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Abstract  

 

With very large sample sizes, population-based cohorts and biobanks provide an exciting opportunity to 

identify genetic components of complex traits. To analyze rare variants, gene or region-based multiple 

variant aggregate tests are commonly used to increase association test power. However, due to the 

substantial computation cost, existing region-based rare variant tests cannot analyze hundreds of 

thousands of samples while accounting for confounders, such as population stratification and sample 

relatedness. Here we propose a scalable generalized mixed model region-based association test that can 

handle large sample sizes and accounts for unbalanced case-control ratios for binary traits. This method, 

SAIGE-GENE, utilizes state-of-the-art optimization strategies to reduce computational and memory cost, 

and hence is applicable to exome-wide and genome-wide region-based analysis for hundreds of 

thousands of samples. Through the analysis of the HUNT study of 69,716 Norwegian samples and the UK 

Biobank data of 408,910 White British samples, we show that SAIGE-GENE can efficiently analyze large 

sample data (N > 400,000) with type I error rates well controlled.  

 

Introduction 

 

In recent years, large cohort studies and biobanks, such as Trans-Omics for Precision Medicine (TOPMed) 

study
1
 and UK Biobank

2
, have sequenced or genotyped hundreds of thousands of samples, which are 

invaluable resources to identify genetic components of complex traits, including rare variants (minor 

allele frequency (MAF) < 1%). It is well known that single variant tests are underpowered to identify 

trait-associated rare variants
3
. Gene- or region-based tests, such as Burden test, SKAT

4
 and SKAT-O

5
, can 

be more powerful by grouping rare variants into functional units, i.e. genes. To adjust for both 

population structure and sample relatedness, gene-based tests have been extended to mixed models
6
. 

For example, EmmaX
7
 based SKAT

4
 approaches (EmmaX-SKAT) have been implemented and used for 

many rare variant association studies including TOPMed
1,8

. The generalized linear mixed model gene-

based test, SMMAT, has been recently developed
6
. However, these approaches require O(�� ) 

computation time and O(��) memory usages, where �  is the sample size, which are not scalable to 

large datasets.  

 

Here, we propose a novel method called SAIGE-GENE for region-based association analysis that is 

capable of handling very large samples (> 400,000 individuals), while inferring and accounting for sample 

relatedness. SAIGE-GENE is an extension of the previously developed single variant association method, 

SAIGE
9
, with a modification suitable to rare variants. Same as SAIGE, it utilizes state-of-the-art 

optimization strategies to reduce computation cost for fitting null mixed models. To ensure computation 

efficiency while improving test accuracy for rare variants, SAIGE-GENE approximates the variance of 

score statistics calculated with the full genetic relationship matrix (GRM) using the variance calculated 

with a sparse GRM and the ratios of these two variances estimated from a subset of genetic markers. 

Because the sparse GRM, which is constructed by thresholding small values in the full GRM, preserves 

close family structures, this approach provides a far more accurate variance estimation for very rare 

variants (minor allele count (MAC) < 20) than the original approach in SAIGE
9
. By combining single 

variant score statistics, SAIGE-GENE can perform Burden, SKAT and SKAT-O type gene-based tests. We 

have also developed conditional analysis to perform association tests conditioning on a single variant or 

multiple variants to identify independent rare variant association signals. Furthermore, SAIGE-GENE can 

account for unbalanced case-control ratios of binary traits by adopting a robust adjustment based on 

saddlepoint approximation
10-12

 (SPA) and efficient resampling
13

 (ER). The robust adjustment was 

previously developed for independent samples
14

 and we have extended it for related samples in SAIGE-

GENE.   
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We have demonstrated that SAIGE-GENE controls for type I error rates in related samples for both 

quantitative and binary traits through extensive simulations as well as real data analysis, including the 

HUNT study for 69,716 Norwegian samples
15,16

 and the UK Biobank for 408,910 White British samples
2
. 

By evaluating its computation performance of SAIGE-GENE, we have shown its feasibility for large-scale 

genome-wide analysis. To perform exome-wide gene-based tests on 400,000 samples with on average 

50 markers per gene, SAIGE-GENE requires 2,238 CPU hours and less than 36 Gb memory, while current 

methods will cost more than > 10 Tb in memory. We have further applied SAIGE-GENE to 53 

quantitative traits and 10 binary traits in the UK Biobank and identified several significantly associated 

genes through exome-wide gene-based tests.   

 

RESULTS 

 

Overview of Methods 

 

SAIGE-GENE consists of two main steps: 1. Fitting the null generalized linear mixed model (GLMM) to 

estimate variance components and other model parameters. 2. Testing for association between each 

genetic variant set, such as a gene or a region, and the phenotype. Three different association tests: 

Burden, SKAT, and SKAT-O have been implemented in SAIGE-GENE. The workflow is shown in the 

Supplementary Figure 1.  

 

SAIGE-GENE uses similar optimization strategies as utilized in the original SAIGE to achieve the scalability 

for fitting the null GLMM and estimating the model parameters in Step 1. In particular, the spectral 

decomposition has been replaced by the preconditioning conjugate gradient (PCG) to solve linear 

systems without calculating and inverting the � �  �  GRM. To reduce the memory usage, raw 

genotypes are stored in a binary vector and elements of GRM are calculated when needed rather than 

being stored.  

 

One of the most time-consuming part in association tests is to calculate variance of single variant score 

statistic, which requires O(��) computation. To reduce computation cost, existing approaches, such as 

SAIGE
9
, BOLT-LMM

17
, and GRAMMA-Gamma

18
, approximate the variance of single variant score 

statistics with the full GRM using the variance estimate without a GRM and the ratio of these two 

variances. The ratio, which is assumed to be constant, is estimated using a subset of randomly selected 

genetic markers.  However, for very rare variants with MAC below 20, the constant ratio assumption is 

not satisfied (Supplementary Figure 2, left panel). This is because rare variants are more susceptible to 

close family structures. Thus, to better approximate the variance, SAIGE-GENE incorporates close family 

structures through a sparse GRM, in which GRM elements below a user-specified relatedness coefficient 

are zeroed out and close family structures are preserved. The ratio between the variance with the full 

GRM and with the sparse GRM is much less variable (Supplementary Figure 2, right panel). To construct 

a sparse GRM, a small subset of randomly selected genetic markers, i.e. 2,000, are firstly used to quickly 

estimate which sample pairs pass the user-specified coefficient of relatedness cutoff, e.g. �0.125 for up 

to 3
rd

 degree relatives. Then the coefficients of relatedness for those related pairs are further estimated 

using the full set of genetic markers, which equal to values in the full GRM. Given that estimated values 

for variance ratios vary by MAC for the extremely rare variants (Supplementary Figure 2, left panel), 

such as singletons and doubletons, the variance ratios need to be estimated separately for different 

MAC categories. By default, MAC categories are set to be MAC equals to 1, 2, 3, 4, 5, 6 to 10, 11 to 20, 

and > 20. 
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In Step 2, gene-based tests are conducted using single variant score statistics and their covariance 

estimates, which are approximated as the product of the covariance with the sparse GRM and the pre-

estimated ratio. SAIGE-GENE can carry out Burden, SKAT, and SKAT-O approaches. Since SKAT-O is a 

combined test of Burden and SKAT, and hence provides a robust power, SAIGE-GENE performs SKAT-O 

by default.  

 

If a gene or a region is significantly associated with the phenotype of interest, it is necessary to test if 

the signal is from rare variants or just a shadow of common variants in the same locus. We have 

developed conditional analysis using linkage disequilibrium (LD) information between conditioning 

markers and the tested gene
19

. Details are described in the Online Methods section.  

 

SAIGE-GENE uses the same generalized linear mixed model as in SMMAT, while SMMAT calculates the 

variances of the score statistics for all tested genes using the full GRM directly and hence can be thought 

of as the “exact” method. When the trait is continuous, GLMM used by SAIGE-GENE and SMMAT is 

equivalent to the linear mixed model (LMM) of EmmaX-SKAT. We have further shown that SAIGE-GENE 

provides consistent association p-values to the two “exact” methods, EmmaX-SKAT and SMMAT (r
2 

of -

log10 p-values > 0.99), using both simulation studies (Supplementary Figure 3) and real data analysis for 

down-sampled UK Biobank and HUNT (Supplementary Figure 4), but with much smaller computation 

and memory cost (Figure 1). We have also shown that SAIGE-GENE with different coefficient of 

relatedness cutoffs (0.125 and 0.2) produced nearly identical association p-values for automated read 

pulse rates in UK Biobank (Supplementary Figure 5). 

 

For binary phenotypes with unbalanced case-control ratios (< 1:9), single variant score statistics do not 

follow the normal distribution, leading to inflated type I error rates for region-based test
13

. To address 

this problem, we have recently developed a scalable robust adjustment for independent samples
14

. The 

approach uses saddlepoint approximation
10-12

 (SPA) and efficient resampling
13

 (ER) to calibrate the 

variance of single variant score statistics. We have extended this approach to GLMM for SAIGE-GENE, 

which provides greatly improved type I error control than the unadjusted approach of assuming 

normality (Supplementary Figure 6). Details can be found in Supplementary Materials 1.3.3. 

 

Computation and Memory Cost 

 

To evaluate the computation performance of SAIGE-GENE, we randomly sampled subsets of the 408,144 

UK Biobank participants with the White British ancestry and non-missing measurements for waist hip 

ratio
2
. We benchmarked SAIGE-GENE, EmmaX-SKAT, and SMMAT for exome-wide gene-based SKAT-O 

tests, in which 15,342 genes were tested with assuming that each has 50 rare variants.   

 

Memory usage is plotted on a log10 scale against sample sizes in Figure 1A. The memory cost of SAIGE-

GENE is linear to the number of markers, M1, used for kinship estimation, but using too few markers may 

not be sufficient to account for subtle sample relatedness in the data, leading to inflated type I error 

rates in genetic association tests
9,20

. SAIGE-GENE uses 11.74 Gb with M1 = 93,511 and 35.59 Gb when M1 

= 340,447 when the sample size N is 400,000, making it feasible for large sample data. In contrast, with 

N = 400,000 the memory usages in EmmaX-SKAT and SMMAT are projected to be nearly 10Tb, which 

makes them impossible to be used for large sample data.  

 

Total computation time for exome-wide gene-based tests is plotted on a log10 scale against the sample 

size as shown in Figure 1B. Computation time for Step 1 and Step 2 are plotted separately in 

Supplementary Figure 7 with numbers presented in Supplementary Table 1. The computation time for 
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Step 1 in SAIGE-GENE is approximately O(M1N
1.5

) and in SMMAT and EmmaX-SKAT is O(N
3
), where M1 is 

the number of markers used for estimating the full GRM and N is the sample size. In Step 2, the 

association test for each gene costs O(��� in SAIGE-GENE, where � is the number of markers in the 

gene and K is the number of non-zero elements in the sparse GRM. Compared to O(���) in Step 2 of 

SMMAT and EmmaX-SKAT, SAIGE-GENE decreases the computation time dramatically. For example, in 

the UK Biobank (N =408,910) with the relatedness coefficient � 0.125 (corresponding to preserving 

samples with 3
rd

 degree or closer relatives in the GRM), � = 493,536, which is the same order of 

magnitude of N, and hence O(��� is greatly smaller than �	����. As the computation time in Step 2 is 

approximately linear to �, the number of markers in each variant set, the total computation time for 

exome-wide gene-based tests was projected by different � and plotted in Supplementary Figure 8. In 

addition, we plotted the projected computation time for genome-wide region-based tests against the 

sample size as shown in Supplementary Figure 9, in which 286,000 chunks with 50 markers per chunk 

were assumed to be tested, corresponding to 14.3 million markers in HRC-imputed UK Biobank data 

with MAF 
 1% and imputation info score � 0.8.  

 

With M1 = 340,447, it takes SAIGE-GENE 2,238 CPU hours for exome-wide gene-based tests and 3,919 

CPU hours for genome-wide region-based tests for waist hip ratio with N = 400,000 and each test 

contains 50 markers on average. Compared to EmmaX-SKAT and SMMAT, SAIGE-GENE is 25 times faster 

for exome-wide gene-based tests and 161 times faster for genome-wide region-based tests. More 

details about the computation cost are presented in Supplementary Table 1.  
 

To evaluate whether the additional steps in the robust adjustment for binary traits increases 

computation cost, we have obtained computation time of SAIGE-GENE with and without the adjustment 

when analyzing the UK Biobank data for glaucoma (PheCode:365). Samples were randomly selected 

from 4,462 glaucoma cases and 397,701 controls respectively, so the case-control ratio remained the 

same in sub-sampled data sets. The results are presented in Supplementary Table 2 and plotted in 

Supplementary Figure 10, showing that the robust adjustment only slightly increases the computation 

cost (1,269 vs 1,232 CPU hours for exome-wide analysis with M1 = 93,511) compared to the unadjusted 

approach. 

 

The computation time for constructing the sparse GRM is O(��
��� + M1�). ��

� is the number of a small 

set of markers used for initial determination of related sample pairs based on a relationship coefficient 

cutoff, which by default is set to be 2,000. This step is only needed for each data set for one time to 

create a sparse GRM and the constructed sparse GRM will be re-used for all phenotypes in the same 

cohort or biobank. For example, for the UK Biobank with � = 408,910, M1= 340,447, ��
� = 2000, � = 

493,536 with the relationship coefficient � 0.125, corresponding to up to 3
rd

 degree relatives, it took 

312 CPU hours to create the sparse GRM. Parallel computation is allowed for this step.  

 

Gene-based association analysis of quantitative traits in HUNT and UK Biobank 

 

We applied SAIGE-GENE to analyze 13,416 genes, with at least two rare (MAF 
 1%) missense and stop-

gain variants that were directly genotyped or imputed from HRC for high-density lipoprotein (HDL) in 

69,716 Norwegian samples from a population-based Nord Trøndelag Health Study (HUNT)
9
. The HUNT 

study has substantial sample relatedness, in which ~55,000 samples have at least one up to 3rd degree 

relatives. The quantile-quantile (QQ) plot for the p-values of SKAT-O tests from SAIGE-GENE for HDL in 

HUNT is shown Figure 2A. As Table 1 shows, eight genes reached the exome-wide significant threshold 

(p-value 
 2.5x10
-6

) and all of them are located in the previously reported GWAS loci for HDL
21,22

. By 

extending 500kb up and down stream, a top significant hit from single-variant association tests has been 
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identified around each gene. For genes LIPC, LIPG, NR1H3, and CKAP5, the top hits are common variants 

with MAF > 5% and the top hits in FSD1L, ABCA1 and RNF111 are less frequent non-coding variants that 

are not included in the gene-based tests. After conditioning on top hits, all genes, except for FSD1L, 

remained exome-wide significant, suggesting that SAIGE-GENE has identified associations of rare coding 

variants of those genes that are independent from the nearby association signals, pointing to candidate 

causal genes at those loci. 

 

We also applied SAIGE-GENE to analyze 15,342 genes for 53 quantitative traits using 408,910 UK 

Biobank participants with White British ancestry
2
. Heritability estimates based on the full GRM are 

presented in Supplementary Table 3A. Supplementary Table 4A presents all genes with p-values 

reaching the exome-wide significant threshold (p 
 2.5x10
-6

). The same MAF cutoff 
 1%, for missense 

and stop-gain variants were applied. Figure 2B shows the QQ plot for automated read pulse rate as an 

exemplary quantitative phenotype in the UK Biobank. After conditioning on the most significant nearby 

variants, MYH6, ARHGEF40 and DBH remain significant (Table 1). Gene TBX5, MYH6, TTN, and 

ARHGEF40 are known genes for heart rates by previous GWAS studies
23-26

. To our knowledge, KIF1C and 

DBH have not been reported by association studies for heart rates, but both homozygous and 

heterozygous DBH mutant mice have decreased heart rates
27

. For the gene DBH, no single variant 

reaches the genome-wide significant threshold (the most significant variant is 9:136149399 (GRCh37) 

with MAF = 18.7% and p-value =3.46x10
-6

).  

 

In the analysis of all 53 quantitative traits in the UK Biobank, 199 gene-phenotype pairs were significant 

at exome-wide significant threshold (p 
 2.5x10
-6

). Among them fifteen genes for fourteen phenotypes 

were not significant by the single variant test, as the most significant single-variant association p-value in 

each of these loci (500kb up and down stream around each gene) did not reach the genome-wide 

threshold (p-value < 5x10
-8

)(Supplementary Table 5). For example, TBX5, which has been previously 

reported to be associated with heart rates
23

, was significant by SAIGE-GENE for the automated read 

pulse rate (p-valueSKAT-O = 2.87x10
-7

). However, the top variant in the locus was not genome-wide 

significant (p-value = 2.91x10
-7

). ARID1B has been previously reported to be associated with blood 

pressure in individuals with African ancestry
28

 and identified by SAIGE-GENE for automated read mean 

of diastolic blood pressure (p-valueSKAT-O = 1.08x10
-6

), while the most significant single variant association 

p-value was 9.01x10
-7

. In addition, SAIGE-GENE has identified several potentially novel gene-phenotype 

associations, including DBH for automated read pulse rate (p-valueSKAT-O =1.74x10
-6

), C10orf35 for body 

fat percentage (p-valueSKAT-O = 3.64x10
-7

), a gene have been reported to be associated with type 2 

diabetes
29

 and blood lipids by previous GWAS
30

. After conditioning on the most significant nearby 

variants, total 64 genes for 12 traits remained exome-wide significant (Supplementary Table 6A). Our 

results have successfully replicated several previous findings, such as the association between the rare 

coding variants of ADAMTS3 and height
31

, ZFAT and height
31

, and RRAS and blood pressure
32

. These 

results have demonstrated the value of gene-based tests for identifying genetic factors for complex 

traits. 

 

Gene-based association analysis of binary traits in UK Biobank 

 

We also applied SAIGE-GENE to ten binary phenotypes with various case-control ratios in the UK Biobank. 

The heritability estimates in a liability scale are presented in Supplementary Table 3B. Nine genes for six 

binary phenotypes reached the exome-wide significant threshold (p-value < 2.5x10
-6

)  (Supplementary 

Table 4B), all of which have been identified by both SAIGE-GENE and single variant tests, including the 

gene MYOC, known for glaucoma
33

 (Figure 2C). Six genes for six binary phenotypes remained exome-

wide significant after conditioning on top variants (Supplementary Table 6B). Gene GORASP1, encoding 
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Golgi Reassembly Stacking Protein 1 involved in the vesicle-mediated transport pathway, remained 

significant after conditioning on the top hit for diseases of hair and hair follicles.  

 

 

 

Simulation Studies 

 

We investigated the empirical type I error rates and power of SAIGE-GENE through simulation. We 

followed the steps described in the Online Methods section to simulate genotypes and phenotypes for 

10,000 samples in two settings. One has 500 families and 5,000 unrelated samples and the other one 

has 1,000 families, each with 10 family members based on the pedigree shown in Supplementary Figure 

11.  

 

Type I error rates 

 

The type I error rates of SAIGE-GENE, EmmaX-SKAT, and SMMAT have been evaluated based on gene-

based association tests performed on 10
7
 simulated gene-phenotype combinations, each with 20 

genetic variants with MAF 
  1% on average. A sparse GRM with a cutoff 0.2 for the coefficient of 

relatedness was used in SAIGE-GENE. Two different values of variance component parameter 

corresponding to the heritability ��= 0.2 and 0.4 were considered for continuous traits, respectively (see 

ONLINE METHODS). The empirical type I error rates at the α = 0.05, 10
-4 

and 2.5x10
-6 

are shown in the 

Supplementary Table 7. Our simulation results suggest that SAIGE-GENE has relatively well controlled 

type I error rates, while the type I error rates are slightly inflated when heritability is relatively high (��= 

0.4). Similar results have been observed on a larger sample size with 1,000 families and 10,000 

unrelated samples (Supplementary Materials 2.1 and Supplementary Table 8). Adjusting the test 

statistics using the genomic control (GC) inflation factor lambda has addressed the inflation 

(Supplementary Materials 1.3.4).   

 

Further simulations have been conducted to evaluate type I error rates of SAIGE-GENE, EmmaX-SKAT, 

and SMMAT for skewed distributed phenotypes, which are common in real data (Supplementary Figure 

12A). All three methods had inflated type I error rates for phenotypes having skewed distribution 

(Supplementary Table 9). With inverse normal transformation on phenotypes (Supplementary Figure 

12B), the inflation has been dramatically reduced but slight inflation was still observed (Supplementary 

Table 9). A potential reason is that inverse normal transformation disrupts sample relatedness in raw 

phenotypes, leading to poor fitting for the null GLMM. We then conducted a three-step phenotype 

transformation procedure as described in Supplementary Materials 2.2, which maintains sample 

relatedness in raw phenotypes, and all three methods then have well controlled type I error rates 

(Supplementary Table 10). From simulation studies using real genotype data from the UK Biobank, we 

show that SAIGE-GENE well controlled type I error rates in the presence of subtle population structure 

or non-negligible cryptic relatedness between families (Supplementary Table 11 and 12). Details have 

been described in Supplementary Materials 2.3 and 2.4. 

 

We have also evaluated the empirical type I error rates of SAIGE-GENE for binary traits with various 

case-control ratios. Similar with continuous traits, a sparse GRM with a cutoff 0.2 for the coefficient of 

relatedness was used. The variance component parameter τ =N1 was assumed, corresponding to 

liability-scale heritability 0.23. As expected, when case-control ratios were balanced or moderately 

unbalanced (e.g. 1:1 and 1:9), type I error rates were well controlled even without the robust 

adjustment, while when the ratios were extremely unbalanced (e.g. 1:19 and 1:99), inflation was 
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observed (Supplementary Table  13A and Supplementary Figure 6). With the robust adjustment 

combining SPA and ER, type I error rates were relatively well controlled in the presence of unbalanced 

case-control ratios (Supplementary Table 13B and Supplementary Figure 6). However, for phenotypes 

with case-control ratio=1:99, slight inflation was still observed, although the inflation has been 

dramatically alleviated compared to the unadjusted method. Then the genomic control adjustment can 

be used to further control the type I error rates (Supplementary Table 13B). We have also evaluated 

empirical type I error rates of SAIGE-GENE for binary traits under case-control sampling with case-

control ratios 1:1 and 1:9 based on a disease prevalence 1% in the population (Supplementary Materials 

2.5) and observed well-controlled type I error rates (Supplementary Table 14).  

 

Power 

Next, we evaluated empirical power of SAIGE-GENE and EmmaX-SKAT for quantitative traits. Two 

different settings of proportions of causal variants were used: 10% and 40%. In each setting, among 

causal variants, 80% and 100% have negative effect sizes. The absolute effect sizes for causal variants 

are set to be |0.3log10(MAF)| and |log10(MAF)|, respectively, when the proportions of causal variants 

are 0.4 and 0.1. Supplementary Table 15 shows that the power of both methods is nearly identical for 

all simulation settings for Burden, SKAT and SKAT-O tests.  

 

We have also evaluated empirical power of SAIGE-GENE for binary traits using two different study 

designs: cohort study with various disease prevalence (0.01-0.5); and case-control sampling with 

different case-control ratios (1:1-1:19) based on a disease prevalence 1% in the population. In each 

setting, 40% variants are simulated as causal variants. Among them, 80% are risk-increasing variants and 

20% are risk-decreasing. The absolute effect sizes of causal variants are set to be |0.55log10(MAF)| and 

|0.35log10(MAF)| for cohort study and case-control sampling, respectively. Supplementary Table 16 

shows the empirical power of SKAT-O in both simulation studies. SAIGE-GENE had similar empirical 

power as unadjusted SAIGE-GENE in balanced case-control ratios and higher power in unbalanced 

scenarios. The power is small when case: control ratio is 1:99 due to the limited number of cases (100 

cases), which can be alleviated with larger sample size.  

 

Code and data availability  

 

SAIGE-GENE is implemented as an open-source R package available at 

https://github.com/weizhouUMICH/SAIGE/master.  

 

The summary statistics and QQ plots  for 53 quantitative phenotypes and 10 binary phenotypes in UK 

Biobank by SAIGE-GENE are currently available for public download at 

https://www.leelabsg.org/resources.  

 

 

DISCUSSION  

 

In summary, we have presented a method, SAIGE-GENE, to perform gene- or region-based association 

tests in large cohorts or biobanks in the presence of sample relatedness. Similar to SAIGE
9
, which was 

previously developed by our group for single-variant association tests, SAIGE-GENE uses generalized 

linear mixed models to account for sample relatedness, scalable computational approaches for large 

sample sizes, and the robust adjustment
14

 to account for unbalanced case-control ratios of binary traits .  
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SAIGE-GENE uses several optimization strategies that are similar to those used in SAIGE to make fitting 

the null GLMM feasible for large sample sizes. For example, instead of storing the genetic relationship 

matrix (GRM) in the memory, SAIGE-GENE stores genotypes that are used for constructing the matrix in 

a binary vector and computes the elements of the matrix as needed. Preconditioned conjugate gradient 

algorithm is also used to solve linear systems instead of the Cholesky decomposition. However, some 

optimization approaches are specifically applied in the gene-based tests in regard of rare variants. As 

estimating the variances of score statistics for rare variants are more sensible to family structures, we 

use a sparse GRM to preserve close family structures rather than ignoring all sample relatedness. In 

addition, the variance ratios are estimated for different minor allele count (MAC) categories, especially 

for those extremely rare variants with MAC lower than or equal to 20.   

 

For binary phenotypes, SAIGE-GENE applies the robust adjustment combining SPA and ER, thereby also 

relatively well controls the type I error rates for both balanced and unbalanced case-control phenotypes. 

However, slight inflation is still observed in extremely unbalanced phenotypes (
1:99). To address this 

possible issue, we suggest using the genomic control to further control type I error.  

 

In numerical optimization, using good initial values can improve the model convergence. In the analysis 

of 24 quantitative traits in the UK Biobank with sample size (N) � 100,000, we note that the models with 

the full GRM and the sparse GRM produced different variance component estimates, but they are 

relatively concordant (Pearson’s correlation R
2
 = 0.66, Supplementary Figure 13). This indicates that the 

parameter estimates from the sparse GRM can be used as initial values to facilitate the model fitting. 

We implemented this approach in SAIGE-GENE. 

 

SAIGE-GENE has some limitations. First, similar to SAIGE and other mixed-model methods, the time for 

algorithm convergence to fit the generalize linear mixed models may vary among phenotypes and study 

samples given different heritability levels and sample relatedness. Second, similar to SAIGE
9
 and 

SMMAT
6
, SAIGE-GENE uses penalized quasi-likelihood (PQL)

34
 for binary traits to estimate the variance 

component in binary phenotypes which is known to be biased. However, as shown in simulation studies 

in SAIGE
9
 and SMMAT

6
, PQL-based approaches works well to adjust for sample relatedness.  

 

Overall, we have shown that SAIGE-GENE can account for sample relatedness while maintaining test 

power through extensive simulation studies. By applying SAIGE-GENE to the HUNT study
9
 and the UK 

Biobank
2
 followed by conditioning on most significant variants in the testing loci, we have demonstrated 

that SAIGE-GENE can identify potentially novel association signals that are independent from the nearby 

association signals from the single-variant tests. Currently, our method is the only available mixed effect 

model approach for gene- or region-based rare variant tests for large sample data, while accounting for 

unbalanced case-control ratios for binary traits. By providing a scalable solution to the current largest 

and future even larger datasets, our method will contribute to identifying trait-susceptibility rare 

variants and genetic architecture of complex traits.  

 

URLs 

SAIGE (version 0.35.8.8), https://github.com/weizhouUMICH/SAIGE/.  

SMMAT (version 1.0.2), https://github.com/hanchenphd/GMMAT.  

EmmaX-SKAT (SKAT version_1.3.2.1), https://cran.r-project.org/web/packages/SKAT/index.html.  

UK-Biobank analysis results (Gene-based summary statistics for 53 quantitative phenotypes in the UK 

Biobank by SAIGE-GENE), https://www.leelabsg.org/resources.  
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FIGURE LEGENDS 

 

Figure 1. Estimated and projected computation cost by sample sizes (N) for gene-based tests for 15,342 

genes, each containing 50 rare variants. Benchmarking was performed on randomly sub-sampled UK 

Biobank data with 408,144 White British participants for waist-to-hip ratio. The reported run times and 

memory are medians of five runs with samples randomly selected from the full sample set using 

different sampling seeds. The reported computation time and memory for EmmaX-SKAT and SMMAT is 

the projected computation time when N > 20,000. A. Log-log plots of the memory usage as a function of 

sample size (N) B. Log-log plots of the run time as a function of sample size (N). Numerical data are 

provided in Supplementary Table 1.  
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Figure 2. Quantile-quantile plots of exome-wide gene-based association results for A. high-density 

lipoprotein (HDL) in the HUNT study (N = 69,214). SKAT-O approach in SAIGE-GENE was performed for 

13,416 genes with stop-gain and missense variants with MAF 
 1%, of which 10,600 having at least two 

variants are plotted. B. automated read pulse rate in the UK Biobank (N = 385,365). C. glaucoma in the 

UK Biobank (N cases = 4,462; N controls = 397,761). SKAT-O approach in SAIGE-GENE was performed for 

15,338 genes with stop-gain and missense variants with MAF 
 1%, of which 12,638 having at least two 

variants are plotting. 

 

A. B. 

  
C.  
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Table 1. Genes that are significantly associated with automated read pulse rate and glaucoma in the UK 

Biobank and high-density lipoprotein (HDL) in the HUNT study with SKAT-O p-values < 2.5x10
-6  

from 

SAIGE-GENE. Conditional analysis was performed when the top hit in the locus (+/- 500kb of the start 

and end positions of the gene) is not included in the gene-based test. The p-value of conditional analysis 

is NA when the top hit is a rare missense or stop gain variant included in the gene-based test.   

 

 

 
Gene 

Number of 

Markers 

SAIGE 

SKAT-O Test 

Top Hit in the Locus  

 

 

  
p-value 

p-value 

Conditional 

Variant 

(GRCh37/hg19) 
p-value MAF 

Pulse 

Rate 

(UK 

Biobank) 

TBX5 4 9.69E-35 NA 12:114837349_C:A 7.73E-35 0.0049 

MYH6 14 3.61E-15 2.56E-13 14:23861811_A:G 1.04E-168 0.3698 

TTN 368 3.18E-10 3.41E-06 2:179721046_G:A 8.73E-100 0.0885 

KIF1C 12 4.78E-10 NA 17:4925475_C:T 3.18E-10 0.0063 

ARHGEF40 7 7.02E-08 2.57E-10 14:21542766_A:G 3.30E-52 0.1688 

FNIP1 8 3.58E-07 0.04309229 5:131107733_C:T 1.22E-08 0.0027 

DBH 12 1.74E-06 1.74E-06 9:136149399_G:A 3.46E-06 0.1870 

HDL 

(HUNT) 

LCAT 3 7.34E-50 NA 16:67974303_A:T 1.78E-48 0.0008 

LIPC 4 1.25E-29 6.63E-31 15:58723939_G:A 7.50E-89 0.1889 

FSD1L 3 7.40E-15 1 9:107793713_T:C 1.45E-20 0.0021 

ABCA1 14 3.32E-11 1.28E-11 9:107620797_A:G 3.64E-48 0.0055 

LIPG 3 2.15E-10 2.41E-10 18:47156926_C:A 5.92E-40 0.2348 

NR1H3 2 6.53E-09 1.69E-09 11:47246397_G:A 3.66E-13 0.322 

CKAP5 7 1.62E-08 1.21E-09 11:47246397_G:A 3.66E-13 0.322 

RNF111 11 1.18E-07 1.37E-09 15:58856899_C:G 2.82E-24 0.0047 

Glaucoma 

(UK 

Biobank) 

MYOC 6 1.23E-06 NA 1:171605478_G:A 9.13E-16 0.001372 
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ONLINE METHODS 

 

Generalized linear mixed model  

 

In a study with sample size �, we denote the phenotype of the ith individual using ��  for both 

continuous and binary traits. Let the 1 � 	� � 1� vector ��  represent � covariates including the 

intercept, the � � � matrix ��  represent the allele counts (0, 1 or 2) for � variants in the gene to test. 

The generalized linear mixed model can be written as      �	��� � ��� � ��� � �� ,  
where ��  is the mean of phenotype, ��  is the random effect, which is assumed to be distributed as �(0, � �), where � is an � �  � genetic relationship matrix (GRM) and � is the additive genetic variance 

parameter. The link function � is the identity function for continuous traits with an error term �~�	0, !"� and logistic function for binary traits. The parameter � is a 	� � 1�  �  1 coefficient vector 

of fixed effects and � is a � � 1 coefficient vector of the genetic effect. 

 

Estimate variance component and other model parameters (Step 1) 

 

Same as in the original SAIGE
9
 and GMMAT

35
, to fit the null GLMM in SAIGE-GENE, penalized quasi-

likelihood (PQL) method
34,36

 and the computational efficient average information restricted maximum 

likelihood (AI-REML) algorithm
35,37

 are used to iteratively estimate 	�̂, �$, �%) under the null hypothesis of 

� � 0. At iteration k, let 	�̂��� , �$���, �%���) be estimated 	�̂, �$, �%),  �̂���� be the estimated mean of ��  and 

Σ%���= ()* ���+	� � �̂���� be an � �  � matrix of the variance of working vector �,� , in which � is the 

� �  � GRM. For continuous traits, )* ��� � !%	�" and �,� �  ������ � ����� . For binary traits, )* ��� �
-./�0�̂���� 11 2 �̂����34 and �,� � ������ � ����� � 	�� 2 �̂����)/5�̂���� 11 2 �̂����36. To obtain the log quasi-

likelihood and average information at each iteration, SAIGE and SAIGE-GENE use the preconditioned 

conjugate gradient approach (PCG)
31,32

 to obtain the product of inverse of Σ%���and any other vector by 

iteratively solving a linear system with Σ%���. This approach is more computationally efficient than using 

Cholesky decomposition to obtain (Σ%���+	�. The numerical accuracy of PCG has been evaluated in the 

SAIGE paper
9
.  

 

Gene-based association tests (Step 2) 

 

Test statistics of the Burden, SKAT and SKAT-O tests for a gene can be constructed based on score 

statistics from the marginal model for individual variants in the gene. Suppose there are �  variants in 

the region or gene to test. The score statistic for variant 7 (j=1,. . , �) under H0: �
 � 0 is 8
 � �

�	9 2 �̂� 

where �
 and Y are � �  1 genotype and phenotype vectors, respectively, and �̂ is the estimated mean 

of 9 under the null hypothesis.  

 

Let :
denote a threshold indicator or weight for variant 7 and U � diag	:�, … , :�� be a diagonal matrix 

with :
 as the 7th element. Similar to the original SKAT and SKAT-O papers
4,5

,  to upweight rare variants, 

the default setting in SAIGE-GENE is :
 �  ABC/D�EF
 , 1, 25H, which upweight rarer variants. The 

Burden test statistics can be written as  I����� � 1∑ :
8
�

�� 3� .  Suppose 

�K � � 2 �D��)* �H	���)* � is the covariate adjusted genotype matrix, where � � 	�� , … , ��� is the 

� � �  genotype matrix of the �  genetic variants, and L% � M%	� 2 M%	��D��M%	��H	���M%	�  with 

M% � )* 	� � �̂�.  Under the null hypothesis of no genetic effects, I�����  followed NO�� , where 
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N � P�U�K�L%�KUP, P is a � � 1 vector with all elements being unity and O��is a chi-squared distribution 

with 1 degree of freedom
3
. The SKAT test

4
 can be written as I���� � ∑ :
�8
��


�� , which follows a 

mixture of chi-square distribution  ∑ N�
O���

�� , where N�
 are the eigenvalues of Q�K�L%�KQ. The SKAT-O 

test
5
 uses a linear combination of the Burden and SKAT tests statistics I����� � 	1 2 R�I���� �

RI����� , 0 
  R 
 1. To conduct the test, the minimum p-value from grid of R is calculated and the p-

value of the minimum p-value is estimated through numerical integration. Following the suggestion in 

Lee et al
38

, we use a grid of eight values of R � 	0, 0.1�, 0.2�, 0.3�, 0.4�, 0.5�, 0.5, 1� to find the 

minimum p-value.  

 

Approximate UV�W*UV 

 

For each gene, given L%, the calculation of �K�L%�K requires applying PCG for each variant in the gene, 

which can be computationally very expensive. Suppose �,  represents a covariate adjusted single variant 

genotype vector. To reduce computation cost, an approximation approach has been used in SAIGE, 

BOLT-LMM
17

 and GRAMMAR-GAMMAR
18

, in which the ratio between �,�L%�, and �,��, is estimated by a 

small subset of randomly selected genetic markers. The ratio has been shown to be approximately 

constant for all variants. Given the estimated ratio X̂ � �,�L%�, /�,��,,  �,�L%�, for all other variants can be 

obtained as X̂�,��,. However, the variations of the estimated X̂ for extremely rare variants are large and 

including some closely related samples in the denominator helps reduce the variation of X̂ as shown in 

Supplementary Figure 2. Let �� denote a sparse GRM that preserves close family structure and �� 

denote a full GRM. We estimate the ratio X̂� � �,�L%�, /�,�L%��, , where 

L%� � M%�	� 2 M%�	�� 1��M%�	��3	� ��M%�	� and M%� �  )* 	� � �̂ ��.  

 

In ��, elements below a user-specified relatedness coefficient cutoff, i.e. > 3
rd

 degree relatedness, are 

zeroed out with only close family structures being preserved. To construct ��, a subset of randomly 

selected genetic markers, i.e. 2,000, is firstly used to quickly estimate which related samples pass the 

user-specified cutoff. Then the relatedness coefficients for those samples are further estimated using 

the full set of genetic markers, which equal to corresponding values in the ��. In the model fitting using 

�� , M%�	��  and M%�	��, need to be calculated. For this we use a sparse-LU based solve method
39

 

implemented in R. The constructed �� is also used for approximating the variance of score statistics with �� . For a biobank or a data set, �� only needs to be constructed once and can be re-used for any 

phenotypes in the same date set.  

 

SAIGE-GENE estimates variance ratios for different MAC categories. By default, MAC categories are set 

to be MAC equals to 1, 2, 3, 4, 5, 6 to 10, 11 to 20, and is greater than 20. Once the MAC categorical 

variance ratios are estimated, for each genetic marker in tested genes or regions,  X̂� can be obtained 

according to its MAC. Let Z%� be a � �  � diagonal matrix whose jth diagonal element is the ratio X̂� for 

the jth marker in the gene (i.e. �,
�L%�,
  /�,
�L%��,
�. For the tested gene with � markers, �K�L%�K can be 

approximated as Z%�
�

��K�L%��KZ%�
�

� (See Supplementary Materials for more details).  

 

Robust adjustment for Z%�
�

��K�L%��KZ%�
�

� to account for unbalanced case-control ratios 

 

To account for unbalanced case-control ratios of binary traits in region- or gene-based tests, we recently 

developed a robust adjustment for independent samples
14

. The approach first obtains well-calibrated p-
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values of single variant score statistics using SPA
10-12

 and ER
13

. SPA is a method to calculate p-values by 

inverting the cumulant generating function (CGF). Since CGF completely specifies the distribution, SPA 

can be far more accurate than using the normal distribution. However, since SPA is still an asymptotic 

based approach, it does not work well when variants are very rare (ex. MAC 
10). For those variants, we 

use ER, which resamples the case-control status of only individuals carrying a minor allele and is 

extremely fast for very rare variants. To account for the fact that individuals can have different non-

genetic risk of diseases (due to covariates), the resampling was done with the estimated disease risk �� . 

Next, variances of single variant score statistics are obtained by inverting those p-values, which are then 

used to calibrate the variances of region- or gene-based test statistics. We have extended the approach 

for related samples in SAIGE-GENE. For variants with MAC > 10, single-variant p-values are obtained by 

SAIGE, which basically applies SPA to GLMM. For variants with MAC 
10, we use ER with GLMM 

estimated  ��[ , which includes the random effect to maintain the correlation structure among samples. 

After calculating p-values of 8
 for j=1,…,q, the variance of 8
 is calibrated by inverting the corresponding 

p-value. Then the calibrated variance is applied to Z%�
�

��K�L%��KZ%�
�

� to compute robust p-value for the region- 

or gene-based test. The details can be found in Supplementary Materials.  

 

Conditional analysis  

 

In SAIGE-GENE, we have implemented the conditional analysis to perform gene-based tests conditioning 

on a given markers using the summary statistics from the unconditional gene-based tests and the 

linkage disequilibrium X� between testing and conditioning markers
19

. Let � be the genotypes for a gene 

to be tested for association, which contains � markers, and �� be the genotypes for the conditioning 

markers, which contains �� markers. Let � denote a � � 1 coefficient vector of the genetic effect for the 

gene to be tested and �� be a �� � 1 coefficient vector of the genetic effect for the conditioning 

markers. The genotype matrix with the non-genetic covariates projected out  

�K � � 2 �	��)* ��	���)* �  and �K�  � �� 2 �	��)* ��	���)* �� . In the unconditioned association 

tests, the test statistics 8 � �K�	9 2 �̂� and 8� � �K��	9 2 �̂�. In conditional analysis, under the null 

hypothesis, E(8) = E(�K�L	 �K����� � �K�L%�K���  and E(8� ) = E(�K��L	 �K����� � �K��L%��K��� . 8  and 8� 

jointly follow the multivariate normal with mean (E(8), E(8�)) and variance \ � ]�K�L%�K �K�L%�K��K��L%�K �K��L%�K� ^.  

 

Thus under the null hypothesis of no association of T, i.e. H0: � � 0, the 8|8� follows the conditional 

normal distribution with E( 8|8� ) = �K�L%�K� 	�K��L%�K��	�82  and var( 8|8� ) = 

�K�L%�K 2 �K�L%�K�   D�K��L%�K�  H	� �K��L%�K , and p-values can be calculated from the conditional distribution. 

 

Data simulation  

 

We carried out a series of simulations to evaluate and compare the performance of SAIGE-GENE, 

EmmaX-SKAT
5,7

 and SMMAT
6
. We used the sequence data from 10,000 European ancestry 

chromosomes over 1Mb regions that was generated using the calibrated coalescent model in the SKAT R 

package
5
. We randomly selected 10,000 regions with 3Kb from the sequence data, followed by the 

gene-dropping simulation
44

 using these sequences as founder haplotypes that were propagated through 

the pedigree of 10 family members shown in Supplementary Figure 11. Only variants with MAF 
  1% 

were used for simulation studies. Quantitative phenotypes were generated from the following linear 

mixed model �� � �� � �� � ��� � �� �  ��, where ��  is the genotype value, � is the genetic effect sizes, ��  is the random effect simulated from �	0, τ ��, and �� is the error term simulated from �	0, 	1 2 τ�"�.  
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Two covariates, X1 and X2, were simulated from Bernoulli(0.5) and N(0,1), respectively. Binary 

phenotypes were generated from the logistic mixed model ���������
� 	 
� � �� �  �� � �� � ���, 

where � is the genetic log odds ratio,  ��  is the random effect simulated from ��0, τ �� with τ 	 1. The 

intercept 
� was determined by the disease prevalence (i.e. case-control ratios). Given τ 	 1, the 

liability scale heritability is 0.23
45

. 

 

To evaluate the type I error rates at exome-wide α=2.5×10
-6

, we first simulated 10,000 regions, and then 

simulated 1000 sets of quantitative phenotypes for each simulated region with different random seeds 

under the null hypothesis with � 	 0. Gene-based association tests were performed using SAIGE-GENE, 

EmmaX-SKAT, and SMMAT therefore in total 10
7 

tests for each of Burden, SKAT, and SKAT-O tests were 

carried out. Two different settings for τ were evaluated: 0.2 and 0.4 and two different sample 

relatedness settings were used: one has 500 families and 5,000 independent samples and other one has 

1,000 families, each with 10 family members. We also simulated 1,000 sets of binary phenotypes for 

case-control ratios 1:99, 1:19, 1:9, 1:4, and 1:1 for 500 families and 5,000 independent samples. Burden, 

SKAT, and SKAT-O tests were performed on the 10,000 genome regions using SAIGE-GENE, in total 10
7 

tests for each method for each case-control ratio.  

 

For the power simulation, phenotypes were generated under the alternative hypothesis � � 0. Two 

different settings for proportions of causal variants are used: 10% and 40%, corresponding to |�| 	

|���10�����| and |�| 	 |0.3���10�����|, respectively. In each setting, 80% and 100% had negative 

effect sizes. We simulated 1,000 datasets in each simulation, and power was evaluated at test-specific 

empirical α, which yields nominal α=2.5×10
-6

. The empirical α was estimated from the type I error 

simulations. Similarly, 1,000 sets of binary traits were generated for 10,000 samples (500 families and 

5,000 independent samples) under the alternative hypothesis � � 0 using two different settings: cohort 

study with various disease prevalence (0.01, 0.05, 0.1, and 0.5); and case-control sampling with three 

different case-control ratios (1:19, 1:9, and 1:1) based on a disease prevalence 1% in the population 

(Supplementary Materials 2.5). 40% variants are simulated as causal variants, among which 80% are 

risk-increasing variants and 20% are risk-decreasing. The absolute effect sizes of causal variants are set 

to be |0.55log10(MAF)| and |0.35log10(MAF)| for cohort study and case-control sampling, respectively.  

 

HUNT and UK Biobank data analysis 

 

We applied SAIGE-GENE to the high-density lipoprotein (HDL) levels in 69,500 Norwegian samples from 

a population-based Nord Trøndelag Health Study (HUNT)
 9

. About 70,000 HUNT participants were 

genotyped using Illumina HumanCoreExome v1.0 and 1.1 and imputed using Minimac3
40

 with a merged 

reference panel of HRC and whole genome sequencing data (WGS) for 2,201 HUNT samples. Variants 

with imputation r
2
 < 0.8 were excluded from further analysis. Total 13,416 genes with at least two rare 

(MAF �  1%) missense and/or stop-gain variants with imputation r
2
 � 0.8 were tested. Variants were 

annotated using Seattle Seq Annotations (http://snp.gs.washington.edu/SeattleSeqAnnotation138/). 

Age, Sex, genotyping batch, and first four PCs were included as covariates in the model. We used 

249,749 pruned genotyped markers to estimate relatedness coefficients in the full GRM for Step 1 and 

used the relative coefficient cutoff  � 0.125 for the sparse GRM. 

 

We have also analyzed 53 quantitative traits and 10 binary traits using SAIGE-GENE in the  UK Biobank 

for 408,910 participants with White British ancestry
2
. Markers that were imputed by the Haplotype 

Reference Consortium (HRC)
20

 panel with imputation info score � 0.8 were used in the analysis. Total 

15,342 genes with at least two rare (MAF �  1%) missense and stop-gain variants that were directly 
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genotyped or successfully imputed from HRC (imputation score � 0.8) were tested. Sex, age when 

attended assessment center, and first four PCs that were estimated using all samples with White British 

ancestry were adjusted in all tests. We used 340,447 pruned markers, which were pruned from the 

directly genotyped markers using the following parameters, were used to construct GRM: window size 

of 500 base pairs (bp), step-size of 50 bp, and pairwise r
2
 < 0.2. We used the relative coefficient cutoff � 

0.125 for the sparse GRM. 

 

 

Genome build 

 

All genomic coordinates are given in NCBI Build 37/UCSC hg19. 

Reporting Summary 

 

Further information on study design is available in the Nature Research Reporting Summary linked to 

this article. 
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