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Abstract

Dynamic topic models (DTMs) model the evolu-

tion of prevalent themes in literature, online media,

and other forms of text over time. DTMs assume

that word co-occurrence statistics change continu-

ously and therefore impose continuous stochastic

process priors on their model parameters. These

dynamical priors make inference much harder

than in regular topic models, and also limit scal-

ability. In this paper, we present several new re-

sults around DTMs. First, we extend the class

of tractable priors from Wiener processes to the

generic class of Gaussian processes (GPs). This

allows us to explore topics that develop smoothly

over time, that have a long-term memory or are

temporally concentrated (for event detection). Sec-

ond, we show how to perform scalable approxi-

mate inference in these models based on ideas

around stochastic variational inference and sparse

Gaussian processes. This way we can train a rich

family of DTMs to massive data. Our experiments

on several large-scale datasets show that our gener-

alized model allows us to find interesting patterns

that were not accessible by previous approaches.

1 Introduction

Probabilistic topic models help us to organize and browse

large collections of documents (Blei, 2012). Topic mod-

els have been successfully applied in information retrieval

(McCallum et al., 2004; Wang et al., 2007; Charlin and

Zemel, 2013), computational biology (Pritchard et al., 2000;

Gopalan et al., 2016), recommendation systems (Wang and

Blei, 2011), and computer vision (Fei-Fei and Perona, 2005;

Chong et al., 2009). Topic models assume that all words in a

document were independently drawn from a finite set of prob-

ability distributions over words, termed the ’topics’. This

way, every document is a mixture of topics. The limitation

is that this approach assumes that topics are static.
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Topics change over time. To provide some intuition, consider

the example of the topic technology when training topic mod-

els on historical articles 1. Restricting the corpus to articles

around 1900, we find words such as engine, electricity, and

wire to be mainly associated with this topic. For modern

articles, we may find devices, gates, and silicon among the

top words. In applications as this, we want to be able to as-

sociate documents with similar topic proportions with each

other over large time spans. But at the same time, we want to

allow topics to ’modernize’, meaning to dynamically adjust

their vocabulary. This is achieved in dynamic topic mod-

els (DTMs) (Blei and Lafferty, 2006; Wang and McCallum,

2006; Wang et al., 2008). DTMs model the evolution of

topics as a continuous Wiener process. This dynamic prior

determines how strongly topics may change their vocabulary.

This way, DTMs share statistical strengths over all times,

while giving the topics enough flexibility to change.

Current formulations of dynamic topic models are subject

to the major limitation that they are restricted to a particular

type of stochastic process for the latent topical dynamics,

namely Wiener processes. This formulation does not al-

low us to analyze long-term effects, events, or other more

complicated temporal dependencies. Second, relying on

the forward-backward algorithm, they lack scalability. If

the data are distributed across many different time-stamps,

they require a full pass through the data in every iteration.

This lack of scalability may be the reason why DTMs have

been much less used in large-scale scientific or industrial

applications than their static counterparts. In this paper, we

generalize dynamic topic models in two ways: first we ex-

tend the class of tractable priors from Wiener processes to

the more general class of Gaussian processes. Second, we

derive a scalable approximate Bayesian inference algorithm

based on inducing points. This allows us to apply our model

to contemporary large text collections. In more detail, our

main contributions are as follows:

• We formulate DTMs in terms of latent Gaussian pro-

cess priors on topic evolution. This opens a wealth of

possibilities for new models in which the topics display

different types of temporal (or even spatial) correlations.

1 Example from David Blei’s tutorial slides on topic
modeling, http://www.cs.columbia.edu/~blei/talks/Blei_
ICML_2012.pdf

http://www.cs.columbia.edu/~blei/talks/Blei_ICML_2012.pdf
http://www.cs.columbia.edu/~blei/talks/Blei_ICML_2012.pdf
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Going beyond the typical Wiener processes, we ana-

lyze Ornstein-Uhlenbeck processes for event detection,

Gaussian processes with Cauchy kernels (for long-term

memory effects) and squared exponential kernels (for

rather short-term memory effects).

• We derive a scalable variational inference algorithm

for this new model class. Our approach relies on in-

ducing points for Gaussian process inference (Snelson

and Ghahramani, 2006; Titsias, 2009; Hensman et al.,

2013). All natural gradients are given in closed-form

and do not rely on numerical optimization or sampling

approaches. Natural gradients have the advantage that

they are invariant to reparameterization of the vari-

ational family (Amari and Nagaoka, 2007; Martens,

2017) and provide effective second-order optimization

updates (Hoffman et al., 2013; Wenzel et al., 2018).

While a naive implementation would scale cubically in

the number of time stamps, our approach scales cubi-

cally in the number of inducing points, which is typi-

cally much smaller.

• In our experiments, we investigate dynamic topics using

different kernels. These new priors allow us to find

patterns which were not accessible before. For instance,

we filter time-localized topics in a set of speeches on

the State of the Union and in news articles as published

in the New York Times.

This paper is organized as follows. In section 2 we discuss

related work. We describe the novel generalized dynamic

topic model in section 3 and present an efficient variational

inference algorithm for our model in section 4. Section 5

concludes with experiments. For implementation details,

we refer readers to the website of the first author of this

paper2.

2 Background and Related Work

We connect to dynamic and correlated topic models, sparse

GPs and stochastic variational inference (SVI).

Dynamic Topic Models. DTMs form the basis of our ap-

proach. While Blei and Lafferty (2006) originally proposed

a model with equidistant time slices, Wang et al. (2008)

extended the approach to continuous time. Both rely on

a latent Wiener process and use the forward-backward al-

gorithm for learning, which requires full passes through

the data in every iteration if the number of time stamps is

comparable with the total number of documents. Wang and

McCallum (2006) proposed a different approach where time

is an observed variable with some prior over a finite time

interval. While in principle being scalable, the resulting

topics are non-smooth. Finally, Bhadury et al. (2016) pro-

posed a new approach for learning in topic models based on

2https://patrickjae.github.io

stochastic gradient MCMC (Welling and Teh, 2011; Mandt

et al., 2016). Their approach similarly is restricted to latent

Wiener processes.

Correlated and GP Topic Models. This class of modified

static topic models breaks the independence assumptions

of the per-document topic proportions. Instead, the topic

proportions are jointly drawn from some prior which induces

correlations (Blei and Lafferty, 2007). If this prior is a Gaus-

sian process, this leads to the kernel topic model (Hennig

et al., 2012) or Gaussian process topic model (Agovic and

Banerjee, 2012). Note that both approaches assume that the

topics themselves are static and only the topic proportions

change. In contrast, we treat the proportions as indepen-

dent and identically distributed (iid) and impose dynamics

on the topics themselves. None of these models have been

formulated in a scalable manner.

Stochastic Variational Inference and sparse GPs.

Our algorithm builds on stochastic variational inference

(SVI) (Hoffman et al., 2013), which combines variational

inference with stochastic optimization. SVI can normally

only applied if the data are iid conditioned on a global set

of paramaters, which is an assumption that is typically bro-

ken in Gaussian process modelling setups. Hensman et al.

(2013, 2012) have shown that one can derive a tractable

lower bound to the marginal likelihood of the data that al-

lows for data subsampling. This so-called inducing point

or sparse approach dates back to earlier work by Titsias

(2009); Snelson and Ghahramani (2006) and Csató and Op-

per (2002) and has been successfully applied to a variaty of

GP models (e.g. Hensman et al., 2015; Wenzel et al., 2017).

None of this work has been applied in the context of topic

models.

3 Generalized Dynamic Topic Models

Dynamic topic models are mixed-membership bag-of-words

models which allow their mixture components—the topics—

to drift over time. This allows to dynamically fade-in new

words, and fade-out old words which loose their semantic

significance in a topic. In the classic DTM this continuity is

achieved by imposing a Wiener process prior on the topic

matrices (Blei and Lafferty, 2006; Wang et al., 2008) (see

also (Bamler and Mandt, 2017) for a related approach for

word embeddings).

In this paper, we propose Gaussian processes as priors on the

topic matrices. Since the Wiener process is a specific type

of GP, our approach is a strict generalization of dynamic

topic models but covers a much richer class of dynamics. We

introduce the generalized dynamic topic model in section 3.1

and present a scalable version in section 3.2.

https://patrickjae.github.io
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3.1 Generalized DTMs

For what follows, we borrow notation from the topic mod-

eling literature (Blei et al., 2003). We assume that we ob-

serve a corpus of D documents, each of which is associated

with a time stamp τtd with index td ∈ {1, . . . , T}. For a

simpler notation we denote the number of words in a docu-

ment as N . For a given document d with time index t, let

wd1, · · · , wdN be the words it contains, θd be a K-vector

of topic proportions and zdn the assignment of word wdn

to a topic. The model consists of K time dynamic topics

whereby βk·t denotes a topic’s V -dimensional distribution

over the vocabulary at time t.

Our model exhibits the following joint distribution:

p(w, z, θ, β) = p(β)

T∏

t=1

K∏

k=1

p(wt, zt, θ|π(βk·t)). (1)

The function π(·) is the softmax function which normalizes

the topic βk·t over the vocabulary indices. The remaining

likelihood,

p(wt,zt, θ|π(β··t)) =
∏

d:td=t

p(θd)
∏

n

p(wdn|π(βzdn·t))p(zdn|θd),

is just a regular LDA model (at time t), where

p(wdn|π(βzdn·t)) = Mult(π(βzdn·t)), p(zdn|θd) =
Mult(θd), p(θd) = Dir(α). The graphical model is shown

in Figure 1.

The distinctive feature of dynamic topic models is their dy-

namic prior p(β). In our model each of the V words out

of K topics is a latent function over time, drawn from a

GP with kernel function κ. This GP is observed at times

τ1, · · · , τT and can thus be described as a T -dimensional

multivariate normal distribution3:

βkw· ∼ GP(0, κ) ⇔ βkw,1:T ∼ NT (0,KTT ), (2)

Kτ,τ ′ = κ(τ, τ ′), τ, τ ′ ∈ {τ1, · · · , τT }. (3)

Using a Wiener kernel function in our model results in the

classic DTM of Wang et al. (2008). However, due to the

model’s flexibility we can model any stochastic process that

falls into the class of GPs by simply altering the covariance

function κ. As an aside, this setup not only covers the dy-

namic setup, but also allows for incorporating other types of

meta data as e.g. spatial modeling if the text documents are

associated with location coordinates.

In this paper, we focus on the time-specific setup. In more

detail, we consider several different kernels commonly used

for time-series modeling (Roberts et al., 2012).

3We call attention to the slight overloading of notation: a plain
K always is the number of topics, using subscripts or a tilde it
denotes a kernel/covariance matrix.

GP(0, κ)

βkwwdnzdn

θd

α

τtd

Nd

D

K

Figure 1: The generalized dynamic topic model.

• Wiener kernels, κWie(τ, τ
′) = σ2 min(τ, τ ′). Using a

Wiener kernel (Brownian motion kernel) in our model

recovers the typical DTM setup. This serves as our

baseline.

• Ornstein-Uhlenbeck kernels, κOU(τ, τ
′) =

σ2 exp
(

− |τ−τ ′|
l

)

. The Ornstein-Uhlenbeck (OU)

process is essentially a Wiener process in the presence

of a mean-reverting force which pulls the process

state back to its mean and thus acts like a regularizer.

An effect of this is that topics may die-off and other

topics may dynamically emerge (using a zero-mean

process). As we show in our experiments, this leads to

temporally localized changes in topics.

• Squared exponential kernels, κSE(τ, τ
′) =

σ2 exp
(

− (τ−τ ′)2

2l2

)

. Squared exponential (SE) ker-

nels have the property that the resulting trajectories are

smoother compared to Wiener kernels. The resulting

prior functions are infinitely often differentiable. The

exponential decay of the temporal correlations leads

to memory effects that can be parameterized by the

kernel’s length scale l. With a suitable chosen l this

allows for temporally localized topics.

• Cauchy Kernels, κCau(τ, τ
′) = σ2

(

1 + (τ−τ ′)2

l2

)−1

.

Cauchy kernels are constructed similarly as SE kernels,

but instead of using the Gaussian density one uses a

Cauchy density. This kernel has long-range memory,

which means that temporal correlations decay not ex-

ponentially but polynomially, which in some cases is

more realistic.

Note that any additive or multiplicative combination of co-

variance functions again results in a valid covariance func-

tion again and so can similarly be used. This adds consider-

able to the flexibility of the proposed prior.

We again stress that all these kernels use the same infer-

ence algorithm. The problem is that a naive implementation

would scale cubicly in the number of time stamps. We there-

fore propose a more efficient version based on the concept

of sparse GPs.
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3.2 Sparse DTMs

The bottleneck of inference in the model introduced in sec-

tion 3.1 is the inversion of the T×T kernel matrixKTT . One

solution is to bin time stamps into groups, thus artificially

reducing T . But this way we loose valuable information,

especially when the number of distinct time stamps is com-

parable to the number of observed documents themselves,

i.e. T ≈ D.

Instead, we present a scalable version of the generalized

dynamic topic model based on inducing points (Hensman

et al., 2013). This is a low-rank approximation to the T -

dimensional GPs based on T̂ artificial time stamps (inducing

points) where T̂ ≪ T . The inversion necessary for inference

is only based on the T̂ × T̂ covariance matrix of the approxi-

mating GP and can therefore be computed efficiently.

Following Hensman et al. (2013), let KTT be the kernel

evaluated at all training points (i.e. the full rank kernel as

in (2)), KT̂ T̂ the kernel evaluated at inducing points, and

KT T̂ and KT̂ T be kernels evaluated in-between these sets

of points. Furthermore, let u be a T̂ -dimensional variable.

We make use of the following Gaussian integral:

N (0,KTT ) =

∫

N (KT T̂K
−1

T̂ T̂
u, K̃)N (u; 0,KT̂ T̂ )du,

(4)

where K̃ = KTT − KT T̂K
−1

T̂ T̂
KT̂ T . Thus, we introduce

latent auxiliary variables ukw for every βkw such that the

resulting marginal distribution of βkw does not change (when

integrating over ukw). Defining p(ukw) = N (0,KT̂ T̂ ), we

obtain

p(βkw|ukw) = N (KT T̂K
−1

T̂ T̂
ukw, K̃), (5)

and perform approximate inference over u. Also note that

conditioning of GPs involves inversion of the kernel matrix.

In our approach, inverting a T × T matrix is now replaced

by inverting one of size T̂ × T̂ .

The augmented joint distribution is

p(β,w, z, θ, u) = p(w|β, z)p(z|θ)p(β|u)p(u). (6)

This summarizes our model (the discussion of marginalizing

over β is deferred to the next section). Next, we present

details about the inference procedure. Readers primarily in-

terested in experimental results may therefore skip section 4

and continue with section 5.

4 Inference

In Bayesian latent variable models such as DTMs, our goal

is to compute the posterior distribution over the latent vari-

ables. This quantity is intractable and we have to resort to

approximate methods. We use variational inference, which

maps the inference problem to an optimization problem,

minimizing Kullback-Leibler divergence between a simple

proxy distribution and the posterior. This is equivalent to

optimizing a lower bound to the marginal likelihood of the

model, termed evidence lower bound (ELBO) (Jordan et al.,

1999). In particular, we use stochastic variational inference

(SVI) (Hoffman et al., 2013), which optimizes the ELBO

using stochastic gradient descent.

We first carry-out the approximate marginalization over β,

lower-bounding the likelihood term. We then show how we

can decompose the ELBO into a part which is equivalent to

LDA, and into another part which contains the GP prior and

therefore is more complex. We list all modified updates on

the local and global parameters, with detailed calculations

given in the supplementary material.

Approximate marginalization. We first marginalize over

β in the augmented joint distribution (6). Unfortunately, the

marginal likelihood term cannot be computed in closed-form.

We use Jensen’s inequality to obtain a lower bound on the

log likelihood,

ln p(wdn|zdn = k, u, td) (7)

= lnEp(βk·td
|u) [p(wdn|zdn = k, βk·td ]

≥ Ep((βk·td
|u) [lnMult (wdn|π(βk·td))]

= KtdT̂
K−1

T̂ T̂
ukwdn

− Ep((βk·td
|u)

[

ln
∑

w

exp(βkwt)

]

, (8)

where uk is a T̂ × V matrix and KtdT̂
is the td-th row of

KT T̂ . The remaining expectation in (8) is still intractable

due to the sum inside of the logarithm. Following Blei and

Lafferty (2006), we introduce additional free variational

parameters ζkt (see supplementary material). This results

in a lower bound to ln p(wdn|zdn = k, u, td):

lnp̃(wdn|zdn = k, u, td) (9)

= KtdT̂
K−1

T̂ T̂
ukwdn

− ζ−1
ktd

∑

w

exp

(

KtdT̂
K−1

T̂ T̂
ukwtd +

K̃tdtd

2

)

− ln(ζktd) + 1.

Next, we use this lower bounded log-likelihood to de-

rive a tractable variational objective which we can opti-

mize.

Stochastic Variational Inference. We follow a variational

structured mean-field approach (Wainwright and Jordan,

2007) and impose the following variational distributions

on the latent variables, q(θd|λd) = Dir(λd), q(zdn|φdn) =
Mult(φdn) and q(ukw|µkw,Σkw) = NT (µkw,Σkw). Eq.
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(9) gives rise to the following tractable lower bound of the

marginal likelihood:

L(λ, φ, µ,Σ, ζ) =Eq[ln p̃(w|u, z)]
︸ ︷︷ ︸

L1

(10)

+ Eq[ln(p(z|θ)p(θ)p(u))]
︸ ︷︷ ︸

L2

+H(q)
︸ ︷︷ ︸

Entropy

.

The entropy term and L2 consist of standard results and a

part that can be computed similarly as in standard LDA (see

supplementary material). We also compute L1 in closed

form:

L1 =
∑

t,k,w

∑

d:td=t

ndwφdwk

{

mkwt − ln(ζkt) + 1

−ζ−1
kt

∑

w′

exp

(

mkw′t +
1

2
(Λkw′t + K̃tt)

)}

,

with

mkwt = KtT̂K
−1

T̂ T̂
µkw

Λkwt = KtT̂K
−1

T̂ T̂
ΣkwK

−1

T̂ T̂
KT̂ t.

Objective L is optimized using SVI (Hoffman et al., 2013),

i.e. for global variational parameters, we follow noisy natural

gradients based on minibatches. Local variational parameter

updates are similar to those in (Wang et al., 2008) and we

do not replicate them here. Further details are provided in

the supplementary material.

Global updates. We consider the Gaussian distributions

q(ukw) in natural parameterization, i.e. using the parame-

ters η
(1)
kw = Σ−1

kwµkw and η
(2)
kw = − 1

2Σ
−1
kw, where µkw are the

Gaussian means and Σkw the covariances. In SVI, we up-

date these global parameters using stochastic estimates of the

natural gradient and it turns out that in this case natural pa-

rameters result in simpler and more effective updates.

More specifically, for a Gaussian distribution, properties

of the Fisher information matrix expose the simplification

that the natural gradient w.r.t. the natural parameters can

be expressed in terms of the Euclidean gradient w.r.t. the

canonical parameters (i.e. mean and covariance). Namely, in

general it holds for objectives F that depend on a Gaussian

distribution that

∇̂(η1,η2)F(η) =
(
∇µF(η)− 2∇ΣF(η)µ, ∇ΣF(η)

)
,

(11)

where ∇̂ denotes the natural gradient and ∇ the Euclidean

gradient. Applying (11) to the variational objective (10), we

obtain

∇̂
η
(1)
kw

L = Ξkw +Bkw ◦ (mkw − 1)− η
(1)
kw ,

∇̂
η
(2)
kw

L = −
1

2
K−1

T̂ T̂
−

1

2
Ckw − η

(2)
kw .

(12)

We used the following abbreviations:

Ξkw = K−1

T̂ T̂

∑

t

∑

d:td=t

KT̂ tndwφdwk,

Bkw =
∑

t

∑

d:td=t

ζ−1
kt ndwφdwk

× exp

(

mkwt +
Λkwt + K̃tt

2

)

K−1

T̂ T̂
KT̂ t,

Ckw = BkwKtT̂K
−1

T̂ T̂
.

Above, ◦ denotes the Hadamard product. Details are pro-

vided the supplementary material. Iterating through those

updates completes the algorithm.

5 Experiments

We evaluate our method on three time-stamped text cor-

pora. Compared to standard DTMs with Wiener kernels,

we find that incorporating other dynamic priors may lead to

improved predictive likelihoods and perplexity on held-out

data. Using different kernel functions within our framework,

we find new insights in the data that could not be found us-

ing the classic DTM of Wang et al. (2008), which uses the

Wiener kernel and thus results in an unbounded variance

over the time span. This promotes topics that are consistent,

albeit relatively static.

By making use of the greater flexibility that comes with

general GPs, we show how to extend and enhance an anal-

ysis. For instance, by using the OU kernel, we introduce a

mean reverting force that quickly "draws" word probabili-

ties towards zero, resulting in topics that are consistent and

constrained in time and more sensitive to changes. Further,

in situations in which the classic approach collapses most of

the probability mass to single words per time stamp, we com-

pensate by using Cauchy kernels, which place a smooth filter

on word probabilities onto the topic over time. On the other

hand, more fine-grained temporal dynamics can be captured

by RBF kernels, due to their short-range memory.

Data and preprocessing.

1. We use the “The New York Times Annotated Cor-

pus” (NYT) (Sandhaus, 2008), which consists of over 1.8

million articles published between 1987 and 2007 with

T = 7475 unique time stamps. We subsample 100000

documents.

2. We use the NIPS dataset that contains 2711 papers from

the NIPS conferences between 1987 and 20064 resulting in

T = 19 time stamps.

3. We use the “State of the Union” (SoU) addresses of U.S.

presidents, which span more than two centuries, resulting in

4http://www.datalab.uci.edu/author-topic/NIPs.htm

http://www.datalab.uci.edu/author-topic/NIPs.htm
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Figure 2: SoU: Learned word trajectories of the "war" topic using the Wiener kernel (left), OU kernel (middle) and Cauchy

kernel (right). The Cauchy kernel provides smoother trajectories yet the OU kernel is able to provide a better resolution in

time. Both outperform the baseline in terms of perplexity.

Figure 3: NYT: Learned word trajectories of the "election campaign" topic using the Wiener kernel (left), OU kernel

(middle) and Cauchy kernel (right), which results in the smoothest curves.

T = 224 different time stamps 5. We increase the number of

documents to 4428 by treating every chunk of ten paragraphs

in a speech as a separate document.

For preprocessing, we filtered the raw data using a standard

stop word list. After collecting word statistics, we remove

words that appear less than 25 times across a whole corpus.

We further shrink the vocabulary by removing words whose

score is less than a certain threshold, resulting in dictionaries

of reasonable size (see supplementary material). After this

step, we remove documents with effective lengths less than

ten word occurrences. We initialize our models by randomly

selecting K documents for any given time stamp and setting

probabilities in topic k of occurring words proportional to

their frequencies in the k-th document.

Hyperparameters. In our experiments we select the hy-

perparameters via grid search but they could also be directly

learned in our inference scheme using the approximate em-

pirical Bayes approach (Maritz and Lwin, 1989).

Qualitative Results. We now discuss the qualitative re-

sults obtained from applying our model on all three cor-

pora. For certain example topics, we plot and discuss the

5http://www.presidency.ucsb.edu/sou.php

probabilities of the most important words in this topic over

time. As a general tendency, we find that our proposed

Ornstein-Uhlenbeck and Cauchy kernels outperform the stan-

dard Wiener kernel in terms of interpretability and in terms

of usefulness for detecting events.

SoU. We consider a topic of with war and peace, found when

fitting our generalized DTM to the state-of-the-union corpus.

Figure 2 shows the word probabilities within this topic over

time for all three considered kernels. The Wiener kernel is

able to find a semantically coherent word distribution for this

topic. We observe a relatively high probability of the term

"war" over the whole time span with a sharp peak around

1939 (World War II). Using the Cauchy kernel, we are able to

gain a better resolution of the dynamics for the importance of

this term. We observe two separate high-probability periods

of the word "war". One is matching the time of the American-

Mexican war 1846-1848, the other one the World Wars and

Vietnam war. We attribute this finding to the fact that the

Cauchy kernel shares more statistical strength over time due

to its long-term memory property.

While this model already provides a better insight into ac-

tive time periods of the topic, additionally introducing a

mean-reverting force via the OU kernel provides a mean

to "super-resolve" topic activity quite accurately to certain

http://www.presidency.ucsb.edu/sou.php
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Figure 4: NIPS: Learned word trajectories of the "function approximation" topic using the Wiener kernel (left), OU kernel

(middle) and Cauchy kernel (right). All three approaches identify terms that gain or loose importance within the topic over

time. Since the Cauchy kernel shares statistical strength over a broader time horizon, its word trajectories are smoother.

events. We observe high probability for the term "war" again

around 1848, a small plateau in the 1910s (World War I)

rising to a high value in 1939 (World War II) and the 1960s

(Vietnam war). We even observe a small bump in the begin-

ning and through the 1980s (possibly the war in Afghanistan)

and another peak in the mid 2000s (second Afghanistan war).

Additionally, when looking at the words with highest prob-

ability at these times, we observe that the model is able

to place probability mass on terms relating to the different

wars, e.g. "texas" for the American-Mexican war (which

was fought over Texas) or "attack" and "japanese" in 1942

(where the attack on Pearl Harbor took place). Based on

these findings, the Ornstein-Uhlenbeck kernel seemed most

appropriate for this task.

NYT. Another interesting use case scenario is the analysis

of news texts. One of the topics identified when analyzing

the New York Times corpus deals with presidential elec-

tion campaigns. Figure 3 shows probability trajectories of

terms in that topic for the Wiener (left), Ornstein-Uhlenbeck

(middle), and Cauchy (right) kernels, respectively. We ob-

serve, that the baseline model (Wiener kernel) is able to

capture meaningful terms. Going beyond this, the OU ker-

nel arguably reflects the election campaigns in 1992 and

1996. The Cauchy kernel results in even smoother trajec-

tories. These findings, however, deserve a more thorough

investigation and interpretation. Nevertheless, this exam-

ple shows that different kernels reveal qualitatively different

phenomena.

NIPS. Applying generalized DTMs on the NIPS corpus al-

lows us to track trends in machine learning over the last 20

years. We present probability trajectories of a topic related to

classification and function approximation. Again, we show

results for Wiener, OU, and Cauchy kernels (Figure 4, left

to right). We observe from the baseline model that neural

networks gained attention in the late 1980s and early 1990s.

However, excitement subsided in the late 1990s and Bayesian

methods were on the rise (our data set is not recent enough to

detect the uptrend of neural networks in the last 5-10 years).

While the Wiener kernel models overall development, the

Ornstein-Uhlenbeck process is able to better react to small

scale changes, resulting in a more realistic representation of

term development. Additionally, it finds more general terms,

such as "network", "classification" and "system". Using the

Cauchy kernel with its long-term memory prevents from

placing large probability mass on the rapidly rising term

"gaussian". The Cauchy kernel is also able to identify more

general terms.

Quantitative Results. We show that using our approach

not only leads to interesting dynamic topics but also general-

izes better to unseen data. We use all documents associated

with time stamps Ttrain as training set and analyze the predic-

tive held-out likelihoods on remaining documents (associ-

ated with the time stamps Ttest = T \ Ttrain). We experiment

on the NYT dataset and randomly select Ttrain to hold 85%

of the unique time stamps.

Figure 5: SoU: Evidence lower bound against the number of

documents seen. On all used kernels, the objective function

converges to an optimum.



Scalable Generalized Dynamic Topic Models

Data cDTM gDTM gDTM gDTM
(baseline) OU Cauchy RBF

NYT 1.42323 1.42073 1.42129 1.42374

NIPS 1.4931 1.48149 1.48105 1.4821

SoU 1.46854 1.45594 1.45575 1.46023

Table 1: Per-word predictive perplexities (lower numbers

are better). We constantly outperform the baseline on all

data sets.

Table 1 shows that our method outperforms the baseline in

terms of per-word predictive perplexity (e.g. Blei and

Lafferty, 2007). We observe that the perplexity on both the

NIPS and SoU dataset is best when the dynamics are

modeled by a GP with Cauchy kernel while the NYT

dataset is best captured by a OU kernel. This shows again

the advantage of using our approach over the

state-of-the-art. Having the flexibility of modeling the

dynamics by a GP we can account for the different

dynamics that may underlie different datasets. Additionally,

Figure 5 shows the ELBO objective function when fitting a

model to the SoU data set, eventually reaching an optimum.

Results on the different data sets were similar.

Remarks. We argue that as common in probabilistic

modeling, the prior should not be chosen based on

predictive likelihood alone. Instead, a prior is a modeling

choice that helps reveal the effects that one searches for.

Depending on the problem at hand, a practitioner would

choose the suitable kernel, be it the Wiener kernel,

Ornstein-Uhenbeck kernel, RBF kernel or Cauchy kernel.

The Ornstein-Uhlenbeck kernel has the favorable property

of localizing topics in time, which may be a promising tool

for event detection. However, if the length scale is too

small, topics change their word distributions at a frequency

which is too high, in which case the results are less

interpretable. On the other hand, the RBF kernel (and even

more so the Cauchy kernel) has long-time memory and is

generally more data efficient, which has advantages if the

data set is small. Ultimately, many other kernels may be

designed for different purposes.

6 Conclusion and Future Work

We presented the generalized dynamic topic model, which

allows for dynamic topic modeling with a broader class of

dynamic priors, and which easily scales up to very large

text collections. In particular, we generalized dynamic topic

models from Brownian motion priors to arbitrary Gaussian

process priors. We showed in our experiments that our

approach leads to better predictive likelihoods on held-out

documents, and to interesting new qualitative findings, such

as temporally localized topics, and topics that display

long-range temporal dependencies. As a possible future

extensions, we plan to consider periodic kernels for

repeating events, and to extend dynamic topic modeling

from the time domain to the geo-spatial domain, such as

text equipped with location information.
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