
Scalable Game Design and the Development of a Checklist

for Getting Computational Thinking into Public Schools

Alexander Repenning
University of Colorado

Computer Science Department

Boulder 80309-430

+1 (303) 492-1349

ralex@cs.colorado.edu

David Webb
University of Colorado

School of Education

Boulder 80309

+1 (303) 492-0306

dcwebb@colorado.edu

Andri Ioannidou
AgentSheets Inc.

6560 Gunpark Drive

Boulder, CO, 80301, USA

+1 (303) 530-1773

andri@agentsheets.com

ABSTRACT
Game design appears to be a promising approach to interest K-12
students in Computer Science. Unfortunately, balancing
motivational and educational concerns is truly challenging. Over a
number of years, we have explored how to achieve a functional
balance by creating a curriculum that combines increasingly
complex game designs, computational thinking patterns and

authoring tools. Scalable Game Design is a research project
exploring new strategies of how to scale up from after school and
summer programs into required curriculum of public schools
through game design approaches. The project includes inner city
schools, remote rural areas and Native American communities. A
requirement checklist of computational thinking tools regarding
curriculum, teacher training, standards and authoring tools has
been developed and is being tested with thousands of students.

Categories and Subject Descriptors

K.3.2 Computer and Information Science Education

General Terms
Design, Human Factors, Languages

Keywords

Game design, computational thinking, computational science.

1. INTRODUCTION: THE SCALABLE

GAME DESIGN INITIATIVE
Scalable Game Design is an initiative with the goal to expand
opportunities to motivate, engage, and educate students about

Computer Science through game design, starting at the middle
school level. For over 15 years, funded mainly by the National
Science Foundation (NSF), we have carried out investigations on
new approaches to programming resulting in game and simulation
authoring systems such as AgentSheets [1, 2] and AgentCubes
[3]. While the goal has largely remained the same, the degree of
ambition has steadily increased, in that we have gradually moved
away from communities of self-selected users towards what is

perhaps the most challenging educational context: implementing
new IT curricular as part of the regular public school program.

The main goal of our latest NSF-funded ITEST project called

“Reforming IT Education through Game Design: Integrating

Technology-Hub, Inner City, Rural and Remote Regions”
(iDREAMS1 for short) is to bring Computer Science to middle

schools with the ultimate aim of developing a larger IT workforce.
Numerous problems with existing high school advanced
placement courses have been discussed [4], but Computer Science
education at the middle school level has received comparably
little attention. As a result, programming has almost completely
disappeared from the middle school curriculum. Existing IT
opportunities at the middle school level often include little more
than keyboarding, web browsing, and use of application training.

The rapidly increasing number of summer camps, after-schools
programs, female and minority focused special programs, and
computer clubs at the middle school level strongly suggests that

there is a demand from students for such opportunities. Many,
including numerous ITEST projects [5] and our own projects [1],
have invested a great deal of time and effort in broadening
participation through motivational extracurricular activities. We
believe this is an important first step. However, we also believe
that now is the right time to bring Computer Science into middle
school curricula to develop a stronger and bigger IT workforce.
One reason to do this is that motivational concerns need to be
addressed at the middle school level, using early IT experiences to

support future career choices. The middle school years are critical
for students in reaching conclusions regarding their own skills and
aptitudes [6, 7]. This is the age at which children prematurely and
often falsely conclude that math and science is not for them, or
that Computer Science is all about programming or is a field that
is hard as well as boring. Another reason to do this is to expose all
students, including minorities and women, to Computer Science at
a level of participation that no combination of extracurricular

programs could achieve. After all, one should not forget that
participation in extracurricular programs is based on self-selection
and typically involves additional fees. Students showing up at
these events usually are already excited about information
technology. What about the large majority of students who are
skeptical towards IT or may not have the resources to participate?
While many extracurricular programs have been successful, they
only reach out to a small subset of children compared to the
number of students enrolled in middle schools.

Skepticism towards programming in schools [8] is entirely
justified. A student running towards us when we entered a school

with an early prototype of the LEGOsheets [9] perhaps best
summarized the programming in school situation in 1996. Excited
to see the LEGO blocks, he asked us what we would be doing. We
explained we would do programming. “Programming, oh no!” he
replied, “I know what is going to happen. The teacher writes a
program onto the blackboard, we type it into the computer and it

1 http://scalablegamedesign.cs.colorado.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’xxx, xxx, xxxx, USA.
Copyright 2010 ACM 978-1-59593-947-0/08/0003...$5.10.

never works.” This points out that programming, as an
educational activity, must be heavily scaffolded, but also
grounded in students’ interests, insights, and creativity.
Ultimately, programming in schools is not just about picking the
right software, but about a process reconceptualizing what the

right skills to teach are and what kinds of pedagogical and
motivational models need to be employed to make Computer
Science a feasible and integral part of K-12 education.

Given the less than ideal track-record of programming in schools
in general and specifically in middle schools [10], the question
arises: why should we bring programming to middle schools in a
systematic way? And by systematic, we mean initiatives involving
entire school districts, as opposed to grass root efforts of
individual teachers. We believe that the field of Computer Science
education may approach a critical tipping point [11]. Results of
the 2009 CSTA National secondary CS survey indicate that in

only two years high schools offering courses featuring game
design have increased from 0.6% in 2007 to 10% in 2009. Many
interesting strategies, tools and curricula have been explored in
isolation. It is time to investigate how to integrate some of these
results in a way that would make them sustainable for public
schools at a large scale. In particular, the notion of Computational
Thinking [12-14] has refueled research in IT education by re-
examining the core values of Computer Science education.

Our iDREAMS project is specifically exploring a number of
pragmatic dimensions related to computational thinking of how to
bring Computer Science education to public schools. The project

started in early 2009 with the goal to provide game design and
programming experiences to over 2000 students over three years.
Specifically, the project engages a vertical segment of diverse
inner city, remote rural and Native American communities from
South Dakota to southern Colorado including some of Colorado’s
poorest rural school districts. A major research question for this
project is whether it is possible to introduce computational
thinking at the middle school level through game design to diverse
communities of non self-selected teachers and students.

While, conceptually speaking, computational thinking is at the
core of this project we are less interested in creating a new

definition of what computational thinking is (or is not), and are
mostly concerned with the pragmatics of computational thinking.
How can we use tools, train teachers, scaffold game design
education, support teachers in the classroom, and motivate the
general student, teacher, parent, and school administrator
populations? If we want to advance the notion of computational
thinking beyond self-selected groups of teachers and students,
what kind of conceptual computational thinking tools do we need?

This paper describes what we call the computational thinking tool
checklist. This is an early and evolving version of suggested
requirements that conceptual tools should satisfy to facilitate

computational thinking in public schools. A discussion section
briefly talks about experiences with the iDREAMS project so far.

2. COMPUTATIONAL THINKING TOOLS

CHECKLIST
The version of the computational thinking tools checklist
presented here is the result of building and using computational
tools, e.g., AgentSheets, for many years for game design and
computational science [15] applications. Our latest initiative,
Scalable Game Design, enhances K-12 education by creating
game design based curricula and teacher training aligned with
computational literacy frameworks and standards [16, 17].

Scalable refers to the scope of applications starting with simple
game design in middle schools and advancing along a gentle
learning slope [18, 19] all the way to graduate school. At the
middle school level, Scalable Game Design consists of two
modules. In 6th grade a one-week module is integrated into an

existing required course. In 7th grade a four-week module in
elective courses allows students to move on to more complex
games or computational science simulations.

We have started to use and evolve the notion of computational

thinking tools as a combination of curriculum based on a
computational thinking pattern inventory, authoring tools, and
teacher training. We claim that for systemic impact, a
computational thinking tool used in K-12 must fulfill all these
conditions:

1) has low threshold: a student can produce a working game

quickly.

2) has high ceiling: a student can make a real game that is

playable and exhibits sophisticated behavior, e.g., complex AI.

3) scaffolds Flow: the curriculum provides stepping stones with

managed skills and challenges to accompany the tool.

4) enables transfer: tool + curriculum must work for both game

design and subsequent computational science applications as

well as support transfer between them.

5) supports equity: game design activities should be accessible

and motivational across gender and ethnicity boundaries.

6) systemic and sustainable: the combination of the tool and

curriculum can be used by all teachers to teach all students

(e.g. support teacher training, standards alignment etc).

The following sections describe these requirements in detail.

2.1 Low Threshold
An ideal strategy to include Computer Science in a way that will
be inclusive to women and minorities may be to make it part of
existing required courses (e.g., computer power or exploratory
wheel courses2). In this context it is typically feasible to squeeze
in a one-week (5x45 minutes) module. In that time it must be
possible for students to make one complete game such as Frogger.
If even a simple game is hard to build and game design activities
lead to frustration, then little progress towards computational

thinking will be achieved. With AgentSheets, many students
finish a simple Frogger-like game (cursor controlled frog, moving
cars, some kind of collision handling between frogs and trucks) in
the first three sessions, and additional game creation activity
follows.

To make this possible, one may have to differentiate between a
programming tool and a computational thinking tool. As pointed
out by Wing [12], computational thinking should not be
considered a synonym for programming. Given the experience of
many teachers (who have never made a game, never programmed,
and in many cases, not even played a game), it is essential that

computational thinking offers a simple mapping between problem
and solution. For example, if the task is to simply program the
frog in Frogger, a user-controlled object trying to cross a busy
highway, then we would expect a relatively simple solution.

2 Exploratory Wheels are courses that cover a variety of topics so

that students can get a taste of different technical domains and
decide if they are interested in pursuing the topic in more detail.
Typically the topics covered in the exploratory wheel are
offered as subsequent elective courses.

The true challenge for a low threshold is not a question of whether
there is some kind of drag and drop programming, but whether the
resulting program includes excessive need to code, rather than to
represent the problem description. In comparing implementations
of a cursor-controlled character in AgentSheets and Scratch (in

Figure 1 and Figure 2 respectively), both systems feature a drag
and drop programming style, but in the Scratch solution, the use
of doubly nested loops and “magic” constants (e.g., where is the
value of -162 coming from?) cannot be conceptually traced back
to the original problem description. In other words, in one case we
have a program that is closer to a computational thinking level
whereas in the other case it is at a much lower code level.

Figure 1. Programming at Computational Thinking level:

Program to make a cursor-controlled frog

Figure 2. Programming at Code level: program contains many

elements that cannot be traced back to problem.

The main point of low threshold is not to compare programming
languages, but to illustrate that the notion of thresholds may mean
vastly different things to different people. A computational
thinking tool must include a design scaffold for teachers and
students to transparently map a problem description into solution.
Pragmatically speaking, the most important aspect of a low
threshold tool is not if – in theory – a programming language may
allow a simple solution but whether or not teachers with little or

no programming background can be systematically trained to
teach their students to find solutions to computational thinking
challenges.

2.2 High Ceiling
If the students cannot make interesting, playable games, then their
initial excitement quickly gives way to disappointment. Students
need ways to create games with complex behavior using
sophisticated math and Artificial Intelligence. How can my

characters find the shortest path in a maze? How can I make them
collaborate and compete? This type of sophistication may seem
out of the reach of middle school students, but we have found
ways to scaffold game design, including 3D visualizations (Figure
3), with computational thinking patterns to the point where middle

school students can build games that not too long ago would have
been challenging for Computer Science university students.

Collaborative Diffusion [20] is a collaborative agent programming
approach based on diffusion equations initially used in graduate
and undergraduate Computer Science courses on educational
game design [21]. This approach can be used to make highly
sophisticated games with Sims-like behaviors. The need to deal

with advanced math concepts, i.e., the need to program, tweak and
debug diffusion equations, did not dissuade middle school
students [22]. On the contrary, students in many cases found
math, for the first time, to be useful because math became a tool
that allowed them to build their video game. Of course, not all
students progress to this point at the middle school level.
However, we believe it is essential not to trap students into toy-
like programming languages that may provide a short burst of
enthusiasm, but ultimately fail to help them progress from
motivational game design to educational STEM applications.

Figure 3: The use of visualization can explain complex

concepts such as diffusion and how they can be used for

Artificial Intelligence applications.

2.3 Scaffolds Flow
Low threshold and high ceiling are important but what is the
process to effectively progress from basic to sophisticated game

design? Working with teachers and students worldwide, we have
analyzed the kinds of games they have built in terms of challenges
and skills. Optimal flow [24] in game design requires balancing
design challenges and developing skills by scaffolding the process
with well-defined stepping stones based on increasingly complex
computational thinking patterns, e.g.:

• Collision; in Frogger: frog meets truck
• Push; in Sokoban: person pushes boxes
• Transport: in Frogger: logs and turtles transport frogs
• Generate: in Space Invaders: defenders shoot rockets
• Absorb: in Frogger: tunnel absorbs cars

• Choreography: in Space Invaders: mothership coordinates
alien ships movement and descent

• Polling / Counting: in Pac-Man: game ends when all the dots
are eaten

• Diffusion: electricity, heat, rumors, toys: spread of information
• Path Finding: in The Sims: people finding food
• Collaborative Diffusion: in a soccer game: players collaborate

and compete
• Hierarchy of Needs: Maslow’s model of human motivation.

These computational thinking patterns are language as well as
application independent. For instance, once a student understands

how to conceptually represent a collision in one programming
language, e.g. Java, then the student is more likely to be able to
create a corresponding solution in a different language.

The Scalable Game Design curriculum is based on a number of
increasingly demanding game designs, for instance, moving from
a game like Frogger, to Pac-Man, SimCity, and all the way to The
Sims. Each design, in addition to tutorials and sample solutions,
offers links to computational thinking patterns3. The curriculum

covers an extended duration of the Computer Science education
pipeline ranging from middle school to graduate school, but does
not prevent advanced students from moving ahead. Indeed, many
of the advanced middle school students build sophisticated games
compared in complexity to ones found typically at the
undergraduate level.

2.4 Enables Transfer
“Now that you can make Space Invaders can you build a science

simulation?” teachers ask their students. Perhaps, this question
really gets to the core of computational thinking. While the jury is
still out on defining what computational thinking really is, this
kind of pragmatic interpretation provided by teachers essentially
provides a litmus test for what computational thinking should be
able to achieve. Educators believe it should be able to achieve
transfer. How can game design skills transfer to model building,
which is part of computational science and STEM education?

Many educators are willing to explore the idea of game design for
its motivational benefits. If, however, students can only make a
game using a particular software tool, then ultimately game design
will not be accepted at a large scale in K-12. One could argue that
if there is no transfer to STEM there is no computational thinking.

Of course, we know that transfer does not just happen [25]. What
does random movement in a game have to do with Brownian
motion in a computational science model? These connections
need to be established explicitly by teachers and integrated into a
set of interconnected computational thinking courses including,
for instance, game design, computational science, and robotics.

We have been using AgentSheets extensively to teach students
game design and computational science but have not yet
systematically explored mechanisms of transfer. We have started
to develop a higher-level computational thinking pattern inventory
that is explicitly connects these patterns to different applications
such as game design and computational science (Figure 4).

Figure 4. Computational Thinking Inventory: an inside out

gradual and iterative exploration of transferable

computational thinking patterns.

At a technical level computational thinking tools would also have
to include certain affordances to be truly useful. According to the
President's Information Technology Advisory Committee,

3 http://scalablegamedesign.cs.colorado.edu/wiki/Frogger_Design

computational science has tremendous potential for STEM
education [15]. However, even the most basic computational
science applications require tools for numerical analysis including
the ability to define sophisticated mathematical expressions, the
ability to collect and export data, and support for visualizing data.

2.5 Supports Equity
Tools have to be effective in both motivating and educating
students across ethnicity and gender in a variety of educational
settings, including elective classes or programs, and required
courses within the curriculum. Formal studies (e.g. an
independent research study by the Stanford School of Education
[26]), concluded that both boys and girls express the same high
levels of desire to continue with game design using AgentSheets.

In our local school district (which is the first district in Colorado
to bring programming to its middle schools by using an early
version of our Scalable Game Design curriculum and AgentSheets
in all its middle schools), teachers already report that, after
students complete AgentSheets units in their Exploratory Wheel
courses, both boys and girls are motivated by their experiences
and so energized that they go to the counseling office to put
computers as their first elective choice. They also report that

participation of girls in elective courses significantly increases. As
one teacher reported, “I used to only have 2 or 3 girls in my
elective classes, now half of the class is girls.” In iDREAMS
schools, the participation of women is close to 50% because in
many of these schools these courses are required.

2.6 Systemic and Sustainable
For computational thinking tools to be successfully integrated into
K-12 education, they need to be systemically adopted by schools

and districts. We have developed teacher training and curricula
aligned with ISTE NETS standards [17] and have integrated
Scalable Game Design into the middle school computer education
curriculum of entire school districts. The Scalable Game Design
wiki pages include specific links from each game design activity
to ISTE standards covered. The game design activities with their
intrinsic need to engage students in problem solving including
accessing, compiling and integrating information, are also

consistent with learning outcomes suggested by the K-12
Computer Science model curriculum4 recommend by the ACM.

Integration with standards is essential, especially when trying to

reach a tipping point for a Computer Science education strategy
that is more systemic and sustainable. When shifting towards
implementation models that move away from self-selected
teachers and students, participation can reach critical levels. The
iDREAMS project takes place in 16 schools. Some schools have
multiple IT teachers with some schools teaching Computer
Science to an estimated 600 students per semester.

3. DISCUSSION
Currently there are 19 middle school teachers participating in the
iDREAMS project. Over the course of the 2009-10 school year,
based on responses received from teachers, there will be
approximately 75 cycles of the Frogger unit taught to over 2,000
students. Twelve community college students are also serving as
classroom support liaisons in select classrooms.

Prior to the 2009-10 school year, community college students
completed one week of training that included an opportunity to
design five games from Frogger to The Sims, design a science

4 http://csta.acm.org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf

simulation of an ecosystem, and observe a summer session game
design class. During the second week of the institute, the
community college students were joined by participating teachers
to design similar games and further explore the methods and
activities proposed for middle school students to construct games.

Teachers who have already started to implement the Frogger unit
in their classes have been completing daily lesson logs to

document their observations of students, monitor the pacing and
activities completed, and indicate how they have adapted the
proposed unit to address perceived student needs. Even though we
are at the early stages of implementation and data collection, four
teachers have already reported that the lessons went exceptionally
well, with unusually high engagement: students who are usually
not engaged, are showing strong interest. Students also seemed to
comprehend ideas that had previously been troublesome.

The computational thinking tool checklist presented here is an
early framework of evolving recommendations for introducing
computer science into the regular school program through game

design. We invite interested parties to participate, challenge and
refine this framework through the Scalable Game Design wiki.

4. ACKNOWLEDGEMENTS
This material is based in part upon work supported by the
National Science Foundation under grant numbers 0833612 and
DMI-0712571. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

5. REFERENCES
[1] A. Repenning and A. Ioannidou, "Broadening Participation

through Scalable Game Design," in Proceedings of the ACM
Special Interest Group on Computer Science Education
Conference, (SIGCSE 2008), Portland, Oregon USA, 2008,
pp. 305-309.

[2] A. Repenning and A. Ioannidou, "Agent-Based End-User
Development," Communications of the ACM, 47(9), pp. 43-
46, 2004.

[3] A. Repenning and A. Ioannidou, "AgentCubes: Raising the
Ceiling of End-User Development in Education through
Incremental 3D," in IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC'06), Brighton,
United Kingdom, 2006, pp. 27- 34.

[4] Board of Directors, Computer Science Teachers Association,
"Achieving Change: The CSTA Strategic Plan," 2005.

[5] ITEST Learning Resource Center, "ITEST Project Abstracts:
Cohorts 1, 2, 3, 4 & 5," 2008.

[6] E. Gootman, "The Critical Years: For Teachers, Middle
School Is Test of Wills," New York Times, March 17, 2007.

[7] S. J. Sears, "Career and Educational Planning in the Middle
Level School," NASSP Bulletin, April 1995, 1995.

[8] T. Oppenheimer, The Flickering Mind: The False Promise of
Technology in the Classroom and How Learning Can Be
Saved. Toronto, Canada: Random House, 2003.

[9] J. Gindling, A. Ioannidou, J. Loh, O. Lokkebo, and A.
Repenning, "LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for the LEGO
Programmable Brick," in Proceeding of Visual Languages,
Darmstadt, Germany, 1995, pp. 172-179.

[10] R. S. Cohen, "Logo in the Primary Classroom: Should
Simplified Versions Be Used?," The Computer Teacher, pp.
41-43, 1990.

[11] M. Gladwell, The Tipping Point: How Little Things Can
Make a Big Difference: Back Bay Books, 2002.

[12] J. M. Wing, "Computational Thinking," Communications of
the ACM, 49(3), pp. 33-35, March 2006.

[13] S. Papert, "An Exploration in the Space of Mathematics
Education," International Journal of Computers for
Mathematical Learning, 1(1), 1996.

[14] G. H. Fletcher, and J. J. Lu, "Education, Human computing
skills: rethinking the K-12 experience," Communications of
the. ACM, 52(2), pp. 23-25, 2009.

[15] President's Information Technology Advisory Committee
(PITAC), "Report to the President: Computational Science:
Ensuring America’s Competitiveness," June 2005.

[16] Committee on Information Technology Literacy, National
Research Council, Being Fluent with Information
Technology. Washington, D.C.: National Academy Press,
1999.

[17] International Society for Technology in Education (ISTE),
National Educational Technology Standards for Students
(NETS), 2nd ed., 2007.

[18] M. Dertouzos, "Creating the People's Computer," MIT
Technology Review, Cambridge, MA, 100(3), pp. 20-28,
1997.

[19] A. I. Mørch, "Three Levels of End-User Tailoring:
Customization, Integration, and Extension," in Computers
and Design in Context, M. Kyng and L. Mathiassen, Eds.
Cambridge, MA: The MIT Press, 1997, pp. 51-76.

[20] A. Repenning, "Collaborative Diffusion: Programming
Antiobjects," in OOPSLA 2006, ACM SIGPLAN

International Conference on Object-Oriented Programming
Systems, Languages, and Applications, Portland, Oregon,
2006, pp. 574-585.

[21] C. Lewis and A. Repenning, "Creating Educational
Gamelets," in Educating Learning Technology Designers:
Guiding and Inspiring Creators of Innovative Educational
Tools, C. DiGiano, S. Goldman, and M. Chorost, Eds. New
York: Routledge, 2008, pp. 203-229.

[22] A. Repenning, "Excuse me, I need better AI!: employing
collaborative diffusion to make game AI child's play," in
ACM SIGGRAPH symposium on Videogames, Boston,
Massachusetts, 2006, pp. 169-178.

[23] K. Schneider and A. Repenning, "Deceived by Ease of Use:
Using Paradigmatic Applications to Build Visual Design," in
Proceedings of the 1995 Symposium on Designing
Interactive Systems, Ann Arbor, MI, 1995, pp. 177-188.

[24] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience. New York: Harper Collins Publishers, 1990.

[25] S. M. Barnett and S. J. Ceci, "When and where do we apply
what we learn? A taxonomy for far transfer," Psychological
bulletin, 128(4), pp. 612-37, 2002.

[26] S. Walter, B. Barron, K. Forssell, and C. Martin, "Continuing
Motivation for Game Design," in CHI 2007, San Jose,
California, USA, 2007, pp. 2735-2740.

