
Scalable Framework for Mapping Streaming
Applications onto Multi-GPU Systems

Huynh Phung Huynh

A*STAR Institute of
High Performance Computing

Singapore

huynhph@ihpc.a-star.edu.sg

Andrei Hagiescu1 Weng-Fai Wong

School of Computing
National University of Singapore

Singapore

{hagiescu,wongwf}@comp.nus.edu.sg

Rick Siow Mong Goh

A*STAR Institute of
High Performance Computing

Singapore

gohsm@ihpc.a-star.edu.sg

Abstract

Graphics processing units leverage on a large array of parallel pro-
cessing cores to boost the performance of a specific streaming com-
putation pattern frequently found in graphics applications. Unfor-
tunately, while many other general purpose applications do exhibit
the required streaming behavior, they also possess unfavorable data
layout and poor computation-to-communication ratios that penal-
ize any straight-forward execution on the GPU. In this paper we
describe an efficient and scalable code generation framework that
can map general purpose streaming applications onto a multi-GPU
system. This framework spans the entire core and memory hier-
archy exposed by the multi-GPU system. Several key features in
our framework ensure the scalability required by complex stream-
ing applications. First, we propose an efficient stream graph parti-
tioning algorithm that partitions the complex application to achieve
the best performance under a given shared memory constraint.
Next, the resulting partitions are mapped to multiple GPUs using
an efficient architecture-driven strategy. The mapping balances the
workload while considering the communication overhead. Finally,
a highly effective pipeline execution is employed for the execution
of the partitions on the multi-GPU system. The framework has been
implemented as a back-end of the StreamIt programming language
compiler. Our comprehensive experiments show its scalability and
significant performance speedup compared with a previous state-
of-the-art solution.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors—Code generation

General Terms Algorithms, Performance, Design

1. Introduction

The interest in using Graphics Processing Units (GPUs) for general
purpose computation has expanded beyond the high performance
computing community [19, 20] into mainstream computing. GPUs
are parallel processors that consist of a number of streaming multi-
processors (SM), which in turn are made up of a number of process-

1The first and second authors contributed equally to this paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright c© 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

ing cores running in lockstep. They support the execution of com-
putational kernels – blocks of threads executed together on each of
the available SMs. Massive parallelism is achieved as a large num-
ber of threads is interleaved onto the smaller number of processing
cores. In order to ease the task of GPU developers, several GPU
programming models have been proposed, such as OpenCL [16]
and CUDA [1].
General purpose streaming applications are suitable for GPU

processing as they expose significant task and data-level par-
allelism. Hence, several stream programming languages were
proposed to ease the expression of parallelism in such applica-
tions [4, 8]. These languages capture computation in the form
of a stream graph, where the graph nodes can consist of self-
contained tasks, or finer-grained compute elements. StreamIt [8] is
a platform-independent stream programming language that distin-
guishes among the alternative options. It is suitable for compilation
onto a large number of platforms due to the fine-grained parallelism
it exposes. It has also proved to be a suitable candidate for GPU
compilation [11, 12, 23].
Usually, stream graphs are compiled and the code from the re-

sulting nodes is mapped individually as GPU kernels. The code
in each kernel expresses how a number of consecutive node exe-
cutions are processed by the architecture. Multiple executions are
handled in parallel, in distinct GPU threads. The adjacent nodes
in the stream graph communicate through channels, currently im-
plemented as FIFO queues in memory. At the beginning of a node
execution, input data is read from a channel, and at the end of the
execution, the output data is written to a different channel, all in a
phased manner. Conventional GPUmapping may place these chan-
nels in either the GPU global memory, or the faster but size-limited
SM memory 2.
One straightforward implementation strategy is to place chan-

nels in the global memory. As GPU code tend to instantiate a
large number of threads, the hardware scheduler is relied upon
to interleave these threads so as to hide potential stalls caused by
global memory accesses [1]. Unfortunately, increasing the number
of threads will decrease the number of registers allocated to each of
them, potentially causing additional spills to global memory. In ad-
dition, more threads will require more input, output and local data
stored in the global memory, increasing further memory traffic, and
saturating the available memory bandwidth rapidly. For streaming
applications, in particular, the intensive memory access at the be-
ginning and end of each node execution that accesses the channels
can exacerbate these problems.

2The nVidia way of referring to this as shared memory is potentially
confusing.

1

On the other hand, if the channels are placed in the fast SM
memory, the number of parallel executions is limited by the small
size of this memory. The resulting thread pool may underutilize the
GPU processing cores. If the computation-communication ratio is
low, this also undermines the utilization of any prefetching tech-
niques.
To overcome the issues mentioned above, an automated GPU

mapping framework for StreamIt applications [11] has been pro-
posed. That framework instantiated a mixed pool of compute and
memory access threads that maximized the utilization of the SM
memory available. The resulting computation structure also max-
imized the utilization of the GPU cores given the memory con-
straint. However, this implementation is limited to a single parti-
tion. Hence, the application performance was severely limited if
the working set size grew large enough such that insufficient paral-
lel threads could be instantiated in the SM memory.
In this paper we present a mapping strategy that can handle

complex streaming applications where the overall memory require-
ment for efficient implementations is larger than the available SM
memory. This is achieved through an efficient graph partitioning
algorithm that splits the application into several smaller partitions
that satisfy the SM memory constraint, hence achieve good perfor-
mance individually.
Scalability of our method is demonstrated by the ability to dis-

tribute the resulting partitions on a multi-GPU system. In addition,
one or more partitions can be mapped to each GPU, resulting in a
combined spatial and temporal distribution. The strategy also iden-
tifies graph nodes that are not suitable for GPU implementation,
and map these nodes to CPU cores. Furthermore, the communica-
tion overhead between partitions is considered during the mapping
step. This is necessary because a high volume of data streamed
between partitions has to pass through one or more of the slower
levels of the memory hierarchy, as determined by the locality of the
partitions.
The following are the key contributions of this work:

• a scalable code generation framework that handles complex
StreamIt applications (Section 4)

• an algorithm that divides large applications onto several parti-
tions valid under SM memory constraints (Section 5).

• a multi-GPU mapping and orchestration scheme for these par-
titions (Section 6).

To the best of our knowledge, this is the first work on mapping
StreamIt onto a single compute node that has multiple GPUs. The
comprehensive set of experiments shows that, despite the fact that
the application is not trivially parallel, our method was able to
significantly improve performance by utilizing multiple GPUs.

2. Related Work

The StreamIt programming language [8] is based on synchronous
data flow graphs [18]. It has been compiled on a myriad of archi-
tectures including multi-cores [9], Cell [17], Raw [8] and even FP-
GAs [10]. Moreover, there is previous research in coarse-grained
mapping of StreamIt to GPU platforms [23].
The GPU mapping usually involves kernels that communicate

to each other through global memory. Therefore, the overall perfor-
mance is limited by the high latency of accessing this memory [24].
Recently proposed methods [11, 12] improved the memory access
scheme by using two classes of dedicated threads for: (1) loading /
storing data from global memory to SM memory and (2) comput-
ing using data preloaded in SMmemory. The two methods contrast
in how computation is organized. One exploits the coarse-grained
task parallelism exposed by StreamIt graph nodes [12], leaving be-
hind significant data-parallel optimizations opportunities available

in each stream graph schedule execution. The other took advan-
tage of finer-grained data level parallelism opportunities, where a
single execution of the stream graph schedule spans several com-
puting threads [11]. However, the latter method does not scale well
with large applications because it attempts to map the entire stream
graph schedule to a single partition.
Besides utilizing multiple partitions, a promising solution to

deal with the scalability issue is the utilization of multi-GPU sys-
tems. Such systems are well-suited to process large data set appli-
cations [22]. Execution on multi-GPU systems has been improved
through various run-time schemes, such as load balancing [5] and
speculative execution [6]. Many of these schemes can be comple-
mented by static methods that estimate the performance of an appli-
cation running on the multi-GPU system, based on characterizing
computation and different communication costs [21]. Performance
modeling for GPU architectures was comprehensively investigated
by analytic and quantitative approaches [3, 25] which highlighted
the important balance between computation and memory access,
as well as the utilization of SM memory. However, none of those
works has attempted to map applications automatically, nor to pro-
vide an execution model for streaming languages onto multiple
GPUs in an integrated approach.
Given the above challenges, this multi-GPU mapping work will

also tackle the scalability of the solution [11], by partitioning the
StreamIt application before mapping it. This is the first mapping at-
tempt that integrates optimal GPU kernel generation, load-balanced
mapping, communication reduction, and pipelined orchestration
for multi-GPUs systems.

3. Background

3.1 StreamIt programming language

StreamIt was designed to expose the parallel and pipelined na-
ture of the streaming applications. The high-level structure of a
StreamIt program is a graph whose basic nodes are filters which
communicate through channels. Filters can be combined to execute
in pipelines. The data flow of the filters can also be distributed us-
ing splitters and joiners that describe parallel execution paths in the
application. These two constructs expose the coarse-grained task
parallelism in the application.
Filters are written in C-like code with special constructs to

access their input and output channels. A filter consumes data
from an input channel using pop constructs, and produces data on
the output channel using push constructs. The input (output) rates
between two filters may be different but they are statically defined.
Therefore, multiple filter executions may be required to match the
rates between filters. This exposes fine-grained data parallelism in
the streaming application. The StreamIt compiler takes into account
the non-matching rate of input (output), as well as dependencies
among filters in the stream graph, to generate a static schedule
for the entire graph. The static schedule contains operators (filters,
splitters, joiners), which can be iteratively executed to process all
the incoming data. Note that multiple copies of the schedule can be
executed in parallel to process different data segments, as long as
the filters in the schedule do not maintain internal state. The filters
also have the capability to peek data beyond what they are going
to consume through peek constructs. This feature allows structured
data dependencies between consecutive filter executions and do not
restrict parallel execution.

3.2 Mapping onto GPUs

The number of processing cores in streaming multiprocessors (SM)
continues to increase with each new generation of GPUs (up to 48
cores per SM in the most recent nVidia GPUs, compared to S2050’s
32 cores and S1070’s 16 cores). Therefore, the number of threads

2

supported in each SM also increases proportionally. The threads of
each SM are divided into groups of 32 threads, called warps. Warp
executions are interleaved by a hardware scheduler on the small
number of processing cores. All threads in the same warp execute
the same instruction at each time step (lockstep execution, a variant
of SIMD) and divergent flow is serialized. However, threads that
belong to different warps are independent of any divergent flow
penalty. The hardware scheduler selects a warp for execution and
dispatches the instruction from the selected warp to the processing
cores. While the instruction is propagated through the execution
pipeline, or while it waits for memory operands, the scheduler
switches to execute a different warp with zero-overhead. As a
result, though a large number of parallel threads can be spawned,
their executions are actually interleaved on the processing cores.
Another reason behind instantiating a large number of threads

is to hide the long delay of GPU global memory access through the
interleaving mechanism described above. When mapping StreamIt
applications onto GPUs, global memory access becomes more fre-
quent because fine-grained operators have to communicate to each
other through memory channels. Even if SM memory is used to
prefetch the data from global memory, the bottleneck is still vis-
ible because operators seldom reuse the data they read from the
channels. Previous work [11] describes a scheme that reduces the
pressure on global memory access for streaming applications. First,
several operators can be executed in the same GPU kernel, where
they communicate through SM memory. Then, two distinct classes
of threads are instantiated: memory access (M) threads and com-
pute (C) threads. M threads are only responsible to prefetch data
from global memory to SM memory while C threads only perform
computations on the data prefetched by M threads. An efficient
heuristic is used to determine the number of C and M threads as
well as the execution schedule for those threads. The data-level par-
allelism available inside the stream graph is analyzed, such that
entire executions of the stream graph are mapped onto multiple C
threads inside an SM. This scheme is replicated on all the other
SMs to fully utilize the GPU.
Such a mapping flow is feasible if the memory requirement

for the parallel stream graph executions is less than or equal to
the capacity of SM memory. Increasing memory requirement from
large data-set and complex streaming applications, would result
in a reduction of the number of supported parallel executions.
The alternative investigated by this paper is to split the stream
graphs of those applications into smaller partitions whose memory
requirements match the SM memory constraint. To enable further
scalability, we investigate the mapping of those partitions onto a
multi-GPU platform. Altogether, we propose a scalable mapping
framework for mapping streaming applications onto GPUs. The
overview of the framework is presented in the next section.

4. Scalable Mapping Framework

The scalable mapping framework proposed in this paper is based
on a recent work on automated GPU mapping for StreamIt applica-
tions [11]. The input to the framework are the applications written
in the StreamIt language. The StreamIt compiler [8] analyzes the
input program to generate a schedule of operators, as well as per-
form some common optimizations. It is the stream graph expressed
in the schedule that is the input for our framework.
The components that form this framework, shown in shadows

in Figure 4, provide the following:

• A stream graph partitioning algorithm that breaks complex
StreamIt applications into smaller partitions that utilize the SMs
efficiently.

• A global mapping step that balances the partitions among the
available GPUs.

Streaming Application

StreamIt Compiler

Inject code for

POP / PUSH / PEEK
Partitioning

Schedule Operators

Global mapping

Operator code
Mapping

parameters

Working set

layout

Code generation

GPU Compiler
Execution

orchestration

Figure 1. Scalable Mapping Framework.

• A code generator that provides C code for the partitions, as well
as code coordinating the communication between them, based
on the mapping result.

• A pipelined execution orchestration for the partitions.

The stream graph partitioning component prunes the design
space by analysing the validity and estimated performance of the
possible partitions (details in Section 5). The performance estima-
tion considers the specification of the target GPU. The result of
this partitioning is a set of convex and disjoint sub-graphs which
are ready for mapping to GPU. Operators that maintain internal
state are included in separate partitions that are executed on the
CPU cores. For each GPU partition, we compute a compact mem-
ory layout [11] that can be realized in the fast SM memory. Given
the memory layout for each partition, the other parallel code map-
ping parameters are determined by heuristics [11]. These heuristics
depend on the specifications of the target GPU.
The push, pop and peek primitives of each operator in the

schedule are annotated with information about how the channels
in the SM memory are to be accessed correctly. These annotation
will be used during the automatic code generation process.
Finally, the resulting set of partitions is passed to a global map-

ping step which assigns each partition to a specific GPU or CPU
core. At this stage, communication channels between partitions
are also instantiated (details in Section 6). The generated code is
orchestrated by an execution environment which contains: (1) a
multi-threaded controller which will run on the host CPU, and (2)
the inter-partition memory communication scheme for pipelined
execution. The controller consists of threads that coordinate the
kernels loaded on each GPU, as well as threads that execute the
CPU partitions.

5. Stream Graph Partitioning

Given a stream graph, the objective of partitioning is to maximize
the overall performance of the stream graph, while ensuring that the
partitions satisfy resource constraints, and yet effectively utilize the
GPU.

3

5.1 Definitions

A stream graph G(V,C) represents the data flow within the stream
application. The nodes V represent the operators, and the edges
C represent the channels (dependencies) between the operators.
A channel connects the output of a producer operator to the input
of a consumer operator. As advanced features of StreamIt such as
feedback loops and portals are not supported, G(V,C) is always a
directed acyclic graph.
A partition P must be a convex subgraph, as non-convex sub-

graphs cause heavy communication to the adjacent subgraphs.
Even worse, they may lead to deadlocks. P is convex if there does
not exist a path in G(V,C) from an operator Vm ∈ P to another
operator Vn ∈ P , which contains an operator Vp /∈ P .

5.2 Partitioning Algorithm

The method employed to identify suitable partitions relies on the
well-known k-way graph partitioning algorithm [14]. In this algo-
rithm, the nodes of a graph are partitioned into k roughly equal
partitions so that the weight of the edges between nodes in dif-
ferent partitions (edge-cut) is minimized. Intuitively, this results in
load balanced partitions that have minimum communication. How-
ever, our partitioning differs from the standard algorithm in several
aspects: (1) the number of partitions k is not an input to the problem
– the value of k will be determined during the run-time of the algo-
rithm such that it maximizes the overall performance, (2) there are
convexity and memory constraints on each partition – these con-
straints affect the performance of combined partitions, and (3) the
objective of the algorithm is to maximize the performance of the ap-
plication. The performance objective is estimated as

∑

i=1...k

T (Pi)

where T is an estimation of the execution time of Pi. Even if mul-
tiple GPUs are utilized, a balanced distribution of the partitions to
the multiple GPUs ensures that this objective continues to reflect
the overall stream graph execution performance.
Nevertheless, the multi-level graph partitioning (MLGP) algo-

rithm used to solve the k-way problem can be effectively employed
to solve our problem. In MLGP, the nodes in the original graph
are grouped to create coarser nodes (the coarsening phase). The
original graph is iteratively coarsened down to k partitions, over a
number of levels, in order to create the initial partitioning solution
(the partitioning phase). Then, the initial solution is uncoarsened
back to the original graph by using the same number of levels as in
the coarsening phase. While uncoarsening, the partitioning solution
is refined by the movement of nodes to adjacent partitions so as to
improve the overall performance.
We adapt an efficient multi-level algorithm [14] to our graph

partitioning problem. This approach has also been effectively used
in other contexts [13]. In our approach we continue to decrease the
number of partitions as long as overall performance of the entire
stream graph is still increasing. Because we do not have a particular
k value as the input to our graph partitioning, we eliminate the
k-partitioning limit from the MLGP algorithm. Alternatively, the
number of partitions of the solution is the number of nodes in
the coarsest graph obtained. The details of the coarsening and
uncoarsening phases are described below.

5.3 Coarsening phase

From the original directed stream graph, we create a sequence of
coarser graphsGi = (Vi, Ci) by clustering together pairs of nodes.
A node u ∈ Vi+1 in a coarsened graph Gi+1 at level i + 1 is
the result of merging two matching nodes v, w ∈ Vi of the finer
graph Gi at level i such that u is convex and can be implemented
on the GPU. Otherwise, if we can not find a convex combination,
node u is simply set to vertex v ∈ Vi of Gi. Note that each node
u in a coarse graph is a sub-graph of G0 when projected from the

constituent nodes of u in the finer graph. InG2 of Figure 2, the sub-
graph corresponding to coarse vertices {0,1} consists of vertices
{0,3,5,6,7,9} of G0. After constructing coarser nodes, we build the
edges Ci+1 of the coarse graph. There is a directed edge between
two nodes in coarser graph Gi+1 if there exists a directed edge
between the constituent nodes in the finer graph Gi.
In our matching heuristics, the nodes of Gi are visited in ran-

dom order. We select an unmatched node v ∈ Vi, and then iter-
ate through the unmatched nodes adjacent to v to find a possible
match w under the convexity constraint. We consider only adjacent
nodes because there will be significant communication overhead
among coarse nodes if we merge non-adjacent nodes. Two nodes
are merged if their matching yields the best performance gain. The
performance gain here is defined as:∆T = T (w)+T (v)−T (u).
The estimation of T is based on the amount of SM memory

required by the subgraph executions, because this determines the
number of subgraph executions that can be run in parallel. The SM
memory requirement is derived through channel layout analysis.
While previous work employs an algorithm which considers the in-
fluence of fragmentation on the channel layout [11], the complexity
of the partitioning algorithm can be reduced by using an estimation
which does not consider the effect of fragmentation.
In case a feasible matching for v can not be found, u inherits

only a single node v. In Figure 2, nodes 1 and 4 of G1 are matched
to form node 1 of G2 while node 2 of G1 is assigned to node 0 of
G2. Note that the filters that maintain state are more suited for CPU
execution (i.e. node 1 in G0), because they can not be parallelized.
Therefore, we prevent these filters from being matched as they will
be included in special partitions to be mapped to CPU cores.
If the graph cannot be coarsened any further, i.e., Gi+1 = Gi,

the coarsening phase ends. Let Gm = (Vm, Cm) be the coarsest
graph achieved. The initial partitioning solution utilizes this con-
figuration, and each node v ∈ Vm is selected as a partition. The
number of partitions, k, is just |Vm|. This value is not an input as
is the case in the standard k-way problem, but it is only determined
when the coarsest graph is reached. These initial partitions will be
refined as we go through the uncoarsening phase back to G0. In
Figure 2, the coarsening phase goes through a sequence of coarse
graphs {G0, G1, G2, G3} and the initial coarsening leads to three
partitions P0, P1 and P2.

5.4 Uncoarsening Phase

From the coarsest graph Gm, the initial partitions are projected
back to the original graph by traversing a sequence of finer graphs
G′

m−1, . . . , G
′

0, where G
′

i is a refinement of Gi. During this un-
coarsening process, we need to trace the partition to which the finer
nodes belong. Let P (v) be the partition assignment for a node v.
Each node of the coarsest graph Gm represents a partition, so, uti-
lizing this notation, P (vi) = Pi (vi ∈ Vm). Because nodes in a
level i + 1 graph include one or two nodes from the level i graph,
the partitioning information can easily be propagated through all
the levels.
Moving nodes from one partition to another may yield improve-

ments. Gj is less coarse than Gj+1. Therefore, there is more free-
dom to move the nodes inGj . The movement may reduce the com-
munication or increase the combined performance of the partitions
after the move. There are local movement heuristics based on the
Kernighan-Lin (KL) [15] or Fiduccia-Mattheyses (FM) [7] parti-
tioning algorithms which can yield good results for bi-partitioned
graphs. However, using the KL or FM methods in a k-way problem
leads to significant complexity, because a node from a partition can
move to several other partitions. Instead, for our problem, we de-
veloped a simple and efficient movement algorithm inspired from
a greedy refinement method [14].

4

0

32

4

1

76

98

10

G G0

0

2

1

4
5

5

G1

3

0

1

2

G2 G3

P0

P1

P2

Coarsening Phase

3

0

32

4

1

76

98

10

0

2

1

4
5

5

3

0

1

2

3

G'0 G'1 G'2

P0

P1

P2

P0P0

P1P1

P2P2

G'3

Uncoarsening Phase

0

32

4

1

76

98

10

5

P0

P2

(I
n

it
ia

l
p

a
rt

it
io

n
s)

F

P1

0

32

4

1

76

98

10

5

Figure 2. Illustration of Multi-Level Graph Partitioning. The dashed lines show the projection of a vertex from a coarser graph to a finer
graph.

Our movement algorithm tries to move the boundary nodes of
a partition to the adjacent partitions. A boundary node of parti-
tion Pi in coarse graph Gj = (Vj , Ej) is a node v ∈ Vj that
has at least one adjacent node u ∈ Vj that belongs to a different
partition (P (v) �= P (u)). In Figure 2, nodes {2,4,6,9} in G′

0 are
the boundary nodes of partition P2, while {8,10} are the internal
ones. We randomly select a boundary node v to move from par-
tition P (v) (the source partition) to the neighborhood partitions
P (u) (the destination partition). For G′

0 in Figure 2, a neighbor-
hood partition of node 7 is P2. After moving node v from source
partition P (v) to the destination partition P (u), if the source and
the destination partitions still satisfy the convexity and SM mem-
ory constraints, the movement is deemed valid and would transform
the two original partitions P (v) and P (u) into the new partitions
P (v)′ and P (u)′. Among the valid movements of the boundary
node v to the neighborhood partitions, the movement which has the
highest ∆T = T (P (v)) + T (P (u)) − T (P (v)′) − T (P (u)′) is
selected and node v is moved to that particular destination partition.
The source and destination partitions are updated respectively. The
moved nodes will not be considered again for analysis during the
current coarsening level. The movement algorithm for the current
level stops if there are no more boundary nodes to move. Once the
movement algorithm for Gi finishes, the uncoarsening phase con-
tinues by projecting back toGi−1. Finally, afterG

′

0 is analysed, we
obtain the final assignment of the nodes to partitions. In Figure 2,
node 4 is moved from P1 to P2 whenG

′

1 is analysed, and node 7 is
moved when G′

0 is analysed. The result is the partitioned graph F ,
which captures the refinements to the partitioning solution.

6. Execution on a multi-GPU platform

After the original stream graph is partitioned, we need to map the
partitions onto the multiple GPUs and CPU cores such that the
workload is balanced. In this section, we first describe how such a
balanced mapping is achieved. We will also describe the execution
model that ensures the efficient utilization of the mapped partitions.

6.1 Partition Mapping

Each partition that belongs to the solution F obtained in Section 5
forms a single node in the coarsest graphGm. An edge between any
two level i+1 nodes exists if there is an edge connecting constituent
nodes of those two coarse nodes in Gi. The edge is assigned a
weight which is the sum of the communication overhead of the
level i edges. The communication overhead is the ratio between the
data amount exchanged by two level i+ 1 nodes, and the memory
transfer bandwidth between CPU and GPU. In order to map Gm

onto a system with x GPUs, we need to distribute the partitions in
Gm onto x processing elements with the objectives: (1) the load
should be balanced, and (2) the overhead of the communication
edges should be minimized. The k-way partitioning algorithm is
a good match for this problem because it splits the nodes of a
graph into x roughly equal partitions such that the communication
between the different partitions is minimized.
An exception are the partitions that maintain internal states.

They correspond to individual filters due to the coarsening re-
strictions from Section 5. These partitions are pre-mapped to CPU
threads and are not included in this second k-way partitioning pass.
The remaining partitions are analysed, and divided among the x
GPUs.

6.2 Communication channels

After mapping, each GPU has to multiplex the execution of the
several partitions assigned to it. The code for a GPU kernel corre-
sponding to each partition is generated as described in Section 3.2,
with additional code inserted to assist with the pipelined execu-
tion of the partitions. The execution schedule on each GPU is co-
ordinated by a dedicated CPU thread. Additional CPU threads are
launched to support the CPU partitions.
The entire execution schedule utilizes memory-based FIFO

(First In First Out) channels for data transfer. The FIFO length
ensures that there will be no stall during the execution. Each FIFO
element contains data corresponding to a large number of stream
executions. This coarse data granularity takes advantage of the
exposed data parallelism, and hides the unnecessary overhead of

5

handling data separately for independent iterations within a parti-
tion. Overall, three levels of data transfer are employed between:
(1) the different partitions, (2) the asynchronous launches of the
partition kernel using GPU streams, and (3) the compute C and
memory accessM threads inside each GPU partition.

CPU

P0

GPU
0

1

…

NA
sy

n
c.

S
tr

e
a
m

s

C
0

1 … N 1 … N

P1

GPU
1

C
1

P4

P2

C
2

C
3

P5

P3

C
4

Figure 3. Execution and data transfer among partitions on multiple
GPUs

Level 1 data transfer We spawn x+y CPU threads to manage the
parallel execution on the x GPUs and the y additional threads sup-
porting CPU partitions. CPU synchronization primitives ensure un-
corrupted access to the channels between the partitions. The FIFO
channels between two CPU partitions or two partitions executed on
the same GPU employ a standard circular buffer where memory
pointers are passed directly between the threads.
However, when data needs to be transferred between CPU and

GPU partitions, an additional buffering scheme that copies the
channel data from CPU/GPU memory to GPU/CPU memory is
used. For example, in Figure 3, the data in channel C3 between
partition P3 (on GPU1) and partition P4 (on CPU) requires this
buffering scheme.
Finally, in order to transfer data between partitions on different

GPUs, the data is always copied first to the CPU, where the FIFO
channel is implemented. Afterwards, data is copied from CPU
memory to the other GPU using the buffering scheme described
above. In Figure 3, the output buffer of partition P1 (in GPU0)
is copied to the channel C1 in CPU memory and data from this
channel is copied to the input buffer of partition P2 (inGPU1).
Our communication scheme between partitions on different

GPUs can be easily adapted to the recent peer-to-peer memory
access in CUDA 4.0 [1]. Note that peer-to-peer memory access is
specific to nVidia GPUs. Moreover, in order to use peer-to-peer
memory access in our pipeline execution, we still need to per-
form synchronization among different CPU threads to ensure that
memory accesses are uncorrupted. More importantly, peer-to-peer

memory copy between two GPUs can not be initiated until all com-
mands previously issued to either GPU have completed, and has to
complete before any asynchronous commands issued after the copy
to either GPU can start. This may downgrade the benefit of peer-to-
peer communication in comparison with communication through
CPU, which can benefit from the support of asynchronous GPU
streams.

Level 2 data transfer The asynchronous streaming support for
the GPUs is utilized to hide the CPU/GPUmemory copy overhead.
The coarse data elements from the FIFO channels are divided into
smaller fragments. We generate an asynchronous stream of mem-
ory copy and partition kernel launch requests to process the GPU
copy and execution. As the operations on these fragments are inde-
pendent, memory transfers and kernel executions of different frag-
ments can overlap. N fragments are created, as shown in Figure 3.
Each stream will coordinate data transfer and execution for its cor-
responding fragment. While Stream 1 is performing computation of
fragment 1 in GPU0, Stream 2 can transfer fragment 2 from CPU
to GPU0.
If several partitions are mapped to a single GPU, these partitions

are time multiplexed. In Figure 3, the execution of partition P3 and
P2 are interleaved.

Level 3 data transfer Each GPU kernel executes multiple itera-
tions over the group of parallel executions of the stream graph par-
tition it includes [11]. Using a mix of C and M threads, data can
be prefetched and computed without stalls inside each SM. This
heterogeneous scheme can be executed efficiently on the GPU ar-
chitecture as long as C and M threads are allocated into differ-
ent warps. In such an implementation, C threads never access slow
GPUmemory and can compute a larger number of stream graph ex-
ecutions using exclusively a small workset WS stored in SM mem-
ory. Concurrently, M threads fetch the next input data from GPU
memory to a double buffer DB in SM memory and store back the
previous output data. A single synchronization point is required,
when prefetched data from DB is swapped in WS and the previ-
ously computed results are swapped out fromWS to DB.
The stream graph partitions supported by our implementation

are connected through multiple input and output channels. Their
corresponding data should be swapped betweenWS andDB. This is
trivial only when a single input and output channel is involved [11].
In this case, the input channel corresponds to a contiguous range
of memory locations, which overlaps with the output channel in
DB and may also overlap in WS. Simply iterating through the
data stored in DB in the correct direction ensures that no data is
corrupted, and it is possible to swap data in parallel using multiple
GPU threads. However, special care is required to support multiple
channels.
The WS memory range corresponding to the channels of each

graph operator is determined by a static memory allocator, based
on liveness analysis. This allocator ensures that the channels re-
ceive a contiguous memory range (as a result, gaps may occur be-
tween channels). The input and output channels of a stream graph
partition are also stored in WS, and the allocator may place them
arbitrarily. If multiple channels need to be swapped fromWS to DB
and no additional constraints are in place, the actual location of the
channels can lead to long dependency chains which may prevent
swapping pairs of elements.
A possible scenario is shown in Figure 4a. The shaded boxes are

the current channels in WS and DB. In this example the elements
from input I0 can not be swapped into their designated location
in WS as long as the contents of the output channel O1 has not
been swapped out. However, this output channel can not be moved
as it will corrupt I1 which has not been processed yet. Also, I1
can not be processed as it will corrupt O0, etc. Utilizing temporary

6

O1 O0

I0 I1

O0 O1

WS DB

31 24

3

1

24

move I0 (DB WS)

move O1

(WS DB)

move I1 (DB WS)

move O0

(WS DB)

O1 O0

I0 I1

1 2

1 2move I0

(DB WS)

move O1

(WS DB)

a) Dependency chains prevent swapping pairs of elements between WS and DB.

WS DB

b) Simple swapping becomes possible with proper channel reorganization.

I0 I1

I0 I1

O1 O0

p

p

q

p

q

p

Figure 4. Execution snapshot showing the challenges of partition I/O handling. The inputs for the next iteration have to swap with the
outputs of the previous iteration.

memory storage is not feasible because the SM memory is limited
and any extension degrades performance. Therefore, we propose an
extension of the single channel swapping scheme that ensures that
single element swaps can proceed without data corruption.
We direct the static allocator to layout the input channels with-

out fragmentation from the first location in WS. This is possible
as there are no previous data in WS. However, for outputs, we can
not ensure that they are allocated in a contiguous fashion, but we
can record the order in which they are allocated. The same order is
replicated in the DB, where both input and output channels can be
allocated contiguously. Such a layout is illustrated in Figure 4b.
Using this layout guarantees corruption free swapping, and we

can prove this through induction on the index in DB. The basis
case is for the first location in DB. The input stored at location 0 in
DB can be moved to WS, and any output value it overwrites in WS
can be moved to DB at the same location, because the outputs are
compacted, in order, inDB. This can be implemented by storing the
output first in a temporary register, and saving it afterwards to DB.
If no output element exists inWS at location 0, there still obviously
is no data corruption.
Assuming there is no data corruption until index p − 1 in DB,

when the input element at index p in DB is moved to location
p in WS it may overwrite an unmoved output. In this case, the
overwritten output element has to be moved to index q ≤ p in the
contiguous sequence of outputs in DB. This inequality is ensured
by the contiguous allocation of input buffers in WS and DB, and
the possible fragmentation of the outputs in WS. Therefore, the
movement of the output to the index q in DB does not corrupt any
input not yet transferred. This concludes the induction case if the
number of inputs is larger than the number of outputs. Otherwise,
the remaining outputs can be transferred to DB safely, as there is
no remaining input in DB.
The automatically generated code relies on the above channel

allocation. We infer a set of intervals where the swap indices for
both input and output increase linearly. For each such interval,
swaps can be applied to pairs of elements at consecutive locations.

6.3 Mapping Parameters Selection

Code generation for each GPU partition requires a few parameters,
such as the number of C andM threads, or the number of parallel

C threads, S, supporting each stream graph partition execution.
We first determine the number of concurrent executions of the
partition that can be handled by each SM, based on the SMmemory
size and the memory requirement of each stream graph partition
execution. Then, we allocate S threads for each partition execution,
exploiting the data parallelism of the partition extracted through the
stream graph structure. Finally, we need to match the data transfer
requirements of the C threads with a corresponding number of
M threads to minimize the stalls [11]. The same parameters are
replicated for all SMs, as the SMs process parallel fragments of
the input data. These parameters were estimated once during the
performance evaluation of each partition in Section 5. However,
during the final code generation step, we compute the exact SM
memory layout, and the resulting footprint may increase due to
fragmentation.
The number of N concurrent GPU streams utilized for the

level 2 data transfer can influence how much of the CPU to GPU
data transfer overhead is hidden. However, there is some penalty
associated with each GPU partition kernel launch, and this surfaces
if too many concurrent streams are utilized. In our implementation,
we utilized 4 parallel streams to provide a good coverage of the
memory transfer delays.

7. Experimental Results

In order to show the scalability and efficiency of our automated
framework, we present the performance achieved on mapping sev-
eral StreamIt benchmarks. These benchmarks (described in Ta-
ble 1) are a representative set of the StreamIt benchmarks suite [2].
They were processed automatically by the framework, and code
was generated for multiple partitions. The benchmarks were altered
to create larger stream graphs by utilising a parameter N (i.e. the
graph of DES for N = 40 reached 1047 filters). The stream graphs
are mapped onto one to four GPUs connected to the same CPU
host. The benchmarks were augmented with source and sink filters
that include code to verify the results of the computations. Because
these filters maintain internal state, this also validated the support
we provide for such filters. Our framework was implemented as a
back-end to the StreamIt 2.1.1 compiler. The baseline CPU tim-
ing was obtained on an Intel Xeon CPU E5405 running at 2 GHz,
with the executable generated through the uniprocessor back-end

7

0

1

2

3

4
S

p
ee

d
u

p

N

DCT

0

1

2
Bitonic

0

1

2
FFT

0

1

2

3

4

1 2 3 4 5 6 7 8 9

MatrixMult

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

S
p

ee
d

u
p

N

MatrixMult3

0

1

2
DES

0

1

2

3
FMRadio

0

1

2

3

4
BitonicRec

*
*

Partitions 1 3 5 5 6 7 6 8 8 1 1 1 1 1 2 1 1 1 1 1 2 8 1 1 1 1 1 1 1 3

Partitions 1 1 1 2 7 7 7 7 1 2 1 1 4 7 4 8 7 6 1 1 4 8 8 8 8 8 8 8 1 1 1 2 2 4 3 5 6

Figure 5. Mapping to a single partition and to multiple partitions (the number of partitions is listed under the graphs) on a single GPU. The
speedup is the execution time ratio between the two. Design points marked with (*) were not supported by a single partition implementation.

of StreamIt, and compiled using the ‘-O3’ option of GCC 4.1.2.
The experiments target the newer C2070 “Fermi” GPU platforms.

Comparison with the single partition mapping Figure 5 shows
the speedup achieved on a single GPU by our multiple partition
mapping compared to the previous single partition mapping [11].
It also shows the number of partitions generated for each bench-
mark instance (the shadowed row under the values of N). Most
benchmarks benefit from multiple partitions whenN increases. Us-
ing our proposed algorithm, multiple partitions yielded better per-
formance than a single partition, because each partition requires a
much smaller memory footprint. If only a single partition is used,
the large working set resulted in poorer performance. To capture
the CPU to GPU transfer overhead, the benchmarks maintain state-
ful source / sink filters. The additional speedup can be as high as
6.53×. In addition, there are a few cases where a single partition
mapping could not return a solution (such as MatrixMult3 for size
9). However, for some benchmarks, such as Bitonic, DES or FFT,
the working set size does not change significantly, and both single
and multiple partitions mappings had similar performance.

Multiple partitions on a single GPU Figure 6 shows the speedup
of the proposed partitioning approach relative to the CPU base-
line. While the speedup may diminish for large values of N , this
approach proves capable of sustaining good throughput for most
benchmarks. If the size of the benchmark is too large to fit the SM
memory, the benchmark is split into multiple partitions. In some
cases, the overhead of data communication among the partitions
severely impacted performance.

Multi-GPU mapping We tested large benchmarks running on
multiple GPUs using the orchestration described in Section 6. The
speedup obtained by running the benchmarks on 2 to 4 GPUs com-

pared to a single GPU mapping is shown in Figure 7. In general,
when the size of the benchmark is not large enough, multiple GPUs
do not provide any benefit. In these cases, a single GPU mapping
is the best solution. The single GPU implementation corresponds
to the white bars in the figure. This is mainly due to the communi-
cation overhead of transferring the data between the GPU and the
CPU that could not be completely masked by computation.
However, the multi-GPU implementation proves profitable if

N increases. As shown in Figure 6, the speedup of the single
GPU mapping diminishes for large benchmarks. However, in this
case, mapping to multiple GPUs starts to show its advantages. The
speedup reaches 2.97× compared to a single GPU mapping. This
is evidence that for applications that have large working sets, our
multi-GPU solution can effectively speed up their execution.
Mapping to multiple GPUs (Figure 7) shows some divergent

performance results for different values of N . The divergence can
be explained because the nature of the stream graph itself may lead
to solutions that are easily balanced on a specific number of GPUs,
and adding additional GPUs may affect the balancing. Moreover,
if significant communication exists between fine-grained filters,
the performance will hardly increase if we put those filters across
multiple GPUs.
Moreover, Figure 7 offers an indirect insight that the communi-

cation overhead can be effectively masked. The performance boost
of a 2 GPU solution, compared to that achieved on a single GPU,
is affected by several factors (such as how the workload is bal-
anced between the 2 GPUs) in addition to the overhead of the com-
plex communication mechanism. However, some design points of
DES and MatrixMult3 mapped to 2 GPUs reach 1.93x and 1.83x
speedup respectively, compared to a single GPU solution that does
not have inter-GPU communication.

8

0

5

10

15

20

25

30

35

40

45

50
S
p
ee
d
u
p

N

DCT

0

5

10

15

20

25

N

Bitonic

0

1

2

3

4

5

6

7

8

9

10

N

FFT

0

1

2

3

4

5

6

7

8

N

MatrixMult

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

S
p
ee
d
u
p

N

MatrixMult3

0

5

10

15

20

25

30

35

40

N

DES

0

50

100

150

200

250

N

FMRadio

0

5

10

15

20

25

30

35

40

N

BitonicRec

Figure 6. Mapping to a single GPU. The speedup is reported relative to a CPU implementation.

8. Conclusion

We proposed a scalable framework that automatically maps most
stream processing applications onto GPUs. We developed an ef-
ficient graph partitioning algorithm that splits the complex appli-
cation into several partitions, each of which can utilize the small
on-chip SM memory effectively, and hence achieve good perfor-
mance. Our proposed strategy obtained performance that augments
that of a previous single partition solution. In addition, our pro-
posed strategy is able to scale the performance to up to four GPUs.
We also support stateful filters by running them on the CPU cores.
The code generation scheme proposed is able to orchestrate the ex-
change of data within the individual GPUs, between the multiple
GPUs, as well as the GPUs and the CPU cores. The results indicate
the scalability and improvement when several GPUs are targeted.
It is conceivable that certain embarrassingly parallel applica-

tions can be mapped successfully to large scale multi-node, multi-
GPU systems. However, on a single node, it is unlikely that the
number of GPUs per node will increase significantly beyond the
current four due to power, interconnect, and form-factor issues. Our
work is the first to show that complex and often tightly coupled
streaming applications can be successfully partitioned and mapped
automatically onto multiple GPUs. As future work, we would like
to investigate how even larger and more complex applications can
be specified in StreamIt (or its derivative) so as to run on a large
cluster of multi-GPU nodes.

References

[1] NVIDIA CUDA 4.0. http://developer.nvidia.com/cuda-toolkit-40.

[2] Streamit benchmarks.
http://groups.csail.mit.edu/cag/streamit/shtml/benchmarks.shtml.

Benchmark Description Original
N [11]

Bitonic Sorting algorithm for N float elements
applying the bitonic algorithm

8

BitonicRec Same as above, recursive method 8
DCT Discrete Cosine Transform for a matrix

ofN ×N floats
8

DES DES encryption algorithm with N
rounds, input 8 bytes, output as 16 hex
digits

16

FFT Fine grained FFT transform on N ele-
ments

32

FMRadio (N + 3)-band equalizer radio 8
MatrixMult Blocked matrix multiplication algo-

rithm for 2N × 2N matrices, split into
blocks of 2× 2

2

MatrixMult3 Same as above for (3N + 3) × (3N +
3))× ((3N +3)× 3N) matrices, with
blocks of 3× 3

–

Table 1. Benchmark characterization.

[3] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m.W.
Hwu. An adaptive performance modeling tool for GPU architectures.
In The 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’10), 2010.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan. Brook for GPUs: stream computing on graphics
hardware. In ACM SIGGRAPH ’04, 2004.

9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 6 10 14 18 22 26 30

S
p

ee
d

u
p

N

DCT

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 3 4 5 6 7 8 9

S
p

ee
d

u
p

N

MatrixMult3

4-GPU

3-GPU

2-GPU

1-GPU

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

S
p

ee
d

u
p

N

FFT

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

S
p

ee
d

u
p

N

DES

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2 4 8 16 32 64

S
p

ee
d

u
p

N

Bitonic

NN N

Figure 7. Additional speedup resulted from the mapping to multiple GPUs compared to a single GPU.

[5] L. Chen, O. Villa, S. Krishnamoorthy, and G. R. Gao. Dynamic load
balancing on single- and multi-GPU systems. In 2010 IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’10),
2010.

[6] G. Diamos and S. Yalamanchili. Speculative execution on multi-
GPU systems. In 2010 IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’10), 2010.

[7] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for
improving network partitions. In The 19th Design Automation Con-
ference (DAC ’82), 1982.

[8] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amaras-
inghe. A stream compiler for communication-exposed architectures.
In The 10th international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS ’02), Oct 2002.

[9] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In
The 12th international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS ’06), 2006.

[10] A. Hagiescu, W.-F. Wong, D. F. Bacon, and R. Rabbah. A computing
origami: folding streams in FPGAs. In The 46th Annual Design

Automation Conference (DAC ’09), 2009.

[11] A. Hagiescu, H. P. Huynh, W. F. Wong, and R. S. M. Goh. Automated
architecture-aware mapping of streaming applications onto GPUs. In
2011 IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS ’11), 2011.

[12] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke.
Sponge: portable stream programming on graphics engines. In The
16th international conference on Architectural support for program-

ming languages and operating systems (ASPLOS ’11), 2011.

[13] H. P. Huynh, Y. Liang, and T. Mitra. Efficient custom instructions
generation for system-level design. In 2010 International Conference
on Field-Programmable Technology (FPT ’10), 2010.

[14] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed Computing,
1998.

[15] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 1970.

[16] Khronos OpenCLWorking Group. The OpenCL Specification, version
1.0.29, 8 December 2008.

[17] M. Kudlur and S. Mahlke. Orchestrating the execution of stream pro-
grams on multicore platforms. In The 2008 ACM SIGPLAN conference

on Programming language design and implementation (PLDI ’08),
2008.

[18] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions

on Computers, 36(1), 1987.

[19] J. Nickolls and W. J. Dally. The GPU computing era. IEEE Micro, 30,
2010. ISSN 0272-1732.

[20] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E.
Lefohn, and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. Computer Graphics Forum, 26(1), 2007.

[21] D. Schaa and D. Kaeli. Exploring the multiple-GPU design space. In
2011 IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS’11), 2009.

[22] J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on GPU clus-
ters. In 2011 IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’11), 2011.

[23] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
pipelined execution of stream programs on GPUs. In The 7th annual
IEEE/ACM International Symposium on Code Generation and Opti-

mization (CGO ’09), 2009.

[24] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU microarchitecture through
microbenchmarking. In 2010 IEEE International Symposium on

Performance Analysis of Systems & Software (ISPASS ’10), 2010.

[25] Y. Zhang and J. D. Owens. A quantitative performance analysis model
for GPU architectures. In (The 17th International Symposium on High

Performance Computer Architecture (HPCA ’11)), 2011.

10

