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Abstract
We propose a scalable Gaussian process model for
regression by applying a deep neural network as
the feature-mapping function. We first pre-train
the deep neural network with a stacked denoising
auto-encoder in an unsupervised way. Then, we
perform a Bayesian linear regression on the top
layer of the pre-trained deep network. The resulting
model, Deep-Neural-Network-based Gaussian Pro-
cess (DNN-GP), can learn much more meaningful
representation of the data by the finite-dimensional
but deep-layered feature-mapping function. Unlike
standard Gaussian processes, our model scales well
with the size of the training set due to the avoidance
of kernel matrix inversion. Moreover, we present
a mixture of DNN-GPs to further improve the re-
gression performance. For the experiments on three
representative large datasets, our proposed models
significantly outperform the state-of-the-art algo-
rithms of Gaussian process regression.

1 Introduction
Gaussian Processes (GPs) are widely used in regression [Ras-
mussen and Williams, 2006; Seeger, 2004] and classifica-
tion [Nickisch and Rasmussen, 2008; Naish-Guzman and
Holden, 2007] for their flexibility and competitive learnabil-
ity. A GP regression model applies a feature-mapping func-
tion to project inputs into a feature space and then performs
Bayesian linear regression [Rasmussen and Williams, 2006],
as shown in Figure 1 (a). A kernel function is usually de-
fined to replace the inner product of the feature-mapping
function so as to hold the condition that the feature space is
infinite-dimensional. However, such a kernel method leads
the training of GPs to suffer from computational issue for
large datasets due to the unfavourable inversion of kernel ma-
trices that scales cubically with the number of data points.

There are currently two kinds of methods to address the
computational issue of GPs. One is to construct low-rank
approximations of kernel matrices, namely Sparse Gaussian
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Processes (SPGPs) [Smola and Bartlett, 2000; Lawrence et
al., 2002; Snelson and Ghahramani, 2005]. The state-of-
the-art SPGP was proposed in [Snelson and Ghahramani,
2005], which was later renamed as Fully Independent Train-
ing Conditional (FITC) model in [Quiñonero-Candela and
Rasmussen, 2005]. The performance of FITC is nearly com-
parable to that of full GP while its training complexity only
scales linearly with the number of training samples. The other
one is to learn feature-mapping functions explicitly by fixing
the feature space to be finite-dimensional, such as the work
of [Lázaro-Gredilla and Figueiras-Vidal, 2010]. In [Lázaro-
Gredilla and Figueiras-Vidal, 2010], the authors used the hid-
den unit transfer functions of one-hidden-layer Neural Net-
works (NNs) as feature-mapping functions. The resulting
model, Marginalized NN mixture (mixMNN1), performs bet-
ter than FITC at almost the same computational cost on sev-
eral low-dimensional datasets.

The idea of applying the hidden unit transfer functions as
the feature-mapping functions of GPs has been explored in
many literatures [Neal, 1995; Williams and Barber, 1998;
Rasmussen and Williams, 2006]. The famous work was per-
formed by Neal [Neal, 1995]. He proved that a one-hidden-
layer neural network equipped with infinite number of hid-
den units becomes a nonparametric GP model by placing
independent zero-mean Gaussian priors to all the weights
of the network and integrating them out. Nevertheless, this
kind of GPs still suffer from the computational issue due to
the assumption of the infinite hidden units. The mixMNN
method alleviates this problem by fixing the number of the
hidden units to be finite and only marginalizing out the out-
put weights. The resulting model is a parametric GP, of which
the kernel function is parameterized by the hidden unit trans-
fer function.

However, in practical, the shallow architecture of the
mixMNN makes it inefficient for the highly-nonlinear data,
e.g. the image-based regression tasks [Zhou et al., 2005].
In this context, we propose a more flexible model by apply-
ing Deep Neural Networks (DNNs) as the feature-mapping
functions of GPs (as shown in Figure 1 (c)). We per-
form a Bayesian linear regression on the top layer of the

1The method is denoted as MNNmix in [Lázaro-Gredilla and
Figueiras-Vidal, 2010]. We rename it as mixMNN to be consistent
with the denotations of our methods.
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DNN, thus resulting in a new GP model, which is named as
Deep-Neural-Network-based Gaussian Process (DNN-GP).
DNNs such as Stacked Denoising Auto-Encoders (SDAEs)
[Vincent et al., 2008; Erhan et al., 2010], deep belief net-
works [Hinton et al., 2006; Hinton and Salakhutdinov, 2006;
Lee et al., 2008], and deep Boltzmann machines [Salakhut-
dinov and Hinton, 2009; Cho et al., 2013] have been widely
adopted in machine learning and computer vision. They are
capable of decomposing the data into regular patterns of mul-
tiple levels, in which higher level representations are the ab-
stractions of lower level ones [Bengio, 2009]. Employing
DNNs as the feature-mapping functions of GPs is expected
to learn much more meaningful representation of the input
although such feature map is finite-dimensional.

[Salakhutdinov and Hinton, 2007] also employed deep net-
works as feature extractors to improve the performance of
GP regression. They applied the output of deep belief net-
works as the input of Gaussian kernels. which is substan-
tially different from our algorithmic framework. Therefore,
their model also needs to invert the kernel matrix, still suffer-
ing from the computational limitation as general GP models
do. Our model takes advantage of deep networks by embed-
ding them in the feature space, thus leading to the consider-
able reduction of computational complexity. [Snoek et al.,
2011] and [Damianou and Lawrence, 2012] apply GP-based
building blocks as the feature extractors for highly-nonlinear
regression. Unlike our DNN-based models, such GP-based
building blocks are not scalable to large data unless some ex-
tra techniques are added for computational reduction.

In sum, we make the following contributions: (1) We for-
mulate a new kind of GPs, i.e. DNN-GPs, by applying DNNs
as the feature-mapping functions. We fix the dimensional-
ity of the feature space to be finite and learn the feature-
mapping functions explicitly. Therefore, our GPs are fea-
sible for large datasets since the computational complexity
only scales linearly with the size of the training set. (2) In
DNN-GPs, we pre-train DNN-GPs with SDAEs in an unsu-
pervised way, which not only provides better initializations to
the parameters of DNNs, but also makes DNN-GPs perform
competitively when the labeled data are limited. (3) We pro-
pose mixture models by combining the predictions of several
DNN-GPs, dubbed mixDNN-GPs. The mixDNN-GPs algo-
rithm significantly outperforms all compared models in our
experiments.

2 Gaussian Process Regression
The most common way to interpret Gaussian processes re-
gression is defining a kernel function as the covariance of
the distribution over latent functions, which is known as the
function-space view [Rasmussen and Williams, 2006]. In
this paper, however, we start from the equivalent weight-
space view [Rasmussen and Williams, 2006] that is more
convenient to establish our model. Readers can resort to
Mercer’s theorem for the proof of the equivalence between
the function-space view and the weight-space view in [Ras-
mussen and Williams, 2006]. Suppose that we have a dataset
D of N observations {(xn, yn)}Nn=1, where the dimension-
ality of each input is D, i.e. xn ∈ RD. We denote X =

[x1, · · · ,xN ] as the input matrix and y = [y1, · · · , yN ] as
the output vector. For a regression task, we assume that each
output is generated from a probabilistic model

yn = f(xn) + ε, ε ∼ N (0, σ2). (1)

Specifying the latent function f(xn) to be the linear pro-
jection wTxn, we obtain the Bayesian regression model,
where the vector of weights w is sampled from a Gaussian
distributionN (0,Σp). A bias weight or offset can be derived
by augmenting the input xn with an additional element. We
do not explicitly include it in our notation for simplicity. If
we make a further extension by first projecting the inputs into
a feature space with a mapping function φ(x), we formulate
a Gaussian process regression model, as illustrated in Figure
1 (a). It means that in a Gaussian process, the latent function
is defined as

f(xn) = wTφ(xn). (2)
After marginalizing out the weight vector w, we obtain the

prior
p(f | X) = N (f ; 0,K), (3)

where the latent functions f = [f(x1), · · · , f(xN )] and K is
the covariance matrix whose entries are specified by Kij =
φ(xi)

TΣpφ(xj). To improve the model representation abil-
ity in standard GP models, the feature space is always as-
sumed to be infinite-dimensional [Rasmussen and Williams,
2006], thereby leading to the application of a kernel function
k(xi,xj) as the entries of the covariance matrix to circum-
vent the difficulty of computingφ(xi)

TΣpφ(xj). The kernel
function depends on a small number parameters θ. For exam-
ple, the Automatic Relevance Determination (ARD) kernel is
defined as k(xi,xj) = α exp(− 1

2

∑D
d=1(x

(d)
i − x

(d)
j )2/β2

d),
where θ = {α, β1, · · · , βD}.

Integrating out latent functions, the negative marginal log-
likelyhood takes the form

L = − log p(y | X,θ, σ)

=
1

2
yT (K + σ2I)−1y +

1

2
log |K + σ2I|

+
N

2
log(2π), (4)

which is a minimization objective to train the parameters θ
and σ. The prediction of a new input data x∗ can be made by
conditioning on observed data and parameters. The distribu-
tion of a new target y∗ at the new input x∗ is

p(y∗ | x∗,D,θ, σ) = N (y∗; k
T
∗ (K + σ2I)−1y,

k∗∗ − kT
∗ (K + σ2I)−1k∗ + σ2), (5)

where k∗ is a vector with elements k(xi,x∗) and k∗∗ =
k(x∗,x∗).

Equations (4-5) indicate that the key computation in GPs
including the training and the prediction is to invert the co-
variance matrix K + σ2I, which is of complexity O(N3).

3 FITC and mixMNN
To reduce the computational time of GPs from cubic scale
to linear scale with respect to N , one approach resorts to
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Figure 1: The illustration of related models: (a) Gaussian process regression. (b) The greedy layer-by-layer training process for
a stacked denoising auto-encoder. (c) The 4-layer DNN-GP. (d) The mixture of DNN-GPs. The random variables such as W
and y in (a) are represented by circles.

a small set of inducing points to construct a low-rank ap-
proximation to the kernel matrix K over the full dataset ,
which is known as Sparse GP [Smola and Bartlett, 2000;
Lawrence et al., 2002; Snelson and Ghahramani, 2005]. The
most successful Sparse GP is the method proposed in [Snel-
son and Ghahramani, 2005], and then renamed as FITC in
[Quiñonero-Candela and Rasmussen, 2005]. FITC augments
the training set D by adding a noiseless pseudo-data set D̄
of size M < N : pseudo-inputs X̄ = {x̄n}Mn=1 and pseudo-
latent-functions f̄ = {f̄n}Mn=1. Assuming fns to be condi-
tionally independent given the pseudo-data set, we attain the
prior over the latent variables f by integrating out the pseudo-
latent-functions:

p(f | X, X̄) =

∫
p(f | X, X̄, f̄)p(f̄)df̄

=

∫ N∏
n=1

p(fn | xn, X̄, f̄)p(f̄)df̄

= N (f ; 0,Q + diag(K−Q)), (6)

where Q = Kf f̄K
−1
f̄ f̄

Kf̄ f , Kf f̄ , Kf̄ f̄ and Kf̄ f are matri-
ces with the elements k(xi, x̄j), k(x̄i, x̄j) and k(x̄i,xj), re-
spectively. Compared to the original covariance matrix K in
Equation (3), the covariance matrix here is a low-rank matrix
Q plus a diagonal matrix diag(K−Q). With the new covari-
ance matrix, Equations (4-5) can be computed in O(NM2)
time, using the Woodbury matrix identity [Rasmussen and
Williams, 2006].

Another way to reduce the computational cost is to learn
the feature-mapping function explicitly. Denoting φ(X) =
[φ(x1), · · · ,φ(xN )], the covariance matrix K is equal to
φ(X)TΣpφ(X). Setting the dimensionality of φ(X) to
be M < N , the term φ(X)TΣpφ(X) becomes a low-
rank construction of K. Explicitly substituting this term
into Equations (4-5), the computational cost can be reduced
in O(NM2) as well. One example is the neural-network-
based models mixMNNs [Lázaro-Gredilla and Figueiras-
Vidal, 2010], in which the hidden unit transfer functions of
one-hidden-layer neural networks are employed as feature-
mapping functions. Specifically, mixMNNs assign φ(x) =
g(Ux + u0), where U and u0 are the input weight matrix
and input bias vector, respectively, and g(•) is the activation
function.

4 Our Model: DNN-GP
Similar to mixMNNs, we also reduce the computational cost
of GPs by explicitly learning the finite-dimensional feature-
mapping functions. Our models can be learned in two steps:
the unsupervised pre-training (Section 4.1) and the super-
vised fine-tuning (Section 4.2).

4.1 Model Pre-training
Stacked Denoising Auto-Encoders (SDAEs) specify deep
networks by applying a Denoising Auto-Encoder (DAE) to
initialize each layer of deep networks [Vincent et al., 2008].
In a DAE, the original input data X are corrupted by some
kind of stochastic noise. In this paper, we follow the corrup-
tion process used in [Vincent et al., 2008]. For the input X, a
fixed proportion v of the dimensions of each sample are cho-
sen randomly to be forced to 0, while other dimensions are
left invariant, thus leading to the corrupted ones X′. X′ are
used for the input while X are used for the reconstruction tar-
gets. The parameters Wi, bi and ci are trained to minimize
the squared error loss function

‖X− g(Wi
T g(WiX

′ + bi) + ci)‖2F , (7)

where ‖ · ‖F is the matrix Frobenius norm, Wi is a weight
matrix , bi and ci are bias vectors, g(•) is a nonlinear active
function, e.g. a sigmoid function.

Once an DAE is trained, its internal representation
g(WiX

′+ bi) can be adopted as the input for training a sec-
ond DAE. Figure 1 (b) illustrates this training procedure. Af-
ter such greedy layer-by-layer training, we will obtain a top
layer as the highly-nonlinear representation of the input, i.e.
ϕ(X), which generally captures high-order patterns in orig-
inal data. After training the whole architecture, we initial-
ize a DNN with the parameters of the learned SDAE. SDAEs
can be learned efficiently on large datasets. Training SDAEs
scales linearly with the number of training samples. In ad-
dition, Equation (7) can be written as the summation of data
points, so we can use a stochastic optimization procedure on
the mini-batches of data points for each iteration.

4.2 Model Fine-tuning
Substituting the new feature-mapping function into Equation
(2), we attain a GP with the elements of the covariance matrix
K(xi,xj) = ϕ(xi)

T Σpϕ(xj), as illustrated in Figure1 (c).
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For simplicity, we consider the isotropic covariance for the
weights, namely Σp = s−2p I, where s2p is the precision pa-
rameter. Thus, K(xi,xj) = s−2p ϕ(xi)

Tϕ(xj). Substituting
the new covariance matrix into Equation (4) and applying the
Woodbury matrix identity (A.9 and A.10 in [Rasmussen and
Williams, 2006]) to the terms (K + σ2I)−1 and |K + σ2I|,
we attain

L =
1

2
(

1

σ2
yT (I− FTA−1F)y + log |A| −M log(s2p)

+(N −M) log(σ2) +N log(2π)), (8)

where F = [ϕ(x1), · · · ,ϕ(xN )] ∈ RM×N and A =
σ2s2pI + FFT ∈ RM×M . M is the number of the units of
the top layer of the SDAE. The computational complexity of
Equation (8) is O(NM2).

Substituting the new covariance matrix into the prediction
Equation (5), we have

p(y∗ | x∗,D,W, σ, sp) = N (y∗;µ∗, σ
2
∗),

µ∗ = ϕ(x∗)
TA−1(Fy),

σ2
∗ = σ2ϕ(x∗)

TA−1ϕ(x∗) + σ2. (9)

The computational complexity of the new prediction is
only O(NM).2 Denoting h(x∗) = L−1ϕ(x∗) as the new
feature-mapping function and letting s = L−1Fy, we can
compactly rewrite Equation (9) as

p(y∗ | x∗,D,W, σ, sp) = N (y∗;µ∗∗, σ
2
∗∗),

µ∗∗ = sTh(x∗),

σ2
∗∗ = σ2h(x∗)

Th(x∗) + σ2, (10)

where the new predictive mean is exactly a linear combina-
tion of the new features. It means that in terms of the pre-
diction of the expectation, we finally derive a feature space
where the output is the linear function of the input, after a
highly-nonlinear transformation, i.e. h(x∗). The vector s de-
pends on the training samples but is independent of the test-
ing input. It can measure the relevances of the features to the
prediction.

Now we perform the discriminative fine-tuning using back
propagation. We first compute the derivatives of the objection
function (8) with respect to the explicit parameters including
the mapping matrix F and parameters σ2 and s2p

∂L

∂F
= − 1

σ2
A−1(Fy)yT + CF, (11)

∂L

∂σ2
=

1

2σ4

(
(Fy)TA−1(Fy)− yTy

)
+
s2p
2

tr(C) +
(N −M)

2σ2
, (12)

∂L

∂s2p
= − M

2s2p
+

1

2
σ2tr(C), (13)

2Equation (8) and Equation (9) are similar to Equation (7) and
Equation (6) in [Lázaro-Gredilla and Figueiras-Vidal, 2010] re-
spectively. The difference is that ϕ(X) in [Lázaro-Gredilla and
Figueiras-Vidal, 2010] is only a simple hidden unit transfer func-
tion of one-hidden-layer NN, while ϕ(X) here is the output of the
learned SDAEs.

where the matrix C = 2× ∂L
∂A , and tr(•) is the matrix trace.

Then by the chain rule, we readily back propagate ∂L
∂F to the

implicit parameters W and b. For W , we compute the gra-
dients as

∂L

∂Wd−1
=

∂L

∂ad

∂ad

∂Wd−1
,

∂L

∂Wd−2
=

∂L

∂ad−1

∂ad−1

∂Wd−2
,

. . . ,
∂L

∂W1
=

∂L

∂a2

∂a2

∂W1
, (14)

where {a2, · · · ,ad} are the active values of the hidden units
of the corresponded layers, and d is the depth of DNN-GPs,
i.e. the number of the layers of DNNs. It is worth noting that
we do not include the output layer when counting d, as al-
ready shown in Figure 1 (c). The computation of the gradients
of b is similar to Equation (14). One may refer to Section 5.3
in [Bishop, 2006] for details. Similar to pre-training, back-
propagation in Equation (14) scales linearly with N [Hinton
and Salakhutdinov, 2006]. The computational complexity of
Equation (8) is O(NM2). Thus, our model is scalable to the
number of training samples .

Based on Equations (11)-(14), we apply the conjugate gra-
dient method to fine-tune our models. Because the objec-
tive function (8) cannot be decomposed into a sum over data
points, it encounters the difficulty when using a stochastic
optimization procedure on the mini-batches of data points.
Thus, we apply the full-batch optimization for fine-tuning.
Even so, fine-tuning our models on full-batch performs with
the competitive speed of convergence in our experiments.

4.3 Combining predictions of several DNN-GPs
To overcome the risk of overfitting, mixMNNs average indi-
vidual predictions of several one-hidden-layer NNs of which
parameters are initialized randomly. In DNN-GPs, we ini-
tialize the parameters of DNNs at random and then pre-train
them with SDAEs. In this way, a single DNN-GP is capable
of achieving satisfactory performance. However, we find that
combining predictions of several DNN-GPs can further dra-
matically boost the performance. Following [Lázaro-Gredilla
and Figueiras-Vidal, 2010], we derive the combined mean
and variance of the distribution of y∗ at a new test sample
x∗

µfinal∗ =
1

K

∑K

k=1
µ∗k, (15)

σ2
final∗ =

1

K

∑K

k=1
µ2
∗k + σ2

∗k − µ2
final∗, (16)

where K is the number of combined GPs, µ∗k and σ2
∗k are

the predictive mean and variance of k-th GP, respectively. We
denote the mixture version of DNN-GPs as mixDNN-GPs.

Dataset Targets #Train #Test #Dim
Rectangles [2,31] 10000 2500 1024
Olivetti Faces [-90,90] 16000 4000 1024
FGnet [log 2,log 70] 16000 4040 1024

Table 1: Information of datasets.

5 Experiments
We compare the performance of proposed models with full
GPs, FITCs [Snelson and Ghahramani, 2005] and mixMNNs
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[Lázaro-Gredilla and Figueiras-Vidal, 2010] on one synthetic
image dataset Rectangles [Larochelle et al., 2007] and two
real face datasets Olivetti Faces [Salakhutdinov and Hinton,
2007] and FGnet [Zhou et al., 2005]. Rectangles is used for
predicting the area of rectangles, Olivetti Faces is for face
orientation extraction and FGnet is for age estimation. We
first enlarge each dataset to contain more than 10000 samples,
and then pre-process all the images to the same size 32 ×
32 and normalize the values of pixels in [0, 1]. For reader’s
convenience, we list the information of datasets in Table 1.

For mixMNNs and DNN-GPs, we use the pre-processed
images as the inputs and the sigmoid functions as the acti-
vation functions. For full GPs and FITCs, PCA is applied
to the images for feature extraction so as to improve the per-
formance, meaning that the first p principal components are
chosen as the input. To select the optimal p, the performance
of a full GP will be evaluated for various values of p and the
value resulted in best performance will be chosen. The set-
ting of training SDAEs in DNN-GPs is fixed as follows: The
corrupted proportion v in each DAE is set to be 0.5. Equa-
tion (7) is optimized with the gradient descent method whose
learning rate is 0.1. The dataset is divided into mini-batches
of size 100, and the parameters are updated after each mini-
batch iteration. Each DAE is trained for 30 passes through
the entire training set. We train full GPs, FITCs, mixMNNs,
and fine-tune DNN-GPs with the conjugate gradient method
[Rasmussen and Williams, 2006] on the full-batch of training
samples. If the objective function dose not decrease within 50
evaluations in each line search, or the epoch of the line search
exceeds 100, the training process will halts.

Following [Lázaro-Gredilla and Figueiras-Vidal, 2010;
Titsias and Lázaro-Gredilla, 2013], all the experiments here
are measured with Normalized Mean Square Error (NMSE)

NMSE =
1

Ntest

∑Ntest

n=1 (yn − µn)2

1
Ntest

∑Ntest

n=1 (yn − ȳ)2
, (17)

where yn and µn are the true label and predictive mean of the
n-th testing sample, respectively, ȳ is the mean of the labels
of the training set and Ntest is the number of testing samples.

5.1 Notations: M and d
We use a unified symbol M to denote the number of the
units at the top layer of SDAEs in DNN-GPs, the number
of pseudo-inputs in FITCs and the number of hidden units in
mixMNNs. In all of our experiments, we fix the number of
the neural units of the other hidden layers to be 500 exclud-
ing the top layer of SDAEs. Such a constraint may limit the
ability of DNN-GPs. In our practice, however, we find that
the DNN-GPs of this architecture are sufficient to achieve
desirable performance. We denote K as the number of the
individual architectures used to construct the mixture mod-
els (i.e. mixMNNs and mixDNN-GPs). Increasing K leads
to enhanced performance and higher computational cost. We
set K = 4 for both mixMNNs and mixDNN-GPs.

5.2 Analysis on Proposed Models
We compare the performance of DNN-GP with its several
variants to evaluate the influence of the depth d, the pre-

Methods d=2 d=3 d=4 d=5
simDNN-GP 7.78 1.98 1.57 3.42
DNN-GP 49.67 1.60 28.45 6.26
mixDNN-GP 31.17 0.93 19.27 5.02

Methods d=2 d=3 d=4 d=5
simDNN-GP 4.44 2.88 2.28 0.69
DNN-GP 2.32 0.69 0.69 0.43
mixDNN-GP 1.49 0.51 0.49 0.37

Table 2: Results of averaged NMSEs on Olivetti Faces.
Top: Training NMSEs (×10−4). Bottom: Testing NMSEs
(×10−2). M is fixed to 800, and d is changed from 2 to 5.

training, the fine-tuning and the mixture setting. Here, two
sub-experiments are implemented.

In the first one, we define a simplified version of DNN-
GPs as simDNN-GPs, in which no pre-training procedure
is involved. The parameters of simDNN-GPs are initialized
at random. We report both the training and testing NMSEs
on Olivetti Face in Table 2. Here, the training NMSE and
the testing NMSE mean the NMSE measured on the train-
ing set and the testing set, respectively. Table 2 shows that
the testing NMSEs of all the three models will decrease when
d increases. Building a deep architecture is helpful for im-
proving the performance of GP regression. With the same d,
simDNN-GPs provide lower training NMSEs but higher test-
ing NMSEs than DNN-GPs. The unsupervised pre-training
acts as a regularizer to enforce the parameters of DNN-GP
to a constrained region, where a better generalization yields.
The mixDNN-GPs approach provides both lower testing NM-
SEs and training NMSEs than DNN-GPs. Committing a
mixture of DNN-GPs is able to attain an optimized solution,
thereby resulting in an improved performance.

In the second one, we compare the performance of DNN-
GP with its two counterparts: LBR+DNN and GP+DNN.
LBR+DNNs and GP+DNNs apply the output of SDAEs as
the input of Linear-Bayesian-Regression models (LBRs) and
full GPs, respectively. Unlike DNN-GPs, there is no global
fine-tuning involved in this two models. The average testing
NMSEs are reported in Tabel 3. Clearly, DNN-GPs achieve
the best accuracy. LBR+DNNs perform grossly worse than
DNN-GPs, which verifies that the global fine-tuning plays the
essential role in our models.

Datasets LBR+DNN GP+DNN DNN-GP
Rectangles 0.0904 0.0615 0.0091
Olivetti Faces 0.0943 0.0569 0.0043
FGnet 0.7494 0.3749 0.1833

Table 3: Results of averaged testing NMSEs. M and d are
fixed to 800 and 5, respectively.

5.3 Comparison on Full Training Sets
In this experiment, we perform the comparison between
FITC+PCAs, mixMNNs, 5-layer DNN-GPs and 5-layer
mixDNN-GPs. To evaluate the performance of above models
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Figure 2: Testing NMSEs of fullGP+PCAs, FITC+PCAs, mixMNNs, 5-layer DNN-GPs and 5-layer mixDNN-GPs on the full
training sets. From left to right, it demonstrates the results of Rectangles, Olivetti Faces and FGnet, respectively. M varies
from 25 to 800. Both the horizontal and vertical axes are in logarithmic scale.
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Figure 3: Testing NMSEs of fullGP+PCAs, FITC+PCAs, mixMNNs, 5-layer DNN-GPs and 5-layer mixDNN-GPs on the
labeled training sets of varying size . From left to right, it demonstrates the results of Rectangles, Olivetti Faces and FGnet,
respectively. Both the horizontal and vertical axes are in logarithmic scale.

at different computational complexities, we vary M from 25
to 800 and display the results of the testing NMSEs in Figure
2. We also implement fullGP+PCA on the full training set so
as to provide a reference of the desirable performance. From
Figure 2, we observe that a larger M results in a better per-
formance for both DNN-GPs and mixDNN-GPs. DNN-GPs
perform better than FITC+PCAs and mixMNNs on all three
datasets when M > 50. Compared with fullGP+PCA, DNN-
GPs obtain lower testing errors on Rectangles and Olivetti
Faces, and the comparable accuracy on FGnet. mixDNN-
GPs achieve the best performance among all the compared
models when M = 800.

The training of DNN-GPs includes the layer-by-layer pre-
training (Equation (7)), the computation of the derivatives of
the explicit parameters (Equations (11) - (13)) and the back
propagation of the weight parameters (Equation (14)). As
we have demonstrated in Section 4, all these computations
scale linearly with the number of training samples, which
leads DNN-GPs to be feasible for large datasets. The com-
putational cost for training the full GP and the DNN-GP is
presented in Tabel 4. Obviously, the training of DNN-GPs is
much faster than that of full GPs.

Methods Rectangles Olivetti Faces FGnet
full GP 43,904s 142,200s 164,648s
DNN-GP 1,138s 2,387s 2,934s

Table 4: The training cost of the full GP and the DNN-GP.
M and d are fixed to 800 and 5, respectively. All experiments
are carried out with Matlab 8.1.0.604 (R2013a) on Intel Core
i7, 2.90-GHz CPU with 8-GB RAM.

5.4 Comparison on Limited Labeled Sets
In this task, we evaluate the performance of FITC+PCAs,
mixMNNs, 5-layer simDNN-GPs, 5-layer DNN-GPs and 5-
layer mixDNN-GPs on limited labeled training sets. M is
fixed to be 800. We construct the labeled training set of size
N by randomly selecting a subset from the original train-
ing set. Training FITC+PCAs, mixMNNs and simDNN-GPs
are based on the labeled training set. For DNN-GPs and
mixDNN-GPs, we first pre-train these two models with the
original training set and then fine-tune them with the limited
labeled set. Figure 3 illustrates the performance of the com-
pared models on the labeled sets of different sizes.

On Olivetti Faces, DNN-GP achieves very low error even
when the number of labeled data N is very small. Particu-
larly, DNN-GP with only 2000 labeled training samples out-
performs FIIC+PCAs and mixMNN which are trained on the
full dataset, i.e. N = 16000. In contrast, simDNN-GP
performs worse than FIIC+PCA and mixMNN when N <
8000. When N = 16000, simDNN-GP finally outperforms
FIIC+PCA and mixMNN but still is inferior to DNN-GP
and mixDNN-GP. On the other two datasets Rectangles and
FGnet, we still observe the fact that DNN-GPs perform better
than simDNN-GPs in all cases, thus verifying the importance
of the unsupervised pre-training. As expected, mixDNN-GPs
outperform all the compared models in all cases.

6 Conclusion
In this paper, we applied stacked denoising auto-encoders
as the feature-mapping functions to reformulate GPs,
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which have been named as Deep-Neural-Network-based GPs
(DNN-GPs). Our experiments verified the following con-
clusions: (1) DNN-GPs considerably outperform FITCs and
mixMNNs, and perform better than full GPs as a whole, while
the training of DNN-GPs is scalable to the size of the training
set. (2) The unsupervised training of SDAEs is important to
the performance of DNN-GPs, which not only provides bet-
ter initializations to the parameters of DNNs, but also makes
DNN-GPs perform competitively when the number of the la-
beled data is limited. (3) The mixture setting can significantly
improve the performance of DNN-GPs. The mixDNN-GPs
algorithm achieves the state-of-the-art performance in our ex-
periments.

Overall, applying deep neural networks as the feature-
mapping functions is able to effectively facilitate the perfor-
mance of GPs for regression problems with a large amount of
training data. For the future work, we will extend DNN-GPs
to multi-output regression problems.
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