNOPRE;

ITMETHOD itmethod = ITGMRES;

SpMat * m a t ;

i n t mx, my, s i , e i , sj, e j ;

i n t *l idx;

double *b, *x;

i n t i t s ;

/* Figure out my part; of t he matrix and generate it */
mx = 16;

my = 16;

SYArgGetInt(%argc, argv, 1, "-yu" D kmx > ;

SYArgGetInt (bargc, argv, 1 , "-my" , dtmy 1;
pmethod + PSVJacobi;

PSVGetMethod(bargc, argv, I, "-psv", Lpmethod > ;
ITGetMethod(&argc, argv, 1 , "-itmethod", Litmethod) ;

PSVGetZdStripDecomp(mx, my, &si, hi, bsj, & e j , PSAllProcs > ;

mat = FDBuildLaplacian2dBndySub(mx, my, 0.0, 0.0, 0.0, s i , e i . sj, e j >;

l i d x = PSVGet2dMapping(mx, my, s i , e i , sj, e j 1;
pmat = PSpCreate(m a t , l i d x);

ctx

PSVSetAccellerator(c t x , itmethod) ;

PSVSetUp(ctx > ;

= PSVCreate(pmat, pmethod 1;

/* Actually solve t h e problem */
b = (double *)MALLOC(I n * sizeof(doub1e)) ; CHKPTR(b) ;

i t s = PSVSolve(c t x , b , x 1;
i f (PImytid == 0)

x = (double *)MALLOC(I n * sizeof(doub1e) 1; CHKPTR(X) ;

pr in t f (I'C%d] Completed i n %d i terat ions\n" , PImytid, i ts >;

PSVDestroy(c tx);

r e tu rn errs;

3

Figure 6: Code to solve a linear system in parallel

Im. ilyT lylllyli 1-

i mulm--u i Or40464 It80928 2: 80928 3180928

4:80928 5 ~80928 6: 80928 7: 40464

Figure 7: Display for 8 processors showing the communication activity of a running parallel program

the calling sequences of C functions into corresponding

Fortran functions. Note that we do not translate the

C programs, instead the user calls a Fortran stub, gen-

erated automatically at installation time, which calls

the corresponding C routine. The stub handles the ap-

propriate conversion of pointers to values, etc. With
this approach any changes in the C source are imme-
diately reflected in the Fortran version. The manual

task of maintaining two interfaces is almost completely
eliminated.

The construction of documentation for the soft-
ware is also handled in the same way. In the source
code associated with each subroutine are specially for-
mated comments. A text processing program is used
to format the comments in a variety of ways: to Unix
man pages, to latex format and to emacs help for-

mat. Since the comments are in the actual source
code, any changes to the source result in revised doc-
umentation. A common problem in many software
packages is the the documentation always lags behind
the actual library by one revision. This will not hap-
pen with the automatic generation of documentaion

from the source.

4 Examples

In this section we present an example of code writ-
ten using the PETSc package. These illustrate our

points that a library can, with a consistent interface,

provide a variety of different algorithms that solve the

same mathematical problem to the applications pro-

grammer.

Figure 6 shows a parallel linear system solver that
provides a wide variety of Krylov methods coupled
with preconditioners. The same interface (and even

code!) can handle direct and iterative methods. If

a new Krylov method or preconditioning technique

were discovered, this program would only need to

be relinked; not a line would change (note that the

program uses the command line to choose the actual

method). The matrix for this example is build with

FDBuildLaplacian2dBndySub which is a routine for
building distributed sparse matrices.

One of the features that Chameleon provides is the

ability to attach user-defined operations to each com-
munication operation. Chameleon uses this feature
to provide the user with runtime graphical informa-

tion on the progress of a parallel program. Output for
an eight-processor parallel job is shown in Figure 7.
This display provides a useful diagnostic aid for de-
veloping programs; even for production programs, the
overhead of this display (updated every few seconds)
is relatively small.

References

William D. Gropp and Barry F. Smith. Chameleon
parallel programming tools users manual. Techni-

cal Report ANL-93/23, Argonne National Labora-

tory, March 1993.

William D. Gropp and Barry F. Smith. Simplified
Linear Equation Solvers users manual. Technical
Report ANL-93/8, Argonne National Laboratory,
March 1993.

William D. Gropp and Barry F. Smith. Users

manual for KSP: Data-structure-neutral codes im-

plementing Krylov space methods. Technical Re-
port ANL-93/30, Argonne National Laboratory,

August 1993.

IBM.

brary Version 2: Guide and Reference, 1992.

Engineering and Scientific Subroutine Lt-

'.I- - -

[5] Mark T. Jones and Paul E. Plassmann. An effi-

cient parallel iterative solver for large sparse lin-

ear systems. In Proceedings of the IMA Workshop

on Sparse Matrix Computations: Graph The0 y Is-
sues & Algorithms, Minneapolis, 1991. University

of Minnesota.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

