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ABSTRACT

To support Hybrid Transaction and Analytical Processing
(HTAP), database systems generally rely on Multi-Version
Concurrency Control (MVCC). While MVCC elegantly en-
ables lightweight isolation of readers and writers, it also gen-
erates outdated tuple versions, which, eventually, have to be
reclaimed. Surprisingly, we have found that in HTAP work-
loads, this reclamation of old versions, i.e., garbage collec-
tion, often becomes the performance bottleneck.

It turns out that in the presence of long-running queries,
state-of-the-art garbage collectors are too coarse-grained.
As a consequence, the number of versions grows quickly
slowing down the entire system. Moreover, the standard
background cleaning approach makes the system vulnerable
to sudden spikes in workloads.

In this work, we propose a novel garbage collection (GC)
approach that prunes obsolete versions eagerly. Its seamless
integration into the transaction processing keeps the GC
overhead minimal and ensures good scalability. We show
that our approach handles mixed workloads well and also
speeds up pure OLTP workloads like TPC-C compared to
existing state-of-the-art approaches.
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1. INTRODUCTION
Multi-Version Concurrency Control (MVCC) is the most

common concurrency control mechanism in database sys-
tems. Depending on the implementation, it guarantees snap-
shot isolation or full serializability if complemented with pre-
cision locking [28]. MVCC has become the default for many
commercial systems such as MemSQL [25], MySQL [27], Mi-
crosoft SQL Server [40], Hekaton [18], NuoDB [29], Post-
greSQL [35], SAP HANA [9], and Oracle [30] and state-of-
the-art research systems like HyPer [14] and Peloton [34].

The core idea of MVCC is simple yet powerful: when-
ever a tuple is updated, its previous version is kept alive by
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Figure 1: MVCC’s vicious cycle of garbage – Old ver-
sions cannot be garbage collected as long as there are long-
running transactions that have to retrieve them

the system. Thereby, transactions can work on a consistent
snapshot of the data without blocking others. In contrast
to other concurrency control protocols, readers can access
older snapshots of the tuple, while writers are creating new
versions. Although multi-versioning itself is non-blocking
and scalable, it has inherent problems in mixed workloads.
If there are many updates in the presence of long-running
transactions, the number of active versions grows quickly.
No version can be discarded as long as it might be needed
by an active transaction.

For this reason, long-running transactions can lead to a
“vicious cycle” as depicted in Figure 1. During the lifetime
of a transaction, newly-added versions cannot be garbage
collected. The number of active versions accumulates and
leads to long version chains. With increasing chain lengths,
it becomes more expensive to retrieve the required versions.
Version retrievals slow down long-running transactions fur-
ther, which amplifies the effects even more. Write transac-
tions are initially hardly affected by longer version chains as
they do not have to traverse the entire chain. They only add
new versions to the beginning of the chain. Thereby, the gap
between fast write transactions and slow read transactions
increases, quickly producing more and more versions. At
some point, the write performance is also affected by the
increasing contention on the version chains as the insertion
of new versions is blocked while the chain is latched for GC.
The system also loses processing time for transactions when
the threads clean the versions in the foreground.
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Figure 2: Practical Impacts – The system’s performance
drops within minutes in a mixed workload using a standard
garbage collection strategy

In Figure 2 we visualize the practical implications of the
described “vicious cycle” by monitoring an MVCC system
in the mixed CH benchmark1. The OLTP thread continu-
ously runs short-lived TPC-C style transactions, while the
OLAP thread issues analytical queries. We see that the read
performance collapses within seconds, while the writes are
slowed down by long periods of GC. With higher write vol-
umes or more concurrent readers, the negative effects would
be even more pronounced. However, even low-volume work-
loads can run into this problem as soon as GC is blocked by
a very long-running transaction (e.g., by an interactive user
transaction).

The fact that GC is a major practical problem, causing
increased memory usage, contention, and CPU spikes, has
been observed by others [33, 22]. Nevertheless, in compar-
ison with the number of papers on MVCC protocols and
implementations, there is little research on GC. Except for
of SAP HANA [20] and Hekaton [18], most research papers
discuss GC only cursorily.

In this paper, we show that the garbage collector is a
crucial component of an MVCC system. Its implementa-
tion can have a huge impact on the system’s overall perfor-
mance as it affects the management of transactions. Thus,
it is important for all classes of workloads—not only mixed,
“garbage-heavy” workloads [17, 16]. Our experimental re-
sults emphasize the importance of GC in modern many-core
database systems.

As a solution, we propose Steam—a lean and lock-free GC
design that outperforms previous implementations. Steam
prunes every version chain eagerly whenever it traverses one.
It removes all versions that are not required by any active
transaction but would be missed by the standard high wa-
termark approach used by most systems.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces basic version management and garbage

1Section 2.2 describes this experiment in more detail.
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Figure 3: Long version chain – Containing many unnec-
essary versions that are not GC’ed by traditional approaches

collection in MVCC systems and challenges regarding mixed
workloads and scalability. We then provide an in-depth sur-
vey of existing GCs and design decisions in Section 3. In
Section 4, we propose our scalable and robust garbage col-
lector Steam that decreases the vulnerability to long-running
transactions. We present our experimental evaluation of
Steam in comparison to different state-of-the-art GC im-
plementations in Section 5. Lastly, we conclude with re-
lated work on HTAP workloads and garbage collection in
Section 6.

2. VERSIONING IN MVCC
MVCC is a concurrency control protocol that “backs up”

old versions of tuples, whenever tuples are modified. For
every tuple, a transaction can retrieve the version that was
valid when the transaction started. Thereby, all transactions
can observe a consistent snapshot of the table.

The versions of a tuple are managed in an ordered chain of
version records. Every version record contains the old ver-
sion of the tuple and a timestamp indicating its visibility.
Under snapshot isolation, a version is visible to a transaction
if it was committed before its start. Hence, the timestamp
equals the transaction’s commit timestamp or a high tem-
porary number, if it is still in-flight [28].

MVCC can maintain multiple versions (snapshots) of a
tuple, whereas every update adds a new version record to the
chain. The chain is ordered by the timestamp to facilitate
the retrieval of visible versions.

Figure 3 shows a version chain for a tuple that was up-
dated multiple times. Since Transaction B and C started
before v4 was committed, they have to traverse the chain (to
the very end in this case) to retrieve the visible version v1.

2.1 Identifying Obsolete Versions
Before discussing efficient garbage collection, we revisit

when it is safe to remove a version. In general, a version
must be preserved as long as an active transaction requires
it to observe a consistent snapshot of the database. Es-
sentially this means, that all versions that are visible to
an active transaction must be kept. It does not matter
whether the versions will be actually retrieved since the
database system generally cannot predict the accessed tu-
ples of a transaction—especially in the case of interactive
user queries. Therefore, it always has to keep the visible
versions as long as they could be accessed in future.
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The set of visible versions is determined by the currently
active transactions. When a version is no longer needed by
any active transaction, it can be removed safely. Future
transactions will not need them because they will already
work on newer snapshots of the database. Hence, the re-
quired lifetime of every version only depends on the cur-
rently active transactions.

In the best case, a garbage collector can identify and re-
move all unnecessary versions. Looking at Figure 3: version
record v1 must not be garbage collected because it is re-
quired by Transactions B and C. All the preceding version
records could be garbage collected safely and the length of
the chain could be reduced significantly from 1000 to only
1 version. However, traditional garbage collectors only keep
track of the start timestamp of the oldest active transac-
tion. Thereby, they only get a crude estimation of the re-
claimable version records. Essentially, only the versions that
were committed before the start of the oldest active transac-
tion are identified as obsolete. This leads to several “missed”
versions in the case of multiple updates and long-running
transactions. To overcome this problem, we propose a more
fine-grained approach in Section 4.3 that prunes the unnec-
essary in-between versions.

2.2 Practical Impacts of GC
Figure 2 demonstrates the practical weaknesses of a stan-

dard GC. For this experiment, we ran the mixed CH bench-
mark which combines the transactional TPC-C and analyt-
ical TPC-H workload [2]. One OLAP and OLTP thread are
enough to overstrain the capabilities of a traditional high wa-
termark GC. Having only one warehouse, the isolated query
execution times are reasonably fast (5-500ms). However,
compared to the duration of a write (0.02ms), some of the
queries are already long-running enough to run into the “vi-
cious cycle”. By adding more threads and/or warehouses
the effects would be even worse.

The query throughput drops significantly after some sec-
onds and queries start to last seconds (instead of millisec-
onds as before). These long-running queries show up in the
topmost plot as the increasing periods of 0 queries/s. As
long as the query is running, the number of version records
stack up. This leads to the “shark fin” appearance in the
number of version records. Only when the reader is com-
pleted, the writer starts to clean up the version records. For
these periods of GC, it cannot achieve any additional write
progress. Over time, the effects get worse and the amplitude
of the number of version records increases while the read
and write performance drops to almost 0. The query laten-
cies increase significantly by the additional version retrieval
work while the write processing suffers from the additional
contention caused by the GC. In this setup—with only one
write thread—the back pressure on the GC thread is already
too high and the number of versions grows constantly. Es-
pecially the effects on the read performance are tremendous
if the GC thread cannot catch up with the write thread(s).
At some point, the entire system would run out of memory.

In summary, traditional garbage collectors have several
fundamental limitations: (1) scalability due to global syn-
chronization, (2) vulnerability to long-living transactions
caused by its (3) inaccuracy in garbage identification. The
general high watermark approach cannot clean in-between
versions long version chains.

3. GARBAGE COLLECTION SURVEY
Our survey compares the GC implementations of modern

in-memory MVCC systems with our novel approach Steam,
which we describe in detail in Section 4.

Steam is a highly scalable garbage collector that builds
on HyPer’s transaction and version management [28]. Long
version chains are avoided by pruning them precisely based
on the currently active transactions. This is done using an
interval-based algorithm similar to that in HANA, except
that the version pruning does not happen in the background
but is actively done in the foreground by piggy-backing it
onto transaction processing [20]. A chain is pruned eagerly
whenever it would grow due to an update or insert. This
makes the costs of pruning negligibly small as the chain is
already latched and accessed anyway by the corresponding
update operation.

Hekaton also cleans versions during regular transaction
processing [18]. In contrast to Steam, it cleans only those
obsolete versions that are traversed during scans, whereas
Steam already removes obsolete versions before a reader
might have to traverse them. Essentially, Steam prunes a
version chain whenever it would grow due to the insertion of
a new version—limiting the length of a chain to the number
of active transactions. Additionally, Hekaton only reclaims
versions based on a more coarse-grained high watermark cri-
terion, while Steam cleans all obsolete versions of a chain.

On a high-level, Steam can be seen as a practical combi-
nation and extension of various existing techniques found in
HANA, Hekaton, and HyPer. As will show experimentally,
seemingly-minor differences have a dramatic impact on per-
formance, scalability, and reliability. In the remainder of the
section, we discuss different design decisions in more details
and summarize them in Table 1.

Tracking Level Database systems use different granulari-
ties to track versions for garbage collection. The most fine-
grained approach is GC on a tuple-level. The GC identifies
obsolete versions by scanning over individual tuples. Com-
monly this is implemented using a background vacuum pro-
cess that is called periodically. However, it is also possi-
ble to find and clean the versions in the foreground dur-
ing regular transaction processing. For instance, Hekaton’s
worker threads clean up all obsolete versions they see dur-
ing query processing. Since this approach only cleans the
traversed versions, Hekaton still needs an additional back-
ground thread to find the remaining versions [4].

Alternatively, the system can collect versions based on trans-
actions. All versions created by the same transaction share
the same commit timestamp. Thus, multiple obsolete ver-
sions can be identified and cleaned at once. While this makes
memory management and version management easier, it
might delay the reclamation of individual versions compared
to the more fine-grained tuple-level approach.

Epoch-based systems go a step further by grouping multiple
transactions into one epoch. An epoch is advanced based on
a threshold criterion like the amount of allocated memory or
the number of versions. BOHM also uses epochs, but since
it executes transactions in batches, it also tracks GC on a
batch level.

The coarsest granularity is to reclaim versions per table.
This makes sense when it is certain that a given set of trans-
actions will never access a table. Only then the system can
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Table 1: Garbage Collection Overview – Categorizing different GC implementations of main-memory database systems

Tracking Level Frequency (Precision) Version Storage Identification Removal

BOHM [7] Txn Batch Batch (watermark) Write Set (Full-N2O) Epoch Guard (FG) Interspersed
Deuteronomy [21] Epoch Threshold (watermark) Hash Table (Full-N2O)1 Epoch Guard (FG) Interspersed
ERMIA [15] Epoch Threshold (watermark) Logs (Full-N2O) Epoch Guard (FG) Interspersed
HANA [20] Tuple/Txn/Table 1/10s (watermark/exact) Hash Table (Full-N2O)2 Snapshot Tracker (BG) Background
Hekaton [3, 4, 18] Transaction 1 min (watermark)3 Relation (Full-O2N) Txn Map (BG) On-the-fly+Inter.4

HyPer [28] Transaction Commit (watermark) Undo Log (Delta-N2O) Global Txn List (FG) Interspersed
Peloton [34] Epoch Threshold (watermark) Hash Table (Full-N2O) Global Txn List (FG) Background
Steam Tuple/Txn Version Access (exact) Undo Log (Delta-N2O) Local Txn Lists (FG) On-creation+Inter.

1 The version records in the hash table only contain a logical version offset while the actual data is stored in a separate version manager.
2 HANA keeps the oldest version in-place.
3 Default value: Hekaton changes the GC frequency according to the workload.
4 GC work is assigned (“distributed”) by the background thread.

remove all of the table’s versions without having to wait
for the completion of these transactions. Since this only
works for special workloads with a fixed set of given oper-
ations, e.g., stored procedures or prepared statements, this
approach is rarely used. HANA is the only system we are
aware of that applies this approach as an extension to its tu-
ple and transaction-level GC [20]. In general, the database
system cannot predict with certainty which tables will be
accessed during the lifetime of a transaction.

Frequency and Precision Frequency and precision indi-
cate how quickly and thoroughly a GC identifies and cleans
obsolete versions. If a GC is not triggered regularly or does
not work precisely, it keeps versions longer than necessary.
The epoch-based systems control GC by advancing their
global epoch based on a certain threshold count or memory
limit. Thus, the frequency highly depends on the threshold
setting.

Systems building on a background thread for GC, trigger
the background thread periodically. Thus, the frequency of
GC depends on how often the background thread is called.
Since HANA and Hekaton use the background thread to re-
fresh their high watermark, garbage collection decisions are
made based on outdated information if the GC is called too
infrequently. In the worst case, GC is stalled until the next
invocation of the background thread. Systems like Hekaton,
change the interval adaptively based on the current load [18].

BOHM’s organizes and executes its transactions in batches.
GC is done at the end of a batch to ensure that all of its
transactions have finished executing. Only versions of previ-
ously executed batches, except for the latest state of a tuple,
can be GC’ed safely.

Besides the frequency of GC, its thoroughness is mostly de-
termined by the way a GC identifies versions as removable.
Timestamp-based identification is not as thorough as an
interval-based approach. The timestamp approach is more
approximate because it only removes versions whose strictly
chronological timestamps have fallen behind the high water-
mark which is set by the minimum start timestamp of the
currently active transactions. Since the high watermark is
bound to the oldest active transaction, long-running trans-
actions can block the entire GC progress as long as they
are active. In these cases, an interval-based GC can still
make progress by excising obsolete versions from the mid-
dle of chains. In general, an interval-based GC only keeps
required versions and thereby cleans the database exactly.

Version Storage Most systems store the version records
in global data structures like hash tables. This allows the
system to reclaim every single version independently. The
downside is that the standard case, where all versions of an
entire transaction fall behind the watermark, becomes more
complex, as the versions have to be identified in the global
storage. Depending on the implementation, this can require
a periodical background vacuum process.

For this reason, HyPer and Steam store their versions di-
rectly within the transaction, namely the Undo Log. When
a transaction falls behind the high watermark, all of its ver-
sions can be reclaimed together as their memory is owned by
the transaction object. Nevertheless, single versions can still
be pruned (unlinked) from version chains. Only the reclama-
tion of their memory is delayed until the owning transaction
object is released. In general, using the transaction’s undo
log as version storage is also appealing since the undo log
is needed for rollbacks anyway. Using an undo log entry as
a version record is straightforward as the stored-before im-
ages contain all information to restore the previous version
of a tuple. For space reasons, we only store the delta, i.e.,
the changed attributes, in the version records. If a system
stores the entire tuple, updating wide tables or tables with
var-size attributes like strings or BLOBs can lead to several
unnecessary copy operations [46].

Hekaton’s version management is special in the sense that it
does not use a contiguous table space with in-place tuples.
The versions of a tuple are only accessible from indexes. For
this reason, Hekaton does not distinguish between a version
record and a tuple. Additionally, it is the only of the con-
sidered system that orders the records from oldest-to-newest
(O2N). This order forces transactions to traverse the entire
chain to find the latest version which makes the system’s
performance highly dependent on its ability to prune old
versions quickly [46]. O2N-ordering also makes the detection
of write-write conflicts more expensive as the transactions
have to traverse the entire chain to detect the existence of a
conflicting version. The same holds for rollbacks which also
need to traverse entire chains to revert and remove previ-
ously installed versions.

Identification If commit timestamps are assigned mono-
tonically, they can be used to identify obsolete versions.
All versions committed before the start of the oldest active
transaction can be reclaimed safely. The start timestamp
of the oldest active transaction can be determined in con-
stant time when the active transactions are managed in an
ordered data structure like a global txn list, or a txn map.
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Since pure timestamp-based approaches miss in-between ver-
sions as discussed in Section 2.1, systems like HANA and
Steam complement it with a more fine-grained interval-based
approach. While this approach keeps the lengths of version
chains minimal, it is also more complex to implement it.
The systems have to keep track of all active transactions and
perform interval-based intersections for every version chain.
HANA does this by tracking all transactions that started at
the same time using a reference-counted list (“Global STS
Tracker” [20]). In Section 4.3, we propose a more scalable
alternative implementation using local txn lists.

For a more coarse-grained garbage collection, it is also possi-
ble to control the lifetimes of versions in epochs. This essen-
tially approximates the more exact timestamp-based water-
mark used by the other systems. Nevertheless, epoch-based
memory management is an appealing technique in database
systems as it can be used to control the reclamation of all
kinds of objects—not only versions. When a transaction
starts, it registers itself in the current epoch by entering
the epoch. This causes the epoch guard to postpone all
memory deallocations/version removals made by the trans-
action until all other threads have left this epoch and thus
will not access them anymore. While managing the versions
in epochs limits the precision of the GC, it allows a sys-
tem to execute transactions without having monotonically
increasing transaction timestamps. For instance, in times-
tamp ordering-based MVCC systems like Deuteronomy or
BOHM versions might be created or accessed in a different
order than their logical timestamps suggest [7, 21].

Independent of the chosen data structure, the identifica-
tion which versions are obsolete can either be done peri-
odically by a background (BG) thread or actively in the
foreground (FG).

Removal In HANA, the entire GC work is done by a ded-
icated background thread which is triggered periodically.
Hekaton cleans all versions on-the-fly during transaction
processing. Whenever a thread traverses an obsolete ver-
sion, it removes it from the chain. Note, that this only works
for O2N, when the obsolete (old) versions are stored in the
beginning and thus are always traversed by the transactions.
To clean infrequently-visited tuples as well, Hekaton runs a
background thread that scans the entire database for ver-
sions that were missed so far. The background thread then
assigns the removal of those versions to the worker threads
which intersperse the GC work with their regular transac-
tion processing.

A common pattern in epoch-based systems is to add com-
mitted versions along with the current epoch information
to a free list. When a transaction requires a new version,
it checks whether it can reclaim an old version from the
free list based on the current epoch. Thereby, version re-
moval essentially happens interspersed with normal trans-
action processing. However, the epoch guard should period-
ically release more than the newly required versions. Oth-
erwise, the overall number of versions can only go up over
time as all reused versions eventually end up in the free-list
again. Deuteronomy addresses this by limiting the maxi-
mum number of versions. When the hard limit is reached,
no more version creations are permitted and the threads are
co-opted into performing GC until the number of versions is
under control again [21].

Tx startTs: 3

Ty startTs: 4

Tz startTs: 12

Ta commitTs: 2

...

Tb commitTs: 10

Tc commitTs: 11

active transactions committed transactions

Figure 4: Transaction lists – Ordered for fast GC

HyPer and Steam also perform the entire GC work in the
foreground by interspersing the GC tasks between the ex-
ecution of transactions. If there are obsolete versions, the
worker threads reclaim them directly after every commit.
Thereby, GC becomes a natural part of the transaction
processing without the need for an additional background
thread. This makes the system self-regulating and robust to
peaks at the cost of a slightly increased commit latency.
Steam, additionally, prunes obsolete versions on-creation
whenever it inserts a new version into a chain. Thereby,
Steam ensures that the “polluters” are responsible for the
removal of garbage, which relieves the (potentially already
slow) readers.

4. STEAM GARBAGE COLLECTION
Garbage collection of versions is inherently important in

an MVCC system as it keeps the memory footprint low
and reduces the number of expensive version retrievals. In
this section, we propose an efficient and robust solution
for garbage collection in MVCC systems. We target three
main areas: scalability (→ 4.2), long-running transactions
(→ 4.3), and memory-efficient design (→ 4.4).

4.1 Basic Design
Steam builds on HyPer’s MVCC implementation and ex-

tends it to become more robust and scalable [28]. To keep
track of the active and committed transactions, HyPer uses
two linked lists as sketched in Figure 4.

While HANA and Hekaton use different data structures (a
reference-counted list and a map), the high-level properties
are the same. All implementations implicitly keep the trans-
actions ordered and adding or removing of a transaction can
be done in constant time. To start a new transaction, the
system appends it to the active transactions list. When an
active transaction commits, the system moves it to the com-
mitted transactions list to preserve the versions it created.
Completed read-only transactions, that did not create any
tuple versions, are discarded directly.

By appending new or committed transactions to the lists,
the transaction lists are implicitly ordered by their times-
tamps. This ordering allows one to retrieve the minimum
startTs efficiently by looking at the first element of the active
transactions list. The versions of a committed transaction
with commitId ≤ min(startTs) can be reclaimed safely.
Since the committed transaction list is also ordered, the sys-
tem can reclaim all transactions until it hits a transaction
that was committed after the oldest active transaction.

4.2 Scalable Synchronization
While the previously described basic design offers con-

stant access times for GC operations, its scalability is limited
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Thread 1 Thread 2 Thread 3

4 3 12

Tx startTs: 4 Ty startTs: 3 Tz startTs: 12

Ta commitTs: 2

...

Empty List Tb commitTs: 11

...

Figure 5: Thread-local design – Each thread manages a
subset of the transactions

by the global transaction lists: Both lists need to be pro-
tected by a global mutex. For scalability reasons, we aim
to avoid data structures that introduce global contention.
Hekaton avoids a global mutex by using a latch-free trans-
action map for this problem. Steam, in contrast, follows
the paradigm that it is best to use algorithms that do not
require synchronization at all [8]. For GC, we exploit the
domain-specific fact that the correctness is not affected by
keeping versions slightly longer than necessary—the versions
can still be reclaimed in the “next round” [33]. Steam’s im-
plementation does not require any synchronized communi-
cation at all. Instead of using global lists, every thread in
Steam manages a disjoint subset of transactions. A thread
only shares the information about its thread-local minimum
globally by exposing it using an atomic 64-bit integer. This
thread-local startTs can be read by other threads to deter-
mine the global minimum.

The local minimum always corresponds to the first active
transaction. If there is no active transaction, it is set to the
highest possible value (264 − 1). In Figure 5 the local mini-
mums are 4, 3, and, 12. To determine the global minimum
for GC, every thread scans the local minimums of the other
threads. Although this design does not require any latching,
the global minimum can still be determined in O(#threads).
Updating the thread-local minimum does not introduce any
write contention either since every thread updates only its
own minStartTs.

Managing all transactions in thread-local data structures
reduces contention. On the downside, this can lead to prob-
lems when a thread becomes inactive due to a lack of work.
Since every thread cleans its obsolete versions during trans-
action processing, GC can be delayed if the thread becomes
idle. To avoid this problem, the scheduler periodically checks
if threads have become inactive and triggers GC if necessary.

4.3 Eager Pruning of Obsolete Versions
During initial testing, we noticed significant performance

degradations in mixed workloads. Slow OLAP queries block
the collection of garbage because the global minimum is not
advanced as long as a long-running query is active. Depend-
ing on the complexity of the analytical query, this can pause
GC for a long time. With concurrent update transactions,
the number of versions goes up quickly over the lifetime of a
query. This can easily lead to the vicious cycle as described
in Section 1. In practice, this effect can be amplified further
by skewed updates which leads to even longer version chains.

Figure 3 shows how the versions of a tuple can form a
long chain in which the majority of versions is useless for
the active transactions. The useless versions slow down the
long-running transactions when they have to traverse the
entire chain to retrieve the required versions in the end. For

this reason, we designed Eager Pruning of Obsolete Versions
(EPO) that removes all versions that are not required by
any active transaction. To identify obsolete versions, every
thread periodically retrieves the start timestamps of the cur-
rently active transactions and stores them in a sorted list.
The active timestamps are fetched efficiently without ad-
ditional synchronization as described later in Section 4.3.1.
Throughout the transaction processing, the thread identifies
and removes all versions that are not required by any of the
currently active transactions. Whenever a thread touches a
version chain, it applies the following algorithm to prune all
obsolete versions:

i nput : a c t i v e t imestamps A ( s o r t e d )
output : pruned v e r s i o n cha i n

vcurrent ← getF irstV ersion(chain)
f o r ai i n A
vvisible ← retrieveV isibleV ersion(ai, chain)
// prune obsolete in-between versions
f o r v i n (vcurrent, vvisible )
// ensure that the final version covers all attributes
i f attrs(v) 6⊂ attrs(vvisible)

merge ( v , vvisible )
cha i n . remove ( v )

// update current version iterator
vcurrent ← vvisible

We only store the changed attributes in the version record
to save memory. For this reason, we have to check whether
all of v’s attributes are covered by vvisible. If there are addi-
tional attributes, we merge them into the final version. Sys-
tems that store the entire tuple would not need this check
and could discard the in-between versions directly.

Figure 6 shows the pruning of a version chain for one
active transaction started at timestamp 20. It shows the
relatively-simple case when all attributes are covered by
vvisible and the more complex case, when the in-between
versions contain additional attributes. In this case, we add
the missing versions to the final version. When an attribute
is updated multiple times, we overwrite it when we find
an older version of it while approaching the visible version
vvisble. In our example, A50 is overwritten by A25. After
the pruning, vcurrent is set to the current value of vvisible
and vvisible is advanced to the version that is visible to the
next older (smaller) active id. As we only have one active
transaction in our example, we can stop at this point.

Since the version chain and the active timestamps are
sorted and duplicate-free, every version is only touched once
by the algorithm.

4.3.1 ShortLived Transactions

EPO is designed for mixed workloads in which some trans-
actions (mostly OLAP queries) are significantly slower than
others. If all transactions are equally fast, it does not help
as the commit timestamps hardly diverge from the id of the
oldest active transaction.

A standard GC using a global minimum already works
perfectly fine here. Thus, creating a set of active transac-
tions will hardly pay off, as the number of reducible version
chains is small. Ideally, we can avoid the overhead of re-
trieving the current set of transaction timestamps.

However, in general, the characteristics of a workload can-
not be known by the database system and change over time.
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v100 v50 v30 v25 v20 ...

“invisible” to ai≤ 20
drop if attrs(v) ⊆

attrs(vvisible)

drop if a20 is the oldest
active transactions

v100 v20

vcurrent vvisible

Most recent version
that is visible to ai =20Simple chain

v100 v50: A v30: B v25: A v20 C ...

attribute versions are merged

v100 vmerged A25, B30, C20

vcurrent
vvisible

Chain with different attributes

Figure 6: Prunable version chain – Example for an active
transaction with id 20

So instead of turning EPO off, we reduce its overhead with-
out compromising its effectiveness in mixed workloads.

The only measurable overhead of the approach is the cre-
ation of the sorted list of currently active transactions. The
creation of the list only adds several cycles to the processing
of every transaction (for a system using 10 worker threads
that are 10 load instructions2 and sorting them) but it is
still noticeable in high volume micro-benchmarks.

To reduce this overhead, every thread reuses its lists of ac-
tive transactions if it is still reasonably up-to-date. Thereby,
the costs are amortized over multiple short-lived transac-
tions and the overhead becomes negligible. For transactions
running for more than 1ms the costs of fetching the active
transaction timestamps become insignificantly small. The
quality of EPO is not affected as the set of long-running
transactions changes significantly less frequently than the
active transactions lists are updated.

During micro-benchmarks with cheap key-value update
transactions, we noticed that the update period can be set
to as low as 5ms without causing any measurable overhead.
This update period is still significantly smaller than the life-
time of even “short long-running” transactions.

4.3.2 HANA’s IntervalBased GC

HANA’s interval GC builds on a similar technique to
shorten unnecessary long version chains, yet it differs in im-
portant aspects, which are summarized in Table 2. The
biggest difference is how the version chains are accessed for
pruning. In Steam, the pruning happens during every up-
date of a tuple, i.e., whenever the version chain is extended
by a new version. Thereby, a chain will never grow to more
versions than the current number of active transactions and
will never contain obsolete versions.

In HANA, in contrast, the pruning is done by a dedi-
cated background thread which is triggered only every 10

2We only schedule as many concurrent transactions as we
have threads.

Table 2: Comparison with HANA’s Interval GC

HANA Steam

Dedicated GC thread scans Every thread scans

all committed versions the accessed version chains

lazily every 10 s eagerly

causing additional version
and latching

“piggybacking” the costs
while the chain is locked
anyway

Table 3: Data Layout of Version Records

Update Delete Insert Bytes

Common Header
Type X X X 1
Version X X X 4
RelationId X X X 2

Additional Fields
Next Pointer X X – 4
TupleId X X – 4
NumTuples – – X 4
AttributeMask X – – 4

Payload
BeforeImages X – – var
Tuple Ids – – X 8×t

Total Bytes 19+var 15 11+8×t

seconds. When HANA’s GC thread is triggered, it scans
the set of versions that were committed after the start of
the oldest active transaction. For each of these versions,
it checks if it is obsolete within its corresponding version
chain using a merge-based algorithm similar to ours. This
causes additional chain accesses, whereas Steam can “pig-
gyback” this work on normal processing. Since HANA calls
the interval-based GC only periodically, the version chains
are not pruned and grow until the GC is invoked again.

4.4 Layout of Version Records
The design a version record should be space and com-

putationally efficient. All operations that involve versions
(insert, update, delete, lookup, and rollback) should work
as efficiently as possible. Additionally, the layout should be
in favor of GC itself, especially our algorithm for pruning
intermediate versions.

Table 3 shows the basic layout of a version record. It has a
Type (Insert/Update/Delete) and visibility information en-
coded in the Version. At commit time, the Version is set to
the commit timestamp, which makes the version visible to
all future transactions. To guarantee atomic commits, the
Version includes a lock bit, which is used when a transaction
commits multiple versions at the same time.

When a transaction is rolled back, it uses the RelationId
and TupleId to identify and restore the tuples in the rela-
tion. The fields are also used during GC to identify the
tuple that owns the version chain. The version chain itself
is implemented as a linked list using the Next Pointer field.
The Next Pointer either points to the next version record in
the chain or NULL if there is none.
For all types of version records except for deletes, we need

some additional fields or variations. For deletes, it is enough
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to store the timestamp when a tuple has become invisible
due to its deletion.

For inserts, we adapt the data layout by reinterpreting
the attributes TupleId and Next Pointer to maintain a list
of inserted tuple ids. This allows us to handle bulk-inserts
more efficiently because we can use a single version record
for all inserted tuples of the same relation. Sharing insert
version records decreases the memory footprint (previously
every inserted tuple required an own version record) and
improves the commit latency. We can now commit multi-
ple versions atomically by updating only a single Version.
This optimization is possible since new tuples can only be
inserted into previously empty slots. Thus, we can reuse
the Next Pointer field to maintain a list of inserted Tu-
ple Ids. For MVCC, we only need the information when
the inserted tuple becomes visible. The tuple id list can
be further compressed for bulk-inserts by storing ranges of
subsequent tuples.

Update version records require the most fields as they
contain the tuple’s previous version (Before Images). To
save space, we only store the versions of the changed at-
tributes instead of a full copy of the tuple. Therefore, the
version record needs to explicitly indicate which attributes
it contains. For all relations with less than 64 attributes, we
therefore use a 64-bit Attribute Mask, where every changed
attribute is marked by a bit. When the relation has more
columns, we indicate the changed attributes using a list of
the ids of all changed attributes.

While the Attribute Mask saves space compared to the list,
it also allows us to perform the check if a version record is
covered by another (cf. Algorithm line 9) using a single bit-
wise or-operation. If the bit-wise or of the attribute masks
of vx and vy equals the attribute mask of vx, all attributes
of vy are covered by vx.

5. EVALUATION
In this section, we experimentally evaluate the different

GC designs discussed in Section 3. To compare their perfor-
mance, we implemented and integrated these GC approaches
into HyPer [28]. For a fair apples-to-apples comparison, we
only change the GC while the other components such as the
storage layer or the query engine stay the same.

To distinguish our implementations from the original sys-
tems we put their names into quotes, e.g., ‘Hekaton’. In
our evaluation, we do not include BOHM of our survey in
Section 3 as its GC is specifically designed for executing
transactions in batches, in which concurrency control and
the actual transaction execution are strictly separated into
two phases [7]. Epoch-based GC—as used by BOHM—is
represented by ‘Deuteronomy’ and ‘Ermia’.

We monitor the systems’ performance and capabilities by
running the CH benchmark for several minutes. The CH
benchmark is a challenging stress test for GCs because its
short-lived OLTP transactions face long-living queries [2, 10,
36]. To better understand the general characteristics of the
different systems we run some additional experiments. We
analyze the scalability and overhead of each approach using
the TPC-C benchmark. TPC-C is a pure OLTP bench-
mark without long-running transactions that could lead to
the “vicious cycle of garbage”. To evaluate different work-
load characteristics, we run the updates along with varying
percentages of concurrent reads. We also explore the effects
of skewed updates as they can be particularly challenging

Table 4: Configuration and Setup

Watermark Exact Frequ. Find/Clean

‘Deuter.’ Epoch (∞) – 100 txs FG
‘Ermia’ Epoch (3) – 1 tx FG
‘Hana’ Txn Lazy 1ms BG

‘Hekaton’ Txn – 1ms BG⇒FG
Steam Txn Eager cont. FG

for garbage collectors by leading to potentially long version
chains. Finally, we evaluate the effectiveness of EPO in
keeping version chains short in isolation.

Table 4 summarizes the key features of our different GC
implementations. All systems order the chains from N2O.
The high watermark is either defined as the start timestamp
of the oldest active transaction or epoch. All versions that
were committed before that point in time are obsolete, as
all active transactions already work on more recent snap-
shots of the data. Additionally, ‘Hana’ and Steam use a
more exact form of GC that prunes intermediate versions
in chains (cf. Section 4.3 for details). While ‘Deuteronomy’
increases its epoch-ids monotonically, ‘Ermia’ uses a three-
phase epoch-guard3.

Another important implementation detail is the frequency
of garbage collection. For the epoch-based systems, this is
the minimal number of committed transactions before the
global epoch is advanced and for ‘Hana’ and ‘Hekaton’ this
is the time when the background GC thread is invoked. It
turns out that the default settings of the systems are not
always suitable, so we hand-tuned them to the optimal val-
ues. In Section 5.4 we show how big the effect of a poorly
chosen GC frequency is. Since Steam runs GC continuously
whenever a version chain is accessed, there is no need to find
and set an optimal interval.

In ‘Hana’, the GC work is done solely by the background
thread (BG). ‘Hekaton’ uses the background thread only to
refresh the global minimum and to identify obsolete ver-
sions. When it finds obsolete versions, it assigns the task of
removing them to the worker threads. The other systems
intersperse the entire GC work (identification and removal)
with their normal transaction processing. Steam addition-
ally prunes version chains eagerly whenever it accesses a
version chain.

We evaluate the different approaches on an Ubuntu 18.10
machine with an Intel Xeon E5-2660 v2 CPU (2.20GHz,
3.00GHz maximum turbo boost) and 256GB DDR3 RAM.
The machine has two NUMA sockets with 10 physical cores
(20 “Hyper-Threads”) each, resulting in a total of 20 phys-
ical cores (40 “Hyper-Threads”). The sockets communicate
using a high-speed QPI interconnect (16GB/s).

5.1 Garbage Collection Over Time
In this experiment, we put critical stress on the GC by

running the mixed CH benchmark. This tests the vulner-
ability of every approach to long-running transactions and
the “vicious cycle” of garbage.

The CH benchmark combines TPC-C write transactions
with queries inspired by the TPC-H benchmark. This cre-
ates a demanding mix of short-lived write transactions and
long-running queries. The gap between short-lived writes
and long OLAP queries increases over time as the data set

3used code from https://github.com/ermia-db/ermia
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Figure 7: Performance over time – CH benchmark with 1
OLAP and 1 OLTP thread. (Mean values shown in italics)

grows with the number of processed transactions4. This
makes our workload particularly challenging for fast systems
like Steam that maintain a high write rate throughout the
entire experiment. For comparison, it would take ‘Ermia’
8356 seconds and thereby about 13× as long as Steam to
process the same number of transactions reaching the same
level of GC complexity.

To account for the data growth, we normalize the query
performance by plotting the number of scanned tuples in-
stead of the raw query throughput, following Funke et al.’s
suggestion [10] to normalize the query performance using the
increasing cardinalities of the relations. The increasing data
size is also the reason why the used memory increases over
time independently of the number of used/GC’ed versions.

Figure 7 shows the read, write, version record, and mem-
ory statistics over 10 minutes. Pruning all versions eagerly
that are not required by any active transaction using EPO
proofs to be an effective addition to Steam. Rather sur-
prisingly the main improvements can be seen in the write
throughput (roughly 3× compared to the second-best so-
lution) while the read performance stays about the same.
This is due to the fact that the main consumer of long ver-
sion chains are not long-running queries but GC.

During GC we always have to traverse the entire chain to
remove the oldest (obsolete) versions, whereas queries just
have to retrieve the version that was valid when they started.
For this reason, GC benefits most from short chains leaving
more time for actual transaction processing. The increased
speed of GC becomes visual when looking at the shapes
of the version record curves: while the number of version
records goes down gradually in all systems at the end of a
long-running query, it drops almost immediately and very
sharply when using EPO. This happens because hardly any
GC has to be done anymore: most version records are al-
ready pruned eagerly from the chains and the remaining
version records can be identified very quickly as the own-
ing chains have a maximum length of 2, i.e., the number

4Every delivery transaction “delivers” 10 orders. Having
45% new-orders and only 4% delivery transactions, approx-
imately 11% of the new orders remain undelivered.
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Figure 8: TPC-C – Performance for increasing number of
OLTP threads (100 warehouses)

of active transactions. We analyze and compare those GC
performance stats in details in the later Section 5.7.

As a side-effect, due to the highly improved write perfor-
mance, the overall used memory increases faster than with-
out using EPO. This can be accounted to the nature of
the CH benchmark as described above: the data set grows
with every processed transaction. What this means, in turn,
is that reads also get more expensive as they have to scan
more data (cf. memory plot). The increased query response
times lead to bigger gaps between the short-lived writes and
the long-lived queries, which is why the number of version
records is a little bit higher with EPO. However, the aver-
age number of active version records only goes up by 42%,
whereas the number of writes (which can be directly trans-
lated to the number of produced version records) increases
significantly by 354%.

The epoch-based systems ‘Deuteronomy’ and ‘Ermia’ con-
ceptually follow the same approach as the basic version of
Steam using a watermark only. For this reason, the perfor-
mance looks quite similar. There is only a slight set-back
compared to the basic version of Steam, which is probably
caused by the epochs being a little bit too coarse-grained for
a mixed workload and that maintaining the global epoch in-
troduces a small overhead.

‘Hana’ runs into more problems because it does the GC
work exclusively in its background thread. With increasing
gaps between the quick writers and the slow readers, the
number of versions becomes too big and the single back-
ground thread becomes overwhelmed by the work.

‘Hekaton’ cleans the versions in the foreground, but it
offloads the GC control, i.e., maintaining the high water-
mark and assignment of GC work, to the background thread.
This detached workflow increases the GC latency to a point,
where it gets out of control and the number of versions
grows quickly.

5.2 TPC-C
While the previous experiment analyzed a mixed work-

load, we now want to show that the design and choice of
a GC is also critical in pure OLTP workloads without any
long-running transactions. Since we only interchange the
GC, we can directly compare the overhead and scalability
of the different approaches.

The TPC-C numbers in Figure 8 show that the foreground-
based systems ‘Ermia’, ‘Deuteronomy’, and Steam scale best.
‘Hana’ falls slightly behind because it uses a centralized
“Global Snapshot Tracker” that requires a global mutex.

While ‘Hekaton’ is superior to ‘Hana’, it is still limited
by the use of its background thread which coordinates the
GC. The background thread periodically retrieves the global
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minimum from the global transaction map and populates it
to the threads. Additionally, it collects obsolete versions
and assigns them to the work queues of the threads. While
this allows the workers to remove the garbage cooperatively,
there is still the single-threaded phase of identifying the
garbage and “distributing” it. Furthermore, there is a small
but constant synchronization overhead caused by the global
transaction map. Although it is implemented latch-free, it
still falls behind the thread-local implementations of Steam
and the epoch-based solutions. This aligns well with recent
findings that synchronous communication should be avoided
and using latch-free data structures can even have worse per-
formance than traditional locking [8, 45].

These results indicate that GC has a big impact on the
system’s performance in every kind of high-volume workload
and not only in mixed workloads. For efficient GC global
data structures and synchronous communication have to be
avoided. In Section 5.5 we will see even bigger impacts on
the system’s scalability when running “cheap” key-value up-
date transactions instead of TPC-C. When the transaction
rate becomes very high, the maintenance of a global epoch
starts to become a notable bottleneck.

5.3 Scalability in Mixed Workloads
In this section, we take another look at the CH bench-

mark. This time, we focus on the scalability by varying
the number of read threads. In contrast to the previous
time-bound experiment, now, every system processes a fixed
number of 1 million TPC-C transactions. This makes the
throughput numbers more comparable, as the query response
times increase with every processed transaction due to grow-
ing data [10].

Figure 9 shows that the throughput of the single OLTP
thread is highly affected by concurrent OLAP threads. This
can be accounted to effects caused by the vicious cycle of
garbage. As seen in Section 5.1, the versions accumulate
quickly over time slowing down the readers. When the read
transactions get slower, the version records have to be re-
tained longer which amplifies this effect further. Addition-
ally, the GC work and the slow readers create increased
contention on the tuple latches as they require more time
to retrieve a version. Hence, it is crucial to keep the number
of version records as low as possible.

Steam’s EPO reduces the number of versions effectively
by pruning the version chains eagerly. This makes its GC
and write performance superior to the other systems which
struggle because their GC is too coarse-grained (epochs/high
watermark). Even ‘Hana’ which also uses precise cleaning
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cannot keep up with Steam since its background pruning is
not as effective as Steam’s eager pruning (cf .Section 4.3.2 for
a detailed comparison). At higher numbers of active read
transactions, Steam’s write performance degrades slightly
because of the increasing likelihood that more versions have
to be kept in the chains. Ideally, all transactions started
at the same time and Steam only needs to keep one ver-
sion per chain. This can be achieved by batching the start
of readers in groups (similar to a group commit). Having
fewer start timestamps improves the performance and effec-
tiveness of EPO. Therefore, the performance could be im-
proved slightly by artificially delaying some queries so that
all queries share the same start timestamp. An evaluation
of this idea showed gains of a few percents—at the cost of
increased query latencies.

5.4 Garbage Collection Frequency
In Steam, GC happens continuously: Version chains are

pruned whenever they are updated. Thus, the frequency
is implicitly given and self-regulated by the workload. For
the other systems, the frequency has to be explicitly set
by a parameter which is either a time period in which the
background GC thread is triggered (a) or a threshold that
has to be reached before the global epoch is advanced (b).
The optimal period depends on the workload and the per-

formance of the system. A faster system with high update
rates generates more versions and has to be cleaned more
frequently. To determine the optimal setting for the use
with HyPer, we run TPC-C with different GC frequencies.
Figure 10 shows the throughput when varying the trigger
frequency from 1ms to 60 s and epoch thresholds from 1 to
100k processed transactions.

For all systems, we see the best results when we trigger
the GC as frequently as possible. For the background-thread
approaches, we achieved the best results by setting the pe-
riod to 1ms. The period time cannot be decreased further,
as the processing time of the GC thread would exceed its
invocation intervals.

For the epoch-based systems, it is also best to set the
epoch threshold as low as possible. This means that the
system tries to advance the global epoch after every sin-
gle committed transaction. However, refreshing the global
epoch is not for free as this requires entering a critical sec-
tion and/or scanning of other thread-local epochs. While the
three-phase epoch-guard of ‘Ermia’ handles this case very ef-
ficiently, refreshing the global epoch in ‘Deuteronomy’ which
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uses infinite epochs is more expensive. For this reason, the
best threshold setting for ‘Deuteronomy’ is slightly higher at
100. This gives the best tradeoff between fast (immediate)
GC and the overhead for refreshing the global epoch.

This experiment shows that the choice GC frequency can
have a tremendous effect on the system’s performance. There
is a difference of more than 500× only by changing the fre-
quency parameter. In practice, this could create critical
instability if the system does not adjust this setting timely.
This indicates that the frequency should be chosen based on
the workload, i.e., the number of produced garbage (trans-
actions) and not a fixed time interval. Otherwise, the back
pressure on the GC can easily become too high. Even in the
worst measured configuration, the epoch-based systems that
control GC based on the number of processed transactions
outperform the best time-interval-based GC. In Steam, we
take this concept even a step further by pruning the chains
eagerly whenever a new version is added.

5.5 Skew
When all updates are distributed evenly, every version

chain tends to be equally short. However, in the real world,
we often have skewed workloads. When certain tuples are
updated more often their version chains get longer making
GC more expensive. To measure the effectiveness of the
GCs in skewed scenarios, we run key-value updates on a
table using different Zipfian distributions. Figure 11 shows
the throughput for theta values from 0.0 (no skew) to 1.0
(significant skew).

Steam is robust to skew because it deeply integrates GC
into the transaction processing. Version chains that would
become long can be pruned while, or rather before they grow
(during an update). Other systems delay GC for longer:
in particular, the time-based systems ‘Hana’ and ‘Hekaton’
which trigger GC only periodically, can be affected most. In
the worst case, when only one tuple is updated all the time,
the length of its version chain grows to the current number
of updates per GC interval. At a throughput of 10,000 txn/s
that would generate a chain of 10,000 versions assuming a
GC interval of 1 s (default for HANA). In our experimental
results, this effect is mostly diminished because we decreased
the GC to 1ms, but we can still see the systems falling
behind Steam.

Unfortunately, the results for ‘Hana’ and to some degree
‘Deuteronomy’ are not very meaningful for increased skew
as their performance is mostly dominated by their limited
scalability. The results for a theta value of 0.0 indicate
an overhead in high-volume workloads. This can be ac-
counted to the use of a global mutex for the snapshot tracker
(‘Hana’) and a relatively expensive refreshing of the global
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epoch counter in ‘Deuteronomy’. By contrast, the three-
phase epoch manager of ‘Ermia’ scales significantly better.

5.6 Varying Read-Write Ratios
In this experiment, we analyze how effective each ap-

proach is for different read/write setups. We run two kinds
of transactions: write transactions updating tuples and read-
only transactions doing full table scans, whereas all transac-
tions operate on the same table. We vary the ratio of reads
and writes by increasing the percentage of read operations
every thread performs. Figure 12 shows the number of read
operations for a decreasing number of writes.

The read performance increases as expected when the
workload mix shifts towards being read-only, whereas Steam
performs best in all setups. Especially in the read-only case,
Steam’s minimal overhead is clearly visible: A read-only
thread never retrieves the set of active transaction ids (in-
cluding the global minimum). This is only done when it has
recently committed versions (i.e., its committed transaction
list is not empty), or lazily during its first update operation.
In the read-only case, every thread only has to signal its cur-
rently active transaction by adding it to its thread-local list.
By contrast, all other systems require at least a basic form
of synchronization, i.e., entering an epoch, or registering the
transaction in a globally shared transaction map/tracker.

In the more write-heavy cases, EPO helps Steam to con-
trol the number of versions speeding up the readers. For high
numbers of writes (<10% reads), ‘Ermia’ falls behind the
other systems. While its three-phase epoch guard showed
very good scalability in the other experiments, it seems
to be too coarse-grained now. The more fine-grained infi-
nite epochs of ‘Deuteronomy’ perform significantly better in
these cases.

5.7 Eager Pruning of Obsolete Versions
To avoid long version chains in mixed workloads, we im-

plemented EPO (cf. Section 4.3) to prune the chains eagerly
whenever a new version is inserted. EPO removes all ver-
sions as soon as they are not required by any active trans-
action anymore.

Table 5 shows that this reduces the number of traversed
versions significantly in the CH benchmark. Steam processes
the given set of transactions 5× faster using EPO. Without
the optimization, the GC cannot keep the number of ver-
sions down effectively since the high watermark approach is
too coarse-grained. The version chains grow quickly hitting
a maximum length of 30287. When the optimization is en-
abled, the maximum length goes down to two versions. The
“optimized” chain only keeps the most recent version of the
writer and an older version that is visible to the reader.
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Table 5: Effect of using EPO – CH benchmark, 1 read
thread, 1 write thread, 300k transactions in total

Standard
Watermark

EPO
Exact

Version Removal (GC)
Traversed Versions 1,197m 4.2m
Avg. Chain Length (max) 287.43 (30287) 1.07 (2)

Table Scans (Queries)
Traversed Versions 120m 37m
Avg. Chain Length (max) 1.00 (141) 1.00 (2)

Breakdown Time [%] Time [%]
Fetch Active Txn-Ids <1ms 0.01 <1ms 0.01
Prune Chains (EPO) – – 8.4ms 0.07
Finalize Entire Txns 1.5 s 4.47 81ms 0.68
Version Retrieval (Scan) 4.2 s 12.26 1.1 s 8.79

Queries/s 4.8 5.1
Transactions/s 6554 30,580

Rather surprisingly, or even paradoxically, the more thor-
ough and fine-granular we clean our system, the less time
we spend cleaning. Using EPO, the system spends less
than 100ms in total on GC, while it requires 1.5 s using
the standard watermark approach. This performance differ-
ence becomes clear when we look at the number of traversed
versions: it is reduced from 1.2 billion to only 4.2million.
Since EPO keeps version chains short at all time, it is al-
ways cheap to identify and reclaim obsolete versions. In
particular, when an entire transaction falls behind the “wa-
termark” and we finalize its versions, most of its versions
are already removed from the chains by EPO (thus, GC of
them is a no-op) or belong to very short chains which makes
unlinking them from the chain fairly cheap.

We also see that maintaining the set of active transac-
tion ids does not add any overhead. For the watermark-
approach, all thread-local minimums have to be fetched any-
way. The additional sorting step required by EPO is negli-
gible cheap since at most #-threads integers are sorted.

Faster GC is very beneficial for transaction processing in
general, as slow, interspersed GC work can stall the pro-
cessing of writes. Thus, faster GC gives the worker threads
more time to process transactions.

The average length of version chains is significantly higher
during version removal than it is during table scans. This
happens because some tuples (counter and warehouse statis-
tics) are updated frequently, but are never read by any
query [2]. The readers mainly access parts of the tables
that are updated evenly. Thus, the positive effect of EPO is
not as big for queries as it is for the writes. The maximum
chain length during a table scan is “only” 141 without the
optimization. With the optimization, the scans have to re-
trieve 3.24× fewer versions. This is reflected by a slightly
improved query performance. The benefit would be signif-
icantly higher if the readers would need to access the fre-
quently updated tuples with lengths of more than 30,000.

6. RELATED WORK
In recent years, the performance of systems in mixed work-

loads (HTAP) was studied extensively [48, 19, 42, 46, 31,
1]. Several systems were developed focusing on scalabil-
ity in high volume OLTP workloads [32, 37, 12, 23, 15].

A reoccurring topic is to optimize the concurrency control
protocol, e.g., by tuning the validation phase or reordering
transaction [5, 11, 38, 44]. Although most of the papers
mention the use and importance of an efficient garbage col-
lector, the implementation is either described only briefly or
not mentioned at all. Recent work on GC is mostly related
to large data systems in which the challenges and tasks are
very different and not comparable to version reclamation in
MVCC systems [47, 24]. In summary, most components of
MVCC systems are well-understood, studied, and optimized
but there is little research on efficient GC — despite its big
impacts on performance.

Handling of long-living transactions is an inherent prob-
lem of MVCC systems studied by others. Lee et al. [20]
describe practical solutions to this problem such as: (1)
flushing old versions to disk if main memory is exceeded,
(2) aborting long-running transactions (user gets an error),
and (3) closing transactions as soon as possible (e.g., after
query results are materialized). However, these solutions
are not applicable to high volume workloads. One proposal
for such workloads is to create virtual memory snapshots
(forks) for read-only queries [26, 39]. However, this strongly
affects the overall scalability of the system as it requires a
shared mutex per column.

Modern and fast OLTP systems like TicToc or Silo often
use a single-version approach instead of MVCC [49, 43, 6,
41]. A single-version system only maintains the latest ver-
sion of a tuple and thus there is no need for garbage collec-
tion. This makes them particularly fast in OLTP workloads.
However, by default, they are not designed to handle OLAP
or mixed workloads as they would have to maintain a large
read set. Since this is can easily lead to aborts, Silo also
allows creating snapshots of the data by storing old tuple
versions. Due to the costs of snapshots creation, snapshots
are only taken periodically, i.e., every second, which results
in slightly stale data [43].

Systems that apply Serialization Graph Testing (SGT)
instead of timestamps have to keep a transaction and its
items until its existence does not influence any other or fu-
ture transactions [6, 13].

7. CONCLUSION
In this paper, we show the importance of garbage collec-

tion for in-memory MVCC systems on modern many-core
systems. We find that GC should be based on thread-local
data structures and asynchronous communication for opti-
mal performance. Further, it is crucial for HTAP work-
loads of short-lived writes and long-running reads to keep
the number of active versions as low as possible. With
traditional high watermark-based approaches, a single long-
running transaction blocks GC progress during its lifetime.

Our novel, scalable GC Steam speeds up transaction pro-
cessing and garbage removal by pruning all obsolete versions
eagerly whenever a new version is added. Thereby, Steam ef-
fectively limits the length of chains to the number of active
transactions. Besides HTAP workloads, our experimental
results indicate that Steam benefits all kind of workloads
from write-only to read-only. Its seamless integration into
transaction processing enables superior performance com-
pared to other state-to-the-art GC approaches which detach
GC from transaction processing.

139



8. REFERENCES
[1] R. Appuswamy, M. Karpathiotakis, D. Porobic, and

A. Ailamaki. The case for heterogeneous HTAP. In
CIDR, 2017.

[2] R. Cole, F. Funke, L. Giakoumakis, W. Guy,
A. Kemper, S. Krompass, H. Kuno, R. Nambiar,
T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas. The mixed workload
CH-benCHmark. In Proceedings of the Fourth
International Workshop on Testing Database Systems,
DBTest ’11, New York, NY, USA, 2011. ACM.

[3] K. Delaney. SQL Server in-memory OLTP internals
overview. White Paper of SQL Server, 2014.

[4] C. Diaconu, C. Freedman, E. Ismert, P. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s memory-optimized OLTP
engine. In SIGMOD, 2013.

[5] B. Ding, L. Kot, and J. Gehrke. Improving optimistic
concurrency control through transaction batching and
operation reordering. PVLDB, 12(2), 2018.

[6] D. Durner and T. Neumann. No false negatives:
Accepting all useful schedules in a fast serializable
many-core system. In ICDE, 2019.

[7] J. M. Faleiro and D. J. Abadi. Rethinking serializable
multiversion concurrency control. PVLDB, 8(11),
2015.

[8] J. M. Faleiro and D. J. Abadi. Latch-free
synchronization in database systems: Silver bullet or
fool’s gold? In CIDR, 2017.

[9] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
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