

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright © 2012 ACM 978-1-4503-1160-1/12/02…$10.00.

Scalable GPU Graph Traversal

Duane Merrill

University of Virginia
Charlottesville

Virginia
USA

dgm4d@virginia.edu

Michael Garland

NVIDIA Corporation
Santa Clara
California

USA
mgarland@nvidia.com

Andrew Grimshaw

University of Virginia
Charlottesville

Virginia
USA

grimshaw@virginia.edu

Abstract

Breadth-first search (BFS) is a core primitive for graph traversal
and a basis for many higher-level graph analysis algorithms. It is
also representative of a class of parallel computations whose
memory accesses and work distribution are both irregular and
data-dependent. Recent work has demonstrated the plausibility of
GPU sparse graph traversal, but has tended to focus on
asymptotically inefficient algorithms that perform poorly on
graphs with non-trivial diameter.

We present a BFS parallelization focused on fine-grained task
management constructed from efficient prefix sum that achieves
an asymptotically optimal O(|V|+|E|) work complexity. Our
implementation delivers excellent performance on diverse graphs,
achieving traversal rates in excess of 3.3 billion and 8.3 billion
traversed edges per second using single and quad-GPU
configurations, respectively. This level of performance is several
times faster than state-of-the-art implementations both CPU and
GPU platforms.

Categories and Subject Descriptors G.2.2 [Discrete
Mathematics]: Graph Theory – Graph Algorithms; D.1.3
[Programming Techniques]: Concurrent programming; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems – Computations on
discrete structures, Geometrical problems and computations

General Terms Algorithms, performance

Keywords Breadth-first search, GPU, graph algorithms,
parallel algorithms, prefix sum, graph traversal, sparse graph

1. Introduction

Algorithms for analyzing sparse relationships represented as
graphs provide crucial tools in many computational fields ranging
from genomics to electronic design automation to social network
analysis. In this paper, we explore the parallelization of one
fundamental graph algorithm on GPUs: breadth-first search
(BFS). BFS is a common building block for more sophisticated
graph algorithms, yet is simple enough that we can analyze its
behavior in depth. It is also used as a core computational kernel
in a number of benchmark suites, including Parboil [26], Rodinia
[10], and the emerging Graph500 supercomputer benchmark [29].

Contemporary processor architecture provides increasing
parallelism in order to deliver higher throughput while
maintaining energy efficiency. Modern GPUs are at the leading
edge of this trend, provisioning tens of thousands of data parallel
threads.

Despite their high computational throughput, GPUs might
appear poorly suited for sparse graph computation. In particular,
BFS is representative of a class of algorithms for which it is hard
to obtain significantly better performance from parallelization.
Optimizing memory usage is non-trivial because memory access
patterns are determined by the structure of the input graph.
Parallelization further introduces concerns of contention, load
imbalance, and underutilization on multithreaded architectures [3,
21, 32]. The wide data parallelism of GPUs can be particularly
sensitive to these performance issues.

Prior work on parallel graph algorithms has relied on two key
architectural features for performance. The first is multithreading
and overlapped computation for hiding memory latency. The
second is fine-grained synchronization, specifically atomic read-
modify-write operations. Atomic mechanisms are convenient for
coordinating the dynamic placement of data into shared data
structures and for arbitrating contended status updates. [3–5]

Modern GPU architectures provide both. However,
serialization from atomic synchronization is particularly
expensive for GPUs in terms of efficiency and performance. In
general, mutual exclusion does not scale to thousands of threads.
Furthermore, the occurrence of fine-grained and dynamic
serialization within the SIMD width is much costlier than between
overlapped SMT threads.

For machines with wide data parallelism, we argue that
software prefix sum [7, 17] is often a more suitable approach to
data placement. Prefix sum is a bulk-synchronous algorithmic
primitive that can be used to compute scatter offsets for
concurrent threads given their dynamic allocation requirements.
Efficient GPU prefix sums [24] allow us to reorganize sparse and
uneven workloads into dense and uniform ones in all phases of
graph traversal.

Our work as described in this paper makes contributions in the
following areas:

Parallelization strategy. We present a GPU BFS
parallelization that performs an asymptotically optimal linear
amount of work. It is the first to incorporate fine-grained parallel
adjacency list expansion. We also introduce local duplicate
detection techniques for avoiding race conditions that create
redundant work. We demonstrate that our approach delivers high
performance on a broad spectrum of structurally diverse graphs.
To our knowledge, we also describe the first design for multi-
GPU graph traversal.

Empirical performance characterization. We present detailed
analyses that isolate and analyze the expansion and contraction

117

aspects of BFS throughout the traversal process. We reveal that
serial and warp-centric expansion techniques described by prior
work significantly underutilize the GPU for important graph
genres. We also show that the fusion of neighbor expansion and
inspection within the same kernel often yields worse performance
than performing them separately.

High performance. We demonstrate that our methods deliver
excellent performance on a diverse body of real-world graphs.
Our implementation achieves traversal rates in excess of 3.3
billion and 8.3 billion traversed edges per second (TE/s) for single
and quad-GPU configurations, respectively. In context, recent
state-of-the-art parallel implementations achieve 0.7 billion and
1.3 billion TE/s for similar datasets on single and quad-socket
multicore processors [3].

2. Background

Modern NVIDIA GPU processors consist of tens of
multiprocessor cores, each of which manages on the order of a
thousand hardware-scheduled threads. Each multiprocessor core
employs data parallel SIMD (single instruction, multiple data)
techniques in which a single instruction stream is executed by a
fixed-size grouping of threads called a warp. A cooperative
thread array (or CTA) is a group of threads that will be co-located
on the same multiprocessor and share a local scratch memory.
Parallel threads are used to execute a single program, or kernel.

2.1 Breadth-first search

We consider graphs of the form G = (V, E) with a set V of n
vertices and a set E of m directed edges. Given a source vertex vs,
our goal is to traverse the vertices of G in breadth-first order
starting at vs. Each newly-discovered vertex vi will be labeled by
(a) its distance di from vs and/or (b) the predecessor vertex pi
immediately preceding it on the shortest path to vs. For
simplicity, we identify the vertices v0 .. vn-1 using integer indices.
The pair (vi, vj) indicates a directed edge in the graph from vi → vj,
and the adjacency list Ai = {vj | (vi, vj) E} is the set of

neighboring vertices incident on vertex vi. We treat undirected
graphs as symmetric directed graphs containing both (vi, vj) and
(vj, vi) for each undirected edge. In this paper, all graph sizes and
traversal rates are measured in terms of directed edge counts.

We represent the graph using an adjacency matrix A, whose
rows are the adjacency lists Ai. The number of edges within
sparse graphs is typically only a constant factor larger than n. We
use the well-known compressed sparse row (CSR) sparse matrix
format to store the graph in memory consisting of two arrays. Fig.
1 provides a simple example. The column-indices array C is
formed from the set of the adjacency lists concatenated into a
single array of m integers. The row-offsets R array contains n + 1
integers, and entry R[i] is the index in C of the adjacency list Ai.
We store graphs in the order they are defined and do not perform
any preprocessing in order to improve locality or load balance.

Algorithm 1 presents the standard sequential BFS method. It
operates by circulating the vertices of the graph through a FIFO
queue that is initialized with vs [11]. As vertices are dequeued,
their neighbors are examined. Unvisited neighbors are labeled
with their distance and/or predecessor and are enqueued for later
processing. This algorithm performs linear O(m+n) work since
each vertex is labeled exactly once and each edge is traversed
exactly once.

2.2 Parallel breadth-first search

The FIFO ordering of the sequential algorithm forces it to label
vertices in increasing order of depth. Each depth level is fully
explored before the next. Most parallel BFS algorithms are level-
synchronous: each level may be processed in parallel as long as
the sequential ordering of levels is preserved. An implicit race
condition can exist where multiple tasks may concurrently
discover a vertex vj. This is generally considered benign since all
such contending tasks would apply the same dj and give a valid
value of pj.

Structurally different methods may be more suitable for graphs
with very large diameters, e.g., algorithms based on the method of
Ullman and Yannakakis [30]. Such alternatives are beyond the
scope of this paper.

As illustrated in Fig. 1, each iteration of a level-synchronous
method identifies both an edge and vertex frontier. The edge-
frontier is the set of all edges to be traversed during that iteration
or, equivalently, the set of all Ai where vi was marked in the
previous iteration. The vertex-frontier is the unique subset of
such neighbors that are unmarked and which will be labeled and
expanded for the next iteration. Each iteration logically (1)
expands vertices into an edge-frontier, i.e., neighbor expansion;
and then (2) contracts them to a vertex-frontier, i.e., status-lookup
and filtering.

Quadratic parallelizations. The simplest parallel BFS
algorithms inspect every edge or, at a minimum, every vertex
during every iteration. These methods perform a quadratic
amount of work. A vertex vj is marked when a task discovers an
edge vi → vj where vi has been marked and vj has not. Vertex-
oriented variants must subsequently expand and mark the
neighbors of vj. Their work complexity is O(n2+m) as there may
n BFS iterations in the worst case.

C:
1,3 0,2,4 4 5,7 8 6,8

0 1 2 3 4 5 6 7 8 9 10

Traversal from source vertex v0

BFS Iteration Vertex frontier Edge frontier

1 {0} {1,3}
2 {1,3} {0,2,4,4}
3 {2,4} {5,7}
4 {5,7} {6,8,8}
5 {6,8} {}

R:
0 2 5 5 6 8 9 9 11 11

0 1 2 3 4 5 6 7 8 9

Fig. 1. Example sparse graph, corresponding CSR representation, and frontier evolution for a BFS beginning at source vertex v0.

6 7

3 4

8

5

0 1 2

Algorithm 1. The simple sequential breadth-first search algorithm for
marking vertex distances from the source s.

Input: Vertex set V, row-offsets array R, column-indices array C, source vertex vs
Output: Array dist[0..n-1] with dist[vi] holding the distance from vs to vi

Functions: Enqueue(val) inserts val at the end of the queue instance. Dequeue()
returns the front element of the queue instance.

1 Q := {}

2 for i in 0 .. |V|-1:

3 dist[i] := ∞
4 dist[s] := 0

5 Q.Enqueue(s)

6 while (Q != {}) :

7 i = Q.Dequeue()

8 for offset in R[i] .. R[i+1]-1 :

9 j := C[offset]

10 if (dist[j] == ∞)
11 dist[j] := dist[i] + 1;

12 Q.Enqueue(j)

118

Quadratic parallelization strategies have been used by almost
all prior GPU implementations. The static assignment of tasks to
vertices (or edges) trivially maps to the data-parallel GPU
machine model. Each thread’s computation is completely
independent from that of other threads. Harish et al. [16] and
Hussein et al. [20] describe vertex-oriented versions of this
method. Deng et al. present an edge-oriented implementation
[12].

Hong et al. [18] describe a vectorized version of the vertex-
oriented method that is similar to the CSR sparse matrix-vector
(SpMV) multiplication approach by Bell and Garland [6]. Rather
than threads, warps are mapped to vertices. During neighbor
expansion, the SIMD lanes of an entire warp are used to strip-
mine the corresponding adjacency list.

These quadratic methods are isomorphic to iterative SpMV in
the algebraic semi-ring where the usual (+, ×) operations are
replaced with (min, +), and thus can also be realized using generic
implementations of SpMV [14].

Linear parallelizations. A work-efficient parallel BFS
algorithm should perform O(n+m) work. To achieve this, each
iteration should examine only the edges and vertices in that
iteration’s logical edge and vertex-frontiers, respectively.

Frontiers may be maintained in core or out of core. An in-core
frontier is processed online and never wholly realized. On the
other hand, a frontier that is managed out-of-core is fully
produced in off-chip memory for consumption by the next BFS
iteration after a global synchronization step. Implementations
typically prefer to manage the vertex-frontier out-of-core. Less
global data movement is needed because the average vertex-
frontier is smaller by a factor of (average out-degree). For each
iteration, tasks are mapped to unexplored vertices in the input
vertex-frontier queue. Their neighbors are inspected and the
unvisited ones are placed into the output vertex-frontier queue for
the next iteration.

The typical approach for improving utilization is to reduce the
task granularity to a homogenous size and then evenly distribute
these smaller tasks among threads. This is done by expanding and
inspecting neighbors in parallel. The implementation can either:
(a) spawn all edge-inspection tasks before processing any, wholly
realizing the edge-frontier out-of-core; or (b) carefully throttle the
parallel expansion and processing of adjacency lists, producing
and consuming these tasks in-core.

Leiserson and Schardl [21] designed an implementation for
multi-socket systems that incorporates a novel multi-set data
structure for tracking the vertex-frontier. Bader and Madduri [4]
describe an implementation for the Cray MTA-2 using the
hardware’s full-empty bits for efficient queuing into an out-of-
core vertex frontier. Both approaches perform parallel adjacency-
list expansion, relying on runtimes to throttle edge-processing
tasks in-core.

Luo et al. [22] present an implementation for GPUs that relies
upon a hierarchical scheme for producing an out-of-core vertex-
frontier. To our knowledge, theirs is the only prior attempt at
designing a work-efficient BFS algorithm for GPUs. Threads
perform serial adjacency list expansion and use an upward
propagation tree of child-queue structures in an effort to mitigate
the contention overhead on any given atomically-incremented
queue pointer.

Distributed parallelizations. It is often desirable to partition
the graph structure amongst multiple processors, particularly for
very large datasets. The typical partitioning approach is to assign
each processing element a disjoint subset of V and the
corresponding adjacency lists in E. For a given vertex vi, the
inspection and marking of vi as well as the expansion of vi’s
adjacency list must occur on the processor that owns vi.
Distributed, out-of-core edge queues are used for communicating

neighbors to remote processors. Incoming neighbors that are
unvisited have their labels marked and their adjacency lists
expanded. As adjacency lists are expanded, neighbors are
enqueued to the processor that owns them. The synchronization
between BFS levels occurs after the expansion phase.

It is important to note that distributed BFS implementations
that construct predecessor trees will impose twice the queuing I/O
as those that construct depth-rankings. These variants must
forward the full edge pairing (vi, vj) to the remote processor so that
it might properly label vj’s predecessor as vi.

Yoo et al. [33] present a variation for BlueGene/L that
implements a two-dimensional partitioning strategy for reducing
the number of remote peers each processor must communicate
with. Xia and Prasanna [32] propose a variant for multi-socket
nodes that provisions more out-of-core edge-frontier queues than
active threads, reducing the contention at any given queue and
flexibly lowering barrier overhead.

Agarwal et al. [3] describe an implementation for multi-socket
systems that implements both out-of-core vertex and edge-frontier
queues for each socket. Scarpazza et al. [27] describe a similar
hybrid variation for the Cell BE processor architecture where
DMA engines are used instead of threads to perform parallel
adjacency list expansion.

Our parallelization strategy. In comparison, our BFS strategy
expands adjacent neighbors in parallel; implements out-of-core
edge and vertex-frontiers; uses local prefix sum in place of local
atomic operations for determining enqueue offsets; and uses a
best-effort bitmask for efficient neighbor filtering. We further
describe the details in Section 5.

2.3 Prefix sum

Given a list of input elements and a binary reduction operator,
prefix scan produces an output list where each element is
computed to be the reduction of the elements occurring earlier in
the input list. Prefix sum connotes a prefix scan with the addition
operator. Software-based scan has been popularized as an
algorithmic primitive for vector and array processor architectures
[7–9] and as well as for GPUs [13, 24, 28].

Prefix sum is a particularly useful mechanism for
implementing cooperative allocation, i.e., when parallel threads
must place dynamic data within shared data structures such as
global queues. Given a list of allocation requirements for each
thread, prefix sum computes the offsets for where each thread
should start writing its output elements. Fig. 2 illustrates prefix
sum in the context of run-length expansion. In this example, the
thread t0 wants to produce two items, t1 one item, t2 zero items,
and so on. The prefix sum computes the scatter offset needed by
each thread to write its output element. Thread t0 writes its items
at offset zero, t1 at offset two, t3 at offset three, etc. In the context
of parallel BFS, parallel threads use prefix sum when assembling
global edge frontiers from expanded neighbors and when
outputting unique unvisited vertices into global vertex frontiers.

Fig. 2. Example of prefix sum for computing scatter offsets for run-length

expansion. Input order is preserved.

A C D

0 1 2 3 4 5

Allocation requirement

Output

Result of prefix sum A C D0 2 3 3

t0 t1 t2 t3

t0 t1 t2 t3

2 1 0 3

119

3. Benchmark Suite

3.1 Graph datasets

Our benchmark suite is composed of the thirteen graphs listed in
Table 1. We generate the square and cubic Poisson lattice graph
datasets ourselves. The random.2Mv.128Me and
rmat.2Mv.128Me datasets are constructed using GTgraph [15].
The wikipedia-20070206 dataset is from the University of Florida
Sparse Matrix Collection [31]. The remaining datasets are from
the 10th DIMACS Implementation Challenge [1].

One of our goals is to demonstrate good performance for
large-diameter graphs. The largest components within these
datasets have diameters spreading five orders of magnitude.
Graph diameter is directly proportional to average search depth,
the expected number of BFS iterations for a randomly-chosen
source vertex.

3.2 Logical frontier plots

Although our sparsity plots reveal a diversity of locality, they
provide little intuition as to how traversal will unfold. Fig. 3
presents sample frontier plots of logical edge and vertex-frontier
sizes as functions of BFS iteration. Such plots help visualize
workload expansion and contraction, both within and between
iterations. The ideal numbers of neighbors expanded and vertices
labeled per iteration are constant properties of the given dataset
and starting vertex.

Frontier plots reveal the concurrency exposed by each
iteration. For example, the bulk of the work for the wikipedia-
20070206 dataset is performed in only 1-2 iterations. The
hardware can easily be saturated during these iterations. We
observe that real-world datasets often have long sections of light
work that incur heavy global synchronization overhead.

Finally, Fig. 3 also plots the duplicate-free subset of the edge-
frontier. We observe that a simple duplicate-removal pass can
perform much of the contraction work from edge-frontier down to
vertex-frontier. This has important implications for distributed
BFS. The amount of network traffic can be significantly reduced
by first removing duplicates from the expansion of remote
neighbors.

We note the direct application of this technique does not scale
linearly with processors. As p increases, the number of available
duplicates in a given partition correspondingly decreases. In the
extreme where p = m, each processor owns only one edge and
there are no duplicates to be locally culled. For large p, such
decoupled duplicate-removal techniques should be pushed into the
hierarchical interconnect. Yoo et al. demonstrate a variant of this
idea for BlueGene/L using their MPI set-union collective [33].

4. Microbenchmark Analyses

A linear BFS workload is composed of two components: O(n)
work related to vertex-frontier processing, and O(m) for edge-
frontier processing. Because the edge-frontier is dominant, we
focus our attention on the two fundamental aspects of its
operation: neighbor-gathering and status-lookup. Although their
functions are trivial, the GPU machine model provides interesting
challenges for these workloads. We investigate these two
activities in the following analyses using NVIDIA Tesla C2050
GPUs.

4.1 Isolated neighbor-gathering

This analysis investigates serial and parallel strategies for simply
gathering neighbors from adjacency lists. The enlistment of
threads for parallel gathering is a form task scheduling. We
evaluate a spectrum of scheduling granularity from individual
tasks (higher scheduling overhead) to blocks of tasks (higher
underutilization from partial-filling).

Name
Sparsity
Plot

Description n (106) m (106) d
Avg.
Search
Depth

europe.osm
European road
network

50.9 108.1 2.1 19314

grid5pt.5000
5‐point Poisson stencil
(2D grid lattice)

25.0 125.0 5.0 7500

hugebubbles‐00020
Adaptive numerical
simulation mesh

21.2 63.6 3.0 6151

grid7pt.300
7‐point Poisson stencil
(3D grid lattice)

27.0 188.5 7.0 679

nlpkkt160
3D PDE‐constrained
optimization

8.3 221.2 26.5 142

audikw1
Automotive finite
element analysis

0.9 76.7 81.3 62

cage15
Electrophoresis
transition probabilities

5.2 94.0 18.2 37

kkt_power
Nonlinear
optimization (KKT)

2.1 13.0 6.3 37

coPapersCiteseer Citation network 0.4 32.1 73.9 26

wikipedia‐20070206
Links between
Wikipedia pages

3.6 45.0 12.6 20

kron_g500‐logn20

Graph500 RMAT
(A=0.57, B=0.19,
C=0.19)

1.0 100.7 96.0 6

random.2Mv.128Me
G(n, M) uniform
random

2.0 128.0 64.0 6

rmat.2Mv.128Me
RMAT (A=0.45,
B=0.15, C=0.15)

2.0 128.0 64.0 6

Table 1. Suite of benchmark graphs

(a) wikipedia-20070206

(b) europe.osm

(c) grid7pt.300

Fig. 3. Sample frontier plots of logical vertex and edge-frontier sizes during graph traversal.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge‐frontier
Unique neighbors
Vertex‐frontier

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0 4000 8000 12000 16000

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge‐frontier
Unique neighbors
Vertex‐frontier

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge‐frontier

Unique neighbors

Vertex‐frontier

120

For a given BFS iteration, our test kernels simply read an array
of preprocessed row-ranges that reference the adjacency lists to be
expanded and then load the corresponding neighbors into local
registers1. The gathered neighbors are not output into a global
edge frontier (which would require extra overhead from prefix
sum and scatter).

Serial gathering. Each thread obtains its preprocessed row-
range bounds for the vertex it is to expand and then serially
acquires the corresponding neighbors from the column-indices
array C. Fig. 4a illustrates four threads assigned to gather four
unexplored adjacency lists having lengths 2, 1, 0, and 3. Graphs

1
 For full BFS, we do not perform any preprocessing

having non-uniform degree distributions can impose significant
load imbalance between threads within the same warp.

Coarse-grained, warp-based gathering. This approach
performs a coarse-grained redistribution of gathering workloads.
Instead of processing adjacency lists individually, each thread will
enlist its entire warp to gather its assigned adjacency list.
Consider our example adjacency lists as being assigned to threads
from different warps. Fig. 4b illustrates three warps gathering the
three non-empty adjacency lists in “broadside” parallel fashion,
each under the control of a specific thread.

Enlistment operates by having each thread attempt to vie for
control of its warp by writing its thread-identifier into a single
word shared by all threads of that warp. Only one write will
succeed, thus determining which is subsequently allowed to
command the warp as a whole to gather its corresponding
neighbors. The enlistment process repeats until all threads have
all had their adjacent neighbors gathered.

Although it provides better workload balance, this approach
can suffer underutilization within the warp. Many datasets have
an average adjacency list size that is much smaller than the warp
width, leaving warp read transactions under filled. Furthermore,
there may also be load imbalance between warps when threads
within one warp have significantly larger adjacency lists to
expand than those in others.

Fine-grained, scan-based gathering. This approach performs
a fine-grained redistribution of gathering workloads. Threads
construct a shared array of column-indices offsets corresponding
to a CTA-wide concatenation of their assigned adjacency lists.
For our running example, the prefix sum in Fig. 2 illustrates the
cooperative expansion of column-indices offsets into a shared
gather vector. As illustrated in Fig. 4c, we then enlist the entire
CTA to gather the referenced neighbors from the column-indices
array C using this perfectly packed gather vector. This
assignment of threads ensures that no SIMD lanes are unutilized
during global reads from C.

Compared to the two previous strategies, the entire CTA
participates in every read. Any workload imbalance between
threads is not magnified by expensive global memory accesses to
C. Instead, workload imbalance can occur in the form of
underutilized cycles during offset-sharing. The worst case entails
a single thread having more neighbors than the gather buffer can
accommodate, resulting in the idling of all other threads while it
alone shares gather offsets.

Scan+warp+CTA gathering. We can mitigate this imbalance
by supplementing fine-grained scan-based expansion with coarser
CTA-based and warp-based expansion. CTA-wide gathering is
similar to warp-based gathering, except threads vie for control of
the entire CTA for strip-mining very large adjacency lists. Then
we apply warp-based gathering to acquire adjacency smaller than
the CTA size, but greater than the warp width. Finally we
perform scan-based gathering to efficiently acquire the remaining
“loose ends”.

This hybrid strategy limits all forms of load imbalance from
adjacency list expansion. The fine-grained work redistribution of

(a) Average gather rate (log)

(b) Average DRAM overhead

(c) Average computational intensity (log)

Fig. 5. Neighbor-gathering behavior. Harmonic means are normalized with
respect to serial-gathering.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.125

0.25

0.5

1

2

4

8

16

32

n
o
rm

a
li
ze
d

1
0
9
e
d
g
e
s
/
se
c
(l
o
g
)

Serial Warp Scan Scan+Warp+CTA

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

20

40

60

80

100

120

n
o
rm

a
li
ze
d

D
R
A
M

 b
y
te
s
/
e
d
g
e

Serial Warp Scan Scan+Warp+CTA

1

2

4

8

16

32

64

T
h
re
a
d

‐in
st
ru
ct
io
n
s
/
b
y
te

 (l
o
g
) Serial Warp Scan Scan+Warp+CTA

(a) serial

(b) coarse-grained, warp-based cooperative expansion

(emphasis on controlling thread)

(c) fine-grained, scan-based

cooperative expansion

Fig. 4. Alternative strategies for gathering four unexplored adjacency lists having lengths 2, 1, 0, and 3.

t1 t3t0 t2

t0 t1 t2 t3 t4 t5 t31

t32 t33 t34 t35 t36 t37 t63

t64 t65 t66 t67 t68 t69 t95

…

…

…

t0 t1 t2 t3 t4 t5

121

scan-based gathering limits imbalance from SIMD lane
underutilization. Warp enlistment limits offset-sharing imbalance
between threads. CTA enlistment limits imbalance between
warps. And finally, any imbalance between CTAs can be limited
by oversubscribing GPU cores with an abundance of CTAs or
implementing coarse-grained tile-stealing mechanisms for CTAs
to dequeue tiles at their own rate. We implement both CTA-
scheduling policies, binding one or the other for each kernel as an
architecture-specific tuning decision.

Analysis. We performed 100 randomly-sourced traversals of
each dataset, evaluating these kernels on the logical vertex-
frontier for every iteration. Fig. 5a plots the average edge-
processing throughputs for each strategy in log-scale. The
datasets are ordered from left-to-right by decreasing average
search depth.

The serial approach performs poorly for the majority of
datasets. Fig. 5b reveals it suffers from dramatic over-fetch. It
plots bytes moved through DRAM per edge. The arbitrary
references from each thread within the warp result in terrible
coalescing for SIMD load instructions.

The warp-based approach performs poorly for the graphs on
the left-hand side having average ≤ 10. Fig. 5c reveals that it is
computationally inefficient for these datasets. It plots a log scale
of computational intensity, the ratio of thread-instructions versus
bytes moved through DRAM. The average adjacency lists for
these graphs are much smaller than the number of threads per
warp. As a result, a significant number of SIMD lanes go unused
during any given cycle.

Fig. 5c also reveals that that scan-based gathering can suffer
from extreme workload imbalance when only one thread is active
within the entire CTA. This phenomenon is reflected in the
datasets on the right-hand size having skewed degree
distributions. The load imbalance from expanding large
adjacency lists leads to increased instruction counts and
corresponding performance degradation.

Combining the benefits of bulk-enlistment with fine-grained
utilization, the hybrid scan+warp+CTA demonstrates good
gathering rates across the board.

4.2 Isolated status-lookup and concurrent discovery

Status-lookup is the other half to neighbor-gathering; it entails
checking vertex labels to determine which neighbors within the
edge-frontier have already been visited. Our strategy for status-
lookup incorporates a bitmask to reduce the size of status data
from a 32-bit label to a single bit per vertex. CPU parallelizations
have used atomically-updated bitmask structures to reduce
memory traffic via improved cache coverage [3, 27].

Because we avoid atomic operations, our bitmask is only a
conservative approximation of visitation status. Bits for visited
vertices may appear unset or may be “clobbered” due to false-
sharing within a single byte. If a status bit is unset, we must then
check the corresponding label to ensure the vertex is safe for

marking. This scheme relies upon capacity and conflict misses to
update stale bitmask data within the read-only texture caches.

Similar to the neighbor-gathering analysis, we isolate the
status-lookup workload using a test-kernel that consumes the
logical edge-frontier at each BFS iteration. The filtered neighbors
are not output into a global vertex frontier (which would require
extra overhead from prefix sum and scatter). Fig. 6 compares the
throughputs of lookup versus gathering workloads. We observe
that status-lookup is generally the more expensive of the two.
This is particularly true for the datasets on the right-hand side
having high average vertex out-degree. The ability for neighbor-
gathering to coalesce accesses to adjacency lists increases with ,
whereas accesses for status-lookup have arbitrary locality.

Concurrent discovery. The effectiveness of status-lookup
during frontier contraction is influenced by the presence of
duplicate vertex identifiers within the edge-frontier. Duplicates
are representative of different edges incident to the same vertex.
This can pose a problem for implementations that allow the
benign race condition. When multiple threads concurrently
discover the same vertices via these duplicates, the corresponding
adjacency lists will be expanded multiple times.

Fig. 6. Comparison of status-lookup with neighbor-gathering.

1.0

1.1

1.2

1.3

1.4

1.5

0

5

10

15

20

n
o
rm

a
li
ze
d

1
0
9
e
d
g
e
s
/
se
c

Bitmask+Label Lookup Scan+Warp+CTA Gather

(a) grid7pt.300

(b) nlpkkt160

(c) coPapersCiteseer

Fig. 7. Actual expanded and contracted queue sizes without local
duplicate culling, superimposed over logical frontier sizes. The
redundant expansion factors are 2.6x, 1.7x, and 1.1x for the grid7pt.300,
nlpkkt160, and coPapersCiteseer datasets, respectively.

0.0

0.5

1.0

1.5

2.0

0 100 200 300 400 500 600 700 800

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge Frontier
Vertex Frontier
Expanded

Contracted

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge Frontier

Vertex Frontier

Expanded

Contracted

0

5

10

15

20

0 4 8 12 16 20 24

V
e
rt
ic
e
s
(m

il
li
o
n
s)

BFS Iteration

Edge Frontier
Vertex Frontier
Expanded

Contracted

122

Prior CPU parallelizations have noted the potential for
redundant work, but concluded its manifestation to be negligible
[21]. Concurrent discovery on CPU platforms is rare due to a
combination of relatively low parallelism (~8 hardware threads)
and coherent L1 caches that provide only a small window of
opportunity around status-inspections that are immediately
followed by status updates.

The GPU machine model, however, is much more vulnerable.
If multiple threads within the same warp are simultaneously
inspecting same vertex identifier, the SIMD nature of the warp-
read ensures that all will obtain the same status value. If
unvisited, the adjacency list for this vertex will be expanded for
every thread.

We illustrate the effects of redundant expansion upon overall
workload for several datasets using a simplified version of the
two-phase BFS implementation described in Section 5.3. These
expansion and contraction kernels make no special effort to curtail
concurrent discovery. Fig. 7 plots the actual numbers of vertex
identifiers expanded and contracted for each BFS iteration
alongside the corresponding logical frontiers. The deltas between
these pairs reflect the generation of unnecessary work. We define
the redundant expansion factor as the ratio of neighbors actually
enqueued versus the number of edges logically traversed.

The problem is severe for spatially-descriptive datasets. These
datasets exhibit nearby duplicates within the edge-frontier due to
their high frequency of convergent exploration. For example,
simple two-phase traversal incurs 4.2x redundant expansion for
the 2D lattice grid5pt.5000 dataset. Even worse, the
implementation altogether fails to traverse the kron_g500-logn20
dataset which encodes sorted adjacency lists. The improved
locality enables the redundant expansion of ultra-popular vertices,
ultimately exhausting physical memory when filling the edge
queue.

This issue of redundant expansion appears to be unique to
GPU BFS implementations having two properties: (1) a work-
efficient traversal algorithm; and (2) concurrent adjacency list
expansion. Quadratic implementations do not suffer redundant
work because vertices are never expanded by more than one
thread. In our evaluation of linear-work serial-expansion, we
observed negligible concurrent SIMD discovery during serial
inspection due to the independent nature of thread activity.

In general, the issue of concurrent discovery is a result of
false-negatives during status-lookup, i.e., failure to detect
previously-visited and duplicate vertex identifiers within the edge-
frontier. Atomic read-modify-write updates to visitation status
yield zero false-negatives. As alternatives, we introduce two
localized mechanisms for reducing false-negatives: (1) warp
culling and (2) history culling.

Warp culling. This heuristic attempts to mitigate concurrent
SIMD discovery by detecting the presence of duplicates within
the warp’s immediate working set. Using shared-memory per

warp, each thread hashes in the neighbor it is currently inspecting.
If a collision occurs and a different value is extracted, nothing can
be determined regarding duplicate status. Otherwise threads write
their thread-identifier into the same hash location. Only one write
will succeed. Threads that subsequently retrieve a different
thread-identifier can safely classify their neighbors as duplicates
to be culled.

History culling. This heuristic complements the instantaneous
coverage of warp culling by maintaining a cache of recently-
inspected vertex identifiers in local shared memory. If a given
thread observes its neighbor to have been previously recorded, it
can classify that neighbor as safe for culling.

Analysis. We augment our isolated lookup tests to evaluate
these heuristics. Kernels simply read vertex identifiers from the
edge-frontier and determine which should not be allowed into the
vertex-frontier. For each dataset, we record the average
percentage of false negatives with respect to m – n, the ideal
number of culled vertex identifiers.

Fig. 8 illustrates the progressive application of lookup
mechanisms. The bitmask heuristic alone incurs an average false-
negative rate of 6.4% across our benchmark suite. The addition of
label-lookup (which makes status-lookup safe) improves this to
4.0%. Without further measure, the compounding nature of
redundant expansion allows even small percentages to accrue
sizeable amounts of extra work. For example, a false-negative
rate of 3.5% for traversing kkt_power results in a 40% redundant
expansion overhead.

The addition of warp-based culling induces a tenfold reduction
in false-negatives for spatially descriptive graphs (left-hand side).
The history-based culling heuristic further reduces culling
inefficiency by a factor of five for the remainder of high-risk
datasets (middle-third). The application of both heuristics allows
us to reduce the overall redundant expansion factor to less than
1.05x for every graph in our benchmark suite.

4.3 Coupling of gathering and lookup

A complete BFS implementation might choose to fuse these
workloads within the same kernel in order to process one of the
frontiers online and in-core. We evaluate this fusion with a
derivation of our scan+warp+CTA gathering kernel that
immediately inspects every gathered neighbor using our bitmap-
assisted lookup strategy. The coupled kernel requires O(m) less
overall data movement than the other two put together (which
effectively read all edges twice).

Fig. 9 compares this fused kernel with the aggregate
throughput of the isolated gathering and lookup workloads
performed separately. Despite the additional data movement, the
separate kernels outperform the fused kernel for the majority of
the benchmarks. Their extra data movement results in net
slowdown, however, for the latency-bound datasets on the left-

Fig. 8 Percentages of false-negatives incurred by status-lookup strategies.

0.0001

0.001

0.01

0.1

1

10

100
%

 o
f f
a
ls
e

‐n
e
g
a
ti
ve
s

Bitmask Bitmask+Label Bitmask+Label+WarpCull Bitmask+Label+WarpCull+HistoryCull

Fig. 9. Comparison of isolated versus fused neighbor-gathering and lookup.

0.0

0.5

1.0

1.5

0

1

2

3

4

5

6

7

n
o
rm

a
li
ze
d

1
0
9
e
d
g
e
s
/
se
c

Isolated Gather+Lookup Fused Gather+Lookup

123

hand side having limited bulk concurrency. The implication is
that fused approaches are preferable for fleeting BFS iterations
having edge-frontiers smaller than the number of resident threads.

The fused kernel likely suffers from TLB misses experienced
by the neighbor-gathering workload. The column-indices arrays
occupy substantial portions of GPU physical memory. Sparse
gathers from them are apt to cause TLB misses. The fusion of
these two workloads inherits the worst aspects of both: TLB
turnover during uncoalesced status lookups.

5. Single-GPU Parallelizations

A complete solution must couple expansion and contraction
activities. In this section, we evaluate the design space of
coupling alternatives by constructing full implementations for
processing BFS iterations. Further algorithmic detail can be
found in our technical report [25].

5.1 Expand-contract (out-of-core vertex queue)

Our single-kernel expand-contract strategy is loosely based upon
the fused gather-lookup benchmark kernel from Section 4.3. It
consumes the vertex queue for the current BFS iteration and
produces the vertex queue for the next. It performs parallel
expansion and filtering of adjacency lists online and in-core using
local scratch memory.

This kernel requires 2n global storage for input and output
vertex queues. The roles of these two arrays are reversed for
alternating BFS iterations. A traversal will generate 5n+2m
explicit data movement through global memory. All m edges will
be streamed into registers once. All n vertices will be streamed
twice: out into global frontier queues and subsequently back in.
The bitmask bits will be inspected m times and updated n times
along with the labels. Each of the n row-offsets is loaded twice.

Each CTA performs three local prefix sums per block of
dequeued input. One is computed during scan-based gathering.
The other two are used for computing global enqueue offsets for
valid neighbors during CTA-based and scan-based gathering.
Although GPU cores can efficiently overlap concurrent prefix
sums from different CTAs, the turnaround time for each can be
relatively long. This can hurt performance for fleeting, latency-
bound BFS iterations.

5.2 Contract-expand (out-of-core edge queue)

Our contract-expand strategy filters previously-visited and
duplicate neighbors from the current edge queue. The adjacency
lists of the surviving vertices are then expanded and copied out
into the edge queue for the next iteration.

This kernel requires 2m global storage for input and output
edge queues. Variants that label predecessors, however, require
an additional pair of “parent” queues to track both origin and
destination identifiers within the edge-frontier. A traversal will
generate 3n+4m explicit global data movement. All m edges will
be streamed through global memory three times: into registers
from C, out to the edge queue, and back in again the next
iteration. The bitmask, label, and row-offset traffic remain the
same as for expand-contract.

Despite a much larger queuing workload, the contract-expand
strategy is often better suited for processing small, fleeting BFS
iterations. It incurs lower latency because CTAs only perform
local two prefix sums per block: one each for computing global
enqueue offsets during CTA/warp-based and scan-based
gathering. We overlap these prefix sums to further reduce
latency. By operating on the larger edge-frontier, the contract-
expand kernel also enjoys better bulk concurrency in which fewer
resident CTAs sit idle.

5.3 Two-phase (out-of-core vertex and edge queues)

Our two-phase implementation isolates the expansion and
contraction workloads into separate kernels. The expansion
kernel employs the scan+warp+CTA gathering strategy to obtain
the neighbors of vertices from the input vertex queue. As with the
contract-expand implementation above, it performs two
overlapped local prefix sums to compute scatter offsets for the
expanded neighbors into the global edge queue.

The contraction kernel begins with the edge queue as input.
Threads filter previously-visited and duplicate neighbors. The
remaining valid neighbors are placed into the outgoing vertex
queue using another local prefix sum to compute global enqueue
offsets.

These kernels require n+m global storage for vertex and edge
queues. A two-phase traversal generates 5n+4m explicit global
data movement. The memory workload builds upon that of
contract-expand, but additionally streams n vertices into and out
of the global vertex queue.

5.4 Hybrid

Our hybrid implementation combines the relative strengths of the
contract-expand and two-phase approaches: low-latency
turnaround for small frontiers and high-efficiency throughput for
large frontiers. If the edge queue for a given BFS iteration
contains more vertex identifiers than resident threads, we invoke
the two-phase implementation for that iteration. Otherwise we
invoke the contract-expand implementation. The hybrid approach
inherits the 2m global storage requirement from the former and
the 5n+4m explicit global data movement from the latter.

5.5 Strategy evaluation

In comparing these strategies, Fig. 10 plots average traversal
throughput across 100 randomly-sourced traversals of each
dataset using a single NVIDIA Tesla C2050. As anticipated, the
contract-expand approach excels at traversing the latency-bound
datasets on the left and the two-phase implementation efficiently
leverages the bulk-concurrency exposed by the datasets on the
right. Although the expand-contract approach is serviceable, the
hybrid approach meets or exceeds its performance for every
dataset.

The importance of work-compaction. With in-core edge-
frontier processing, the expand-contract implementation is
designed for one-third as much global queue traffic. The actual
DRAM savings are substantially less. We only measured a 50%
reduction in measured DRAM workload for datasets with large .
Furthermore, the workload differences are effectively lost in
excess over-fetch traffic for the graphs having small : they use
large memory transactions to retrieve small adjacency lists.

Fig. 10 BFS traversal performance. Harmonic means are normalized

with respect to the expand-contract implementation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n
o
rm

a
li
ze
d

1
0
9
e
d
g
e
s
/
se
c

Expand‐Contract Contract‐Expand 2‐Phase Hybrid

124

The contract-expand implementation performs poorly for
graphs having large . This behavior is related to a lack of
explicit workload compaction before neighbor gathering. It
executes nearly 50% more thread-instructions during BFS
iterations with very large contraction workloads. This is
indicative of SIMD underutilization. The majority of active
threads have their neighbors invalidated by status-lookup and
local duplicate removal. Cooperative neighbor-gathering
becomes much less efficient as a result.

5.6 Comparative performance

Table 2 compares the distance and predecessor-labeling versions
of our hybrid strategy with prior BFS parallelizations for both
GPU and multicore CPU architectures.

Distance vs. predecessor-labeling. Our performance disparity
between the two BFS problem types is largely dependent upon
average vertex degree . Smaller incurs larger DRAM over-
fetch which reduces the relative significance of added parent
queue traffic. For example, the performance impact of
exchanging parent vertices is negligible for europe.osm, yet is as
high as 19% for rmat.2Mv.128Me.

Contemporary GPU parallelizations. In comparing our
approach with the recent quadratic-work method of Hong et al.
[18], we evaluated their implementation directly on our corpus of
sparse graphs. We observed a 4.2x harmonic mean slowdown
across all datasets. As expected, their implementation incurs
particularly large overheads for high diameter graphs, notably a
2300x slowdown for europe.osm. At the other end of the
spectrum, we measured a 2.5x slowdown for rmat.2Mv.128Me,
the lowest diameter dataset.

The only prior published linear-work GPU performance
evaluation is from Luo et al. [22]. In the absence of their hand-
tuned implementation, we compared our implementation against
the specific collections of 6-pt lattice datasets2 and DIMACS road
network datasets3 referenced by their study. Using the same
model GPU (a previous-generation NVIDIA GTX280), our hybrid
parallelization respectively achieved 4.1x and 1.7x harmonic
mean speedups for these two collections.

Contemporary multicore parallelizations. It is challenging to
contrast CPU and GPU traversal performance. The construction
of high performance CPU parallelizations is outside the scope of
this work. Table 2 cites the recent single-socket CPU traversal
rates by Leiserson et al. [21] and Agarwal et al. [3] for datasets
common to our experimental corpus. With an NVIDIA C2050,

2
 Regular degree-6 cubic lattice graphs of size 1M, 2M, 5M, 7M, 9M, and

10M vertices
3
 New York, Florida, USA-East, and USA-West datasets from the 9th

DIMACS Challenge corpus [2].

we achieve harmonic mean speedups of 8.1x and 4.2x versus their
respective 4-core and 8-core parallelizations.

To give perspective on the datasets for which we do not have
published CPU performance rates, we note these two studies
report sub-linear performance scaling per core. In this vein, we
compare GPU traversal performance with our own efficient
sequential implementation on a state-of-the-art Intel 4-core 3.4
GHz Core i7 2600K. Despite fewer memory channels on our
newer CPU, the performance of our sequential implementation
exceeds their single-threaded results.

With respect to this single-threaded implementation, we
consider a 4x GPU speedup as being competitive with
contemporary CPU parallelizations. As listed in Table 2, our
C2050 traversal rates exceed this factor for all benchmark
datasets. In addition, the majority of our graph traversal rates
exceed 12x speedup, the perfect scaling of three such CPUs. At
the extreme, our average wikipedia-20070206 traversal rates
outperform the sequential CPU version by 25x, i.e., eight CPU-
equivalents.

Relative to the sequential CPU implementation, we also note
that our methods perform equally well for large and small-
diameter graphs alike. Our hybrid strategy provides traversal
speedups of an order of magnitude for both the europe.osm and
the kron_g500-logn20 datasets.

6. Multi-GPU Parallelization

Communication between GPUs is simplified by a unified virtual
address space in which pointers can transparently reference data
residing within remote GPUs. PCI-express 2.0 provides each
GPU with an external bidirectional bandwidth of 6.6 GB/s. Under
the assumption that GPUs send and receive equal amounts of
traffic, the rate at which each GPU can be fed with remote work is
conservatively bound by 825x106 neighbors / sec, where
neighbors are 4-byte identifiers. This rate is halved for
predecessor-labeling.

6.1 Design

We implement a simple partitioning of the graph into equally-
sized, disjoint subsets of V. For a system of p GPUs, we initialize
each processor pi with an (m/p)-element Ci and (n/p)-element Ri
and Labelsi arrays. Because the system is small, we can
provision each GPU with its own full-sized n-bit best-effort
bitmask.

We stripe ownership of V across the domain of vertex
identifiers. Striping provides good probability of an even
distribution of adjacency list sizes across GPUs, an important
property for maintaining load balance in small systems. However,
this method of partitioning progressively loses any inherent
locality as the number of GPUs increases.

Graph Dataset

CPU Parallel (linear‐work) GPU
* (quadratic‐work [18]) GPU

* (linear‐work hybrid strategy)

Distance
BFS rate** [21]

Predecessor
BFS rate*** [3]

Distance BFS rate
Distance BFS rate

 (sequential speedup ****)
Predecessor BFS rate

(sequential speedup ****)

europe.osm 0.00014 0.31 (11x) 0.31 (11x)
grid5pt.5000 0.00078 0.6 (7.4x) 0.57 (7.0x)
hugebubbles‐00020 0.00061 0.43 (15x) 0.42 (15x)
grid7pt.300 0.12 0.012 1.1 (29x) 0.97 (26x)
nlpkkt160 0.47 0.21 2.5 (9.7x) 2.1 (8.2x)
audikw1 1.2 3.0 (4.6x) 2.5 (3.9x)
cage15 0.23 0.50 2.2 (18x) 1.9 (15x)
kkt_power 0.11 0.18 1.1 (23x) 1.0 (21x)
coPapersCiteseer 2.2 3.0 (6.0x) 2.5 (5.0x)
wikipedia‐20070206 0.19 0.39 1.6 (25x) 1.4 (22x)
kron_g500‐logn20 1.5 3.1 (13x) 2.5 (10x)
random.2Mv.128Me 0.50 1.2 3.0 (29x) 2.4 (23x)
rmat.2Mv.128Me 0.70 1.3 3.3 (22x) 2.6 (17x)

Table 2. Average single-socket graph traversal rates (109 TE/s). * NVIDIA 14-core 1.15 GHz Tesla C2050. ** Intel 4-core 2.5

GHz Core i7. *** Intel 8-core 2.7 GHz Xeon X5570. **** GPU speedup versus sequential method on Intel 3.4GHz Core i7 2600K.

125

Graph traversal proceeds in level-synchronous fashion. The
host program orchestrates BFS iterations as follows:

1. Invoke the expansion kernel on each GPUi, transforming the
vertex queue Qvertexi into an edge queue Qedgei.

2. Invoke a fused filter+partition operation for each GPUi that
sorts neighbors within Qedgei by ownership into p bins.
Vertex identifiers undergo opportunistic local duplicate
culling and bitmask filtering during the partitioning process.
This partitioning implementation is analogous to a three-
kernel radix-sorting pass [23].

3. Barrier across all GPUs. The sorting must be completed on
all GPUs before any can access their bins on remote peers.
The host program uses this opportunity to terminate traversal
if all bins are empty on all GPUs.

4. Invoke p-1 contraction kernels on each GPUi to stream and
filter the incoming neighbors from its peers. Kernel
invocation simply uses remote pointers that reference the
appropriate peer bins. This assembles each vertex queue
Qvertexi for the next BFS iteration.

The implementation requires (2m+n)/p storage for queue arrays
per GPU: two edge queues for pre and post-sorted neighbors and a
third vertex queue to avoid another global synchronization after
Step 4.

6.2 Evaluation

Fig. 11 presents traversal throughput as we scale up the number of
GPUs. We experience net slowdown for datasets on the left
having average search depth > 100. The cost of global
synchronization between BFS iterations is much higher across
multiple GPUs.

We do yield notable speedups for the three rightmost datasets.
These graphs have small diameters and require little global
synchronization. The large average out-degrees enable plenty of
opportunistic duplicate filtering during partitioning passes. This
allows us to circumvent the PCI-e cap of 825x106 edges/sec per
GPU. With four GPUs, we demonstrate traversal rates of 7.4 and
8.3 billion edges/sec for the uniform-random and RMAT datasets
respectively.

As expected, this strong-scaling is not linear. For example, we
observe 1.5x, 2.1x, and 2.5x speedups when traversing
rmat.2Mv.128Me using two, three, and four GPUs, respectively.
Adding more GPUs reduces the percentage of duplicates per
processor and increases overall PCI-e traffic.

Fig. 12 further illustrates the impact of opportunistic duplicate
culling for uniform random graphs up to 500M edges and varying
out out-degree . Increasing yields significantly better

performance. Other than a slight performance drop at n=8 million
vertices when the bitmask exceeds the 768KB L2 cache size,
graph size has little impact upon traversal throughput.

To our knowledge, these are the fastest traversal rates
demonstrated by a single-node machine. The work by Agarwal et
al. is representative of the state-of-the-art in CPU parallelizations,
demonstrating up to 1.3 billion edges/sec for both uniform-
random and RMAT datasets using four 8-core Intel Nehalem-
based XEON CPUs [3]. However, we note that the host memory
on such systems can further accommodate datasets having tens of
billions of edges.

7. Conclusion

This paper has demonstrated that GPUs are well-suited for sparse
graph traversal and can achieve very high levels of performance
on a broad range of graphs. We have presented a parallelization
of BFS tailored to the GPU’s requirement for large amounts of
fine-grained, bulk-synchronous parallelism.

Furthermore, our implementation performs an asymptotically
optimal amount of work. While quadratic-work methods might be
acceptable in certain very narrow regimes [18, 19], they suffer
from high overhead and did not prove effective on even the lowest
diameter graphs in our experimental corpus. Our linear-work
method compares very favorably to state-of-the-art multicore
implementations across our entire range of benchmarks, which
spans five orders of magnitude in graph diameter.

Beyond graph search, our work distills several general themes
for implementing sparse and dynamic problems for the GPU
machine model:

 Prefix sum can serve as an effective alternative to atomic
read-modify-write mechanisms for coordinating the
placement of items within shared data structures by many
parallel threads.

 In contrast to coarse-grained parallelism common on
multicore processors, GPU kernels cannot afford to have
individual threads streaming through unrelated sections of
data. Groups of GPU threads should cooperatively assist
each other for data movement tasks.

 Fusing heterogeneous tasks does not always produce the best
results. Global redistribution and compaction of fine-grained
tasks can significantly improve performance when the
alternative would allow significant load imbalance or
underutilization.

 The relative I/O contribution from global task redistribution
can be less costly than anticipated. The data movement from
reorganization may be insignificant in comparison to the

Fig. 11. Average multi-GPU traversal rates. Harmonic means are

normalized with respect to the single GPU configuration.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

1

2

3

4

5

6

7

8

9

n
o
rm

a
li
ze
d

1
0
9
e
d
g
e
s
/
se
c

C2050 x1 C2050 x2 C2050 x3 C2050 x4

Fig. 12. Multi-GPU sensitivity to graph size and average out-degree
for uniform random graphs using four C2050 processors. Dashed lines

indicate predecessor labeling variants.

0

1

2

3

4

5

6

7

8

9

2 4 8 16

1
0
9
e
d
g
e
s
/
se
c

|V| (millions)

d = 64

d = 32

d = 16

d = 8

126

actual over-fetch traffic from existing sparse memory
accesses.

 It is useful to provide separate implementations for saturating
versus fleeting workloads. Hybrid approaches can leverage a
shorter code-path for retiring underutilized phases as quickly
as possible.

8. References

[1] 10th DIMACS Implementation Challenge:
http://www.cc.gatech.edu/dimacs10/index.shtml. Accessed: 2011-
07-11.

[2] 9th DIMACS Implementation Challenge:
http://www.dis.uniroma1.it/~challenge9/download.shtml.
Accessed: 2011-07-11.

[3] Agarwal, V. et al. 2010. Scalable Graph Exploration on Multicore
Processors. 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (New
Orleans, LA, USA, Nov. 2010), 1-11.

[4] Bader, D.A. and Madduri, K. Designing Multithreaded Algorithms
for Breadth-First Search and st-connectivity on the Cray MTA-2.
2006 International Conference on Parallel Processing (ICPP’06)
(Columbus, OH, USA), 523-530.

[5] Bader, D.A. et al. On the Architectural Requirements for Efficient
Execution of Graph Algorithms. 2005 International Conference on
Parallel Processing (ICPP’05) (Oslo, Norway), 547-556.

[6] Bell, N. and Garland, M. 2009. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis (New York, NY, USA, 2009), 18:1–18:11.

[7] Blelloch, G.E. 1990. Prefix Sums and Their Applications.
Synthesis of Parallel Algorithms.

[8] Blelloch, G.E. 1989. Scans as primitive parallel operations. IEEE
Transactions on Computers. 38, 11 (Nov. 1989), 1526-1538.

[9] Chatterjee, S. et al. 1990. Scan primitives for vector computers.
Proceedings of the 1990 ACM/IEEE conference on
Supercomputing (Los Alamitos, CA, USA, 1990), 666–675.

[10] Che, S. et al. 2009. Rodinia: A benchmark suite for heterogeneous
computing. 2009 IEEE International Symposium on Workload
Characterization (IISWC) (Austin, TX, USA, Oct. 2009), 44-54.

[11] Cormen, T.H. et al. 2001. Introduction to Algorithms. MIT Press.

[12] Deng, Y. (Steve) et al. 2009. Taming irregular EDA applications
on GPUs. Proceedings of the 2009 International Conference on
Computer-Aided Design (New York, NY, USA, 2009), 539–546.

[13] Dotsenko, Y. et al. 2008. Fast scan algorithms on graphics
processors. Proceedings of the 22nd annual international
conference on Supercomputing (New York, NY, USA, 2008),
205–213.

[14] Garland, M. 2008. Sparse matrix computations on manycore
GPU’s. Proceedings of the 45th annual Design Automation
Conference (New York, NY, USA, 2008), 2–6.

[15] GTgraph: A suite of synthetic random graph generators:
https://sdm.lbl.gov/~kamesh/software/GTgraph/. Accessed: 2011-
07-11.

[16] Harish, P. and Narayanan, P.J. 2007. Accelerating large graph
algorithms on the GPU using CUDA. Proceedings of the 14th

international conference on High performance computing (Berlin,
Heidelberg, 2007), 197–208.

[17] Hillis, W.D. and Steele, G.L. 1986. Data parallel algorithms.
Communications of the ACM. 29, 12 (Dec. 1986), 1170-1183.

[18] Hong, S. et al. 2011. Accelerating CUDA graph algorithms at
maximum warp. Proceedings of the 16th ACM symposium on
Principles and practice of parallel programming (New York, NY,
USA, 2011), 267–276.

[19] Hong, S. et al. 2011. Efficient Parallel Graph Exploration for
Multi-Core CPU and GPU. (New York, NY, USA, 2011), to
appear.

[20] Hussein, M. et al. 2007. On Implementing Graph Cuts on CUDA.
First Workshop on General Purpose Processing on Graphics
Processing Units (Boston, MA, Oct. 2007).

[21] Leiserson, C.E. and Schardl, T.B. 2010. A work-efficient parallel
breadth-first search algorithm (or how to cope with the
nondeterminism of reducers). Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and architectures (New
York, NY, USA, 2010), 303–314.

[22] Luo, L. et al. 2010. An effective GPU implementation of breadth-
first search. Proceedings of the 47th Design Automation
Conference (New York, NY, USA, 2010), 52–55.

[23] Merrill, D. and Grimshaw, A. 2011. High Performance and
Scalable Radix Sorting: A case study of implementing dynamic
parallelism for GPU computing. Parallel Processing Letters. 21,
02 (2011), 245-272.

[24] Merrill, D. and Grimshaw, A. 2009. Parallel Scan for Stream
Architectures. Technical Report #CS2009-14. Department of
Computer Science, University of Virginia.

[25] Merrill, D. et al. 2011. High Performance and Scalable GPU
Graph Traversal. Technical Report #CS2011-05. Department of
Computer Science, University of Virginia.

[26] Parboil Benchmark suite:
http://impact.crhc.illinois.edu/parboil.php. Accessed: 2011-07-11.

[27] Scarpazza, D.P. et al. 2008. Efficient Breadth-First Search on the
Cell/BE Processor. IEEE Transactions on Parallel and Distributed
Systems. 19, 10 (Oct. 2008), 1381-1395.

[28] Sengupta, S. et al. 2008. Efficient parallel scan algorithms for
GPUs. Technical Report #NVR-2008-003. NVIDIA.

[29] The Graph 500 List: http://www.graph500.org/. Accessed: 2011-
07-11.

[30] Ullman, J. and Yannakakis, M. 1990. High-probability parallel
transitive closure algorithms. Proceedings of the second annual
ACM symposium on Parallel algorithms and architectures - SPAA
’90 (Island of Crete, Greece, 1990), 200-209.

[31] University of Florida Sparse Matrix Collection:
http://www.cise.ufl.edu/research/sparse/matrices/. Accessed:
2011-07-11.

[32] Xia, Y. and Prasanna, V.K. 2009. Topologically Adaptive Parallel
Breadth-first Search on Multicore Processors. 21st International
Conference on Parallel and Distributed Computing and Systems
(PDCS’09) (Nov. 2009).

[33] Yoo, A. et al. A Scalable Distributed Parallel Breadth-First Search
Algorithm on BlueGene/L. ACM/IEEE SC 2005 Conference
(SC’05) (Seattle, WA, USA), 25-25.

127

