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Abstract 

Breadth-first search (BFS) is a core primitive for graph traversal 
and a basis for many higher-level graph analysis algorithms.  It is 
also representative of a class of parallel computations whose 
memory accesses and work distribution are both irregular and 
data-dependent.  Recent work has demonstrated the plausibility of 
GPU sparse graph traversal, but has tended to focus on 
asymptotically inefficient algorithms that perform poorly on 
graphs with non-trivial diameter. 

We present a BFS parallelization focused on fine-grained task 
management constructed from efficient prefix sum that achieves 
an asymptotically optimal O(|V|+|E|) work complexity.  Our 
implementation delivers excellent performance on diverse graphs, 
achieving traversal rates in excess of 3.3 billion and 8.3 billion 
traversed edges per second using single and quad-GPU 
configurations, respectively.  This level of performance is several 
times faster than state-of-the-art implementations both CPU and 
GPU platforms. 

Categories and Subject Descriptors       G.2.2 [Discrete 
Mathematics]: Graph Theory – Graph Algorithms; D.1.3 
[Programming Techniques]: Concurrent programming; F.2.2 
[Analysis of Algorithms and Problem Complexity]: 
Nonnumerical Algorithms and Problems – Computations on 
discrete structures, Geometrical problems and computations 

General Terms       Algorithms, performance 

Keywords       Breadth-first search, GPU, graph algorithms, 
parallel algorithms, prefix sum, graph traversal, sparse graph  

1. Introduction 

Algorithms for analyzing sparse relationships represented as 
graphs provide crucial tools in many computational fields ranging 
from genomics to electronic design automation to social network 
analysis.  In this paper, we explore the parallelization of one 
fundamental graph algorithm on GPUs: breadth-first search 
(BFS).  BFS is a common building block for more sophisticated 
graph algorithms, yet is simple enough that we can analyze its 
behavior in depth.  It is also used as a core computational kernel 
in a number of benchmark suites, including Parboil [26], Rodinia 
[10], and the emerging Graph500 supercomputer benchmark [29]. 

Contemporary processor architecture provides increasing 
parallelism in order to deliver higher throughput while 
maintaining energy efficiency.  Modern GPUs are at the leading 
edge of this trend, provisioning tens of thousands of data parallel 
threads. 

Despite their high computational throughput, GPUs might 
appear poorly suited for sparse graph computation.  In particular, 
BFS is representative of a class of algorithms for which it is hard 
to obtain significantly better performance from parallelization.  
Optimizing memory usage is non-trivial because memory access 
patterns are determined by the structure of the input graph.  
Parallelization further introduces concerns of contention, load 
imbalance, and underutilization on multithreaded architectures [3, 
21, 32].  The wide data parallelism of GPUs can be particularly 
sensitive to these performance issues. 

Prior work on parallel graph algorithms has relied on two key 
architectural features for performance.  The first is multithreading 
and overlapped computation for hiding memory latency.  The 
second is fine-grained synchronization, specifically atomic read-
modify-write operations.  Atomic mechanisms are convenient for 
coordinating the dynamic placement of data into shared data 
structures and for arbitrating contended status updates.  [3–5] 

Modern GPU architectures provide both.  However, 
serialization from atomic synchronization is particularly 
expensive for GPUs in terms of efficiency and performance.  In 
general, mutual exclusion does not scale to thousands of threads.  
Furthermore, the occurrence of fine-grained and dynamic 
serialization within the SIMD width is much costlier than between 
overlapped SMT threads.  

For machines with wide data parallelism, we argue that 
software prefix sum [7, 17] is often a more suitable approach to 
data placement.  Prefix sum is a bulk-synchronous algorithmic 
primitive that can be used to compute scatter offsets for 
concurrent threads given their dynamic allocation requirements.  
Efficient GPU prefix sums [24] allow us to reorganize sparse and 
uneven workloads into dense and uniform ones in all phases of 
graph traversal.  

Our work as described in this paper makes contributions in the 
following areas: 

Parallelization strategy.  We present a GPU BFS 
parallelization that performs an asymptotically optimal linear 
amount of work. It is the first to incorporate fine-grained parallel 
adjacency list expansion.   We also introduce local duplicate 
detection techniques for avoiding race conditions that create 
redundant work.  We demonstrate that our approach delivers high 
performance on a broad spectrum of structurally diverse graphs. 
To our knowledge, we also describe the first design for multi-
GPU graph traversal.   

Empirical performance characterization.  We present detailed 
analyses that isolate and analyze the expansion and contraction 
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aspects of BFS throughout the traversal process. We reveal that 
serial and warp-centric expansion techniques described by prior 
work significantly underutilize the GPU for important graph 
genres.  We also show that the fusion of neighbor expansion and 
inspection within the same kernel often yields worse performance 
than performing them separately. 

High performance.  We demonstrate that our methods deliver 
excellent performance on a diverse body of real-world graphs.  
Our implementation achieves traversal rates in excess of 3.3 
billion and 8.3 billion traversed edges per second (TE/s) for single 
and quad-GPU configurations, respectively.  In context, recent 
state-of-the-art parallel implementations achieve 0.7 billion and 
1.3 billion TE/s for similar datasets on single and quad-socket 
multicore processors [3].   

2. Background 

Modern NVIDIA GPU processors consist of tens of 
multiprocessor cores, each of which manages on the order of a 
thousand hardware-scheduled threads.  Each multiprocessor core 
employs data parallel SIMD (single instruction, multiple data) 
techniques in which a single instruction stream is executed by a 
fixed-size grouping of threads called a warp.  A cooperative 
thread array (or CTA) is a group of threads that will be co-located 
on the same multiprocessor and share a local scratch memory.  
Parallel threads are used to execute a single program, or kernel.   

2.1 Breadth-first search 

We consider graphs of the form G = (V, E) with a set V of n 
vertices and a set E of m directed edges. Given a source vertex vs, 
our goal is to traverse the vertices of G in breadth-first order 
starting at vs.   Each newly-discovered vertex vi will be labeled by 
(a) its distance di from vs and/or (b) the predecessor vertex pi 
immediately preceding it on the shortest path to vs.   For 
simplicity, we identify the vertices v0 .. vn-1 using integer indices.  
The pair (vi, vj) indicates a directed edge in the graph from vi → vj, 
and the adjacency list Ai = {vj | (vi, vj)  E} is the set of 

neighboring vertices incident on vertex vi.  We treat undirected 
graphs as symmetric directed graphs containing both (vi, vj) and 
(vj, vi) for each undirected edge.  In this paper, all graph sizes and 
traversal rates are measured in terms of directed edge counts. 

We represent the graph using an adjacency matrix A, whose 
rows are the adjacency lists Ai.  The number of edges within 
sparse graphs is typically only a constant factor larger than n.  We 
use the well-known compressed sparse row (CSR) sparse matrix 
format to store the graph in memory consisting of two arrays.  Fig. 
1 provides a simple example.  The column-indices array C is 
formed from the set of the adjacency lists concatenated into a 
single array of m integers.  The row-offsets R array contains n + 1 
integers, and entry R[i] is the index in C of the adjacency list Ai.  
We store graphs in the order they are defined and do not perform 
any preprocessing in order to improve locality or load balance. 

Algorithm 1 presents the standard sequential BFS method.  It 
operates by circulating the vertices of the graph through a FIFO 
queue that is initialized with vs [11].   As vertices are dequeued, 
their neighbors are examined.   Unvisited neighbors are labeled 
with their distance and/or predecessor and are enqueued for later 
processing.  This algorithm performs linear O(m+n) work since 
each vertex is labeled exactly once and each edge is traversed 
exactly once. 

2.2 Parallel breadth-first search 

The FIFO ordering of the sequential algorithm forces it to label 
vertices in increasing order of depth.  Each depth level is fully 
explored before the next.  Most parallel BFS algorithms are level-
synchronous: each level may be processed in parallel as long as 
the sequential ordering of levels is preserved.  An implicit race 
condition can exist where multiple tasks may concurrently 
discover a vertex vj.  This is generally considered benign since all 
such contending tasks would apply the same dj and give a valid 
value of pj.   

Structurally different methods may be more suitable for graphs 
with very large diameters, e.g., algorithms based on the method of 
Ullman and Yannakakis [30].  Such alternatives are beyond the 
scope of this paper. 

As illustrated in Fig. 1, each iteration of a level-synchronous 
method identifies both an edge and vertex frontier. The edge-
frontier is the set of all edges to be traversed during that iteration 
or, equivalently, the set of all Ai where vi was marked in the 
previous iteration.  The vertex-frontier is the unique subset of 
such neighbors that are unmarked and which will be labeled and 
expanded for the next iteration.  Each iteration logically (1) 
expands vertices into an edge-frontier, i.e., neighbor expansion; 
and then (2) contracts them to a vertex-frontier, i.e., status-lookup 
and filtering. 

Quadratic parallelizations.  The simplest parallel BFS 
algorithms inspect every edge or, at a minimum, every vertex 
during every iteration.  These methods perform a quadratic 
amount of work.  A vertex vj is marked when a task discovers an 
edge vi → vj where vi has been marked and vj has not.   Vertex-
oriented variants must subsequently expand and mark the 
neighbors of vj.  Their work complexity is O(n2+m) as there may 
n BFS iterations in the worst case. 

 

C: 
1,3 0,2,4 4 5,7 8 6,8

0 1 2 3 4 5 6 7 8 9 10
 

Traversal from source vertex v0 

BFS Iteration  Vertex frontier  Edge frontier 

1  {0}  {1,3} 
2  {1,3}  {0,2,4,4} 
3  {2,4}  {5,7} 
4  {5,7}  {6,8,8} 
5  {6,8}  {} 

R: 
0 2 5 5 6 8 9 9 11 11

0 1 2 3 4 5 6 7 8 9 
 

 

Fig. 1.  Example sparse graph, corresponding CSR representation, and frontier evolution for a BFS beginning at source vertex v0. 
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Algorithm 1.  The simple sequential breadth-first search algorithm for 
marking vertex distances from the source s.   

Input: Vertex set V, row-offsets array R, column-indices array C, source vertex vs 
Output: Array dist[0..n-1] with dist[vi] holding the distance from vs to vi 

Functions: Enqueue(val) inserts val at the end of the queue instance.  Dequeue() 
returns the front element of the queue instance. 

 

1 Q := {} 

2 for i in 0 .. |V|-1: 

3   dist[i] := ∞ 
4 dist[s] := 0 

5 Q.Enqueue(s) 

6 while (Q != {}) : 

7   i = Q.Dequeue() 

8   for offset in R[i] .. R[i+1]-1 : 

9     j := C[offset] 

10     if (dist[j] == ∞) 
11       dist[j] := dist[i] + 1; 

12       Q.Enqueue(j) 
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Quadratic parallelization strategies have been used by almost 
all prior GPU implementations.  The static assignment of tasks to 
vertices (or edges) trivially maps to the data-parallel GPU 
machine model.  Each thread’s computation is completely 
independent from that of other threads.  Harish et al. [16] and 
Hussein et al. [20] describe vertex-oriented versions of this 
method.  Deng et al. present an edge-oriented implementation 
[12].  

Hong et al. [18] describe a vectorized version of the vertex-
oriented method that is similar to the CSR sparse matrix-vector 
(SpMV) multiplication approach by Bell and Garland [6].  Rather 
than threads, warps are mapped to vertices.  During neighbor 
expansion, the SIMD lanes of an entire warp are used to strip-
mine  the corresponding adjacency list.   

These quadratic methods are isomorphic to iterative SpMV in 
the algebraic semi-ring where the usual (+, ×) operations are 
replaced with (min, +), and thus can also be realized using generic 
implementations of SpMV [14]. 

Linear parallelizations.  A work-efficient parallel BFS 
algorithm should perform O(n+m) work.  To achieve this, each 
iteration should examine only the edges and vertices in that 
iteration’s logical edge and vertex-frontiers, respectively.   

Frontiers may be maintained in core or out of core.  An in-core 
frontier is processed online and never wholly realized.  On the 
other hand, a frontier that is managed out-of-core is fully 
produced in off-chip memory for consumption by the next BFS 
iteration after a global synchronization step.  Implementations 
typically prefer to manage the vertex-frontier out-of-core.  Less 
global data movement is needed because the average vertex-
frontier is smaller by a factor of  (average out-degree).  For each 
iteration, tasks are mapped to unexplored vertices in the input 
vertex-frontier queue.  Their neighbors are inspected and the 
unvisited ones are placed into the output vertex-frontier queue for 
the next iteration. 

The typical approach for improving utilization is to reduce the 
task granularity to a homogenous size and then evenly distribute 
these smaller tasks among threads.  This is done by expanding and 
inspecting neighbors in parallel.  The implementation can either: 
(a) spawn all edge-inspection tasks before processing any, wholly 
realizing the edge-frontier out-of-core; or (b) carefully throttle the 
parallel expansion and processing of adjacency lists, producing 
and consuming these tasks in-core.   

Leiserson and Schardl [21] designed an implementation for 
multi-socket systems that incorporates a novel multi-set data 
structure for tracking the vertex-frontier.  Bader and Madduri  [4] 
describe an implementation for the Cray MTA-2 using the 
hardware’s full-empty bits for efficient queuing into an out-of-
core vertex frontier.  Both approaches perform parallel adjacency-
list expansion, relying on runtimes to throttle edge-processing 
tasks in-core. 

Luo et al. [22] present an implementation for GPUs that relies 
upon a hierarchical scheme for producing an out-of-core vertex-
frontier. To our knowledge, theirs is the only prior attempt at 
designing a work-efficient BFS algorithm for GPUs.  Threads 
perform serial adjacency list expansion and use an upward 
propagation tree of child-queue structures in an effort to mitigate 
the contention overhead on any given atomically-incremented 
queue pointer.     

Distributed parallelizations. It is often desirable to partition 
the graph structure amongst multiple processors, particularly for 
very large datasets.  The typical partitioning approach is to assign 
each processing element a disjoint subset of V and the 
corresponding adjacency lists in E.  For a given vertex vi, the 
inspection and marking of vi as well as the expansion of vi’s 
adjacency list must occur on the processor that owns vi.  
Distributed, out-of-core edge queues are used for communicating 

neighbors to remote processors.  Incoming neighbors that are 
unvisited have their labels marked and their adjacency lists 
expanded.  As adjacency lists are expanded, neighbors are 
enqueued to the processor that owns them.  The synchronization 
between BFS levels occurs after the expansion phase.   

It is important to note that distributed BFS implementations 
that construct predecessor trees will impose twice the queuing I/O 
as those that construct depth-rankings.  These variants must 
forward the full edge pairing (vi, vj) to the remote processor so that 
it might properly label vj’s predecessor as vi.   

Yoo et al. [33] present a variation for BlueGene/L that 
implements a two-dimensional partitioning strategy for reducing 
the number of remote peers each processor must communicate 
with.  Xia and Prasanna [32] propose a variant for multi-socket 
nodes that provisions more out-of-core edge-frontier queues than 
active threads, reducing the contention at any given queue and 
flexibly lowering barrier overhead.  

Agarwal et al. [3] describe an implementation for multi-socket 
systems that implements both out-of-core vertex and edge-frontier 
queues for each socket. Scarpazza et al. [27] describe a similar 
hybrid variation for the Cell BE processor architecture where 
DMA engines are used instead of threads to perform parallel 
adjacency list expansion.  

Our parallelization strategy. In comparison, our BFS strategy 
expands adjacent neighbors in parallel; implements out-of-core 
edge and vertex-frontiers; uses local prefix sum in place of local 
atomic operations for determining enqueue offsets; and uses a 
best-effort bitmask for efficient neighbor filtering.  We further 
describe the details in Section 5. 

2.3 Prefix sum 

Given a list of input elements and a binary reduction operator, 
prefix scan produces an output list where each element is 
computed to be the reduction of the elements occurring earlier in 
the input list.  Prefix sum connotes a prefix scan with the addition 
operator.  Software-based scan has been popularized as an 
algorithmic primitive for vector and array processor architectures 
[7–9] and as well as for GPUs [13, 24, 28]. 

Prefix sum is a particularly useful mechanism for 
implementing cooperative allocation, i.e., when parallel threads 
must place dynamic data within shared data structures such as 
global queues.  Given a list of allocation requirements for each 
thread, prefix sum computes the offsets for where each thread 
should start writing its output elements.   Fig. 2 illustrates prefix 
sum in the context of run-length expansion.  In this example, the 
thread t0 wants to produce two items, t1 one item, t2 zero items, 
and so on.  The prefix sum computes the scatter offset needed by 
each thread to write its output element.  Thread t0 writes its items 
at offset zero, t1 at offset two, t3 at offset three, etc.  In the context 
of parallel BFS, parallel threads use prefix sum when assembling 
global edge frontiers from expanded neighbors and when 
outputting unique unvisited vertices into global vertex frontiers. 

 
 

Fig. 2.  Example of prefix sum for computing scatter offsets for run-length 

expansion.  Input order is preserved. 

A C D

0 1 2 3 4 5

Allocation requirement

Output

Result of  prefix sum A C D0 2 3 3

t0 t1 t2 t3

t0 t1 t2 t3

2 1 0 3
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3. Benchmark Suite 

3.1 Graph datasets 

Our benchmark suite is composed of the thirteen graphs listed in 
Table 1.  We generate the square and cubic Poisson lattice graph 
datasets ourselves.  The random.2Mv.128Me and 
rmat.2Mv.128Me datasets are constructed using GTgraph [15].  
The wikipedia-20070206 dataset is from the University of Florida 
Sparse Matrix Collection [31].  The remaining datasets are from 
the 10th DIMACS Implementation Challenge [1].     

One of our goals is to demonstrate good performance for 
large-diameter graphs.  The largest components within these 
datasets have diameters spreading five orders of magnitude.  
Graph diameter is directly proportional to average search depth, 
the expected number of BFS iterations for a randomly-chosen 
source vertex.   

3.2 Logical frontier plots 

Although our sparsity plots reveal a diversity of locality, they 
provide little intuition as to how traversal will unfold.  Fig. 3 
presents sample frontier plots of logical edge and vertex-frontier 
sizes as functions of BFS iteration.  Such plots help visualize 
workload expansion and contraction, both within and between 
iterations.  The ideal numbers of neighbors expanded and vertices 
labeled per iteration are constant properties of the given dataset 
and starting vertex.   

Frontier plots reveal the concurrency exposed by each 
iteration.  For example, the bulk of the work for the wikipedia-
20070206 dataset is performed in only 1-2 iterations.  The 
hardware can easily be saturated during these iterations.  We 
observe that real-world datasets often have long sections of light 
work that incur heavy global synchronization overhead. 

Finally, Fig. 3 also plots the duplicate-free subset of the edge-
frontier.  We observe that a simple duplicate-removal pass can 
perform much of the contraction work from edge-frontier down to 
vertex-frontier.  This has important implications for distributed 
BFS.  The amount of network traffic can be significantly reduced 
by first removing duplicates from the expansion of remote 
neighbors.   

We note the direct application of this technique does not scale 
linearly with processors.  As p increases, the number of available 
duplicates in a given partition correspondingly decreases.  In the 
extreme where p = m, each processor owns only one edge and 
there are no duplicates to be locally culled.  For large p, such 
decoupled duplicate-removal techniques should be pushed into the 
hierarchical interconnect.  Yoo et al. demonstrate a variant of this 
idea for BlueGene/L using their MPI set-union collective [33].  

4. Microbenchmark Analyses 

A linear BFS workload is composed of two components: O(n) 
work related to vertex-frontier processing, and O(m) for edge-
frontier processing.  Because the edge-frontier is dominant, we 
focus our attention on the two fundamental aspects of its 
operation: neighbor-gathering and status-lookup.  Although their 
functions are trivial, the GPU machine model provides interesting 
challenges for these workloads.  We investigate these two 
activities in the following analyses using NVIDIA Tesla C2050 
GPUs.  

4.1 Isolated neighbor-gathering 

This analysis investigates serial and parallel strategies for simply 
gathering neighbors from adjacency lists.  The enlistment of 
threads for parallel gathering is a form task scheduling.  We 
evaluate a spectrum of scheduling granularity from individual 
tasks (higher scheduling overhead) to blocks of tasks (higher 
underutilization from partial-filling).   

Name 
Sparsity 
Plot 

Description  n (106)  m (106) d 
Avg. 
Search 
Depth 

europe.osm 
European road 
network 

50.9  108.1  2.1  19314 

grid5pt.5000  
5‐point Poisson stencil 
(2D grid lattice) 

25.0  125.0  5.0  7500 

hugebubbles‐00020 
Adaptive numerical 
simulation mesh  

21.2  63.6  3.0  6151 

grid7pt.300 
7‐point Poisson stencil 
(3D grid lattice) 

27.0  188.5  7.0  679 

nlpkkt160  
3D PDE‐constrained 
optimization  

8.3  221.2  26.5  142 

audikw1  
Automotive finite 
element analysis 

0.9  76.7  81.3  62 

cage15  
Electrophoresis 
transition probabilities 

5.2  94.0  18.2  37 

kkt_power  
Nonlinear 
optimization (KKT) 

2.1  13.0  6.3  37 

coPapersCiteseer   Citation network  0.4  32.1  73.9  26 

wikipedia‐20070206  
Links between 
Wikipedia pages 

3.6  45.0  12.6  20 

kron_g500‐logn20  
 

Graph500  RMAT 
(A=0.57, B=0.19, 
C=0.19) 

1.0  100.7  96.0  6 

random.2Mv.128Me   
G(n, M) uniform 
random  

2.0  128.0  64.0  6 

rmat.2Mv.128Me   
RMAT (A=0.45, 
B=0.15, C=0.15) 

2.0  128.0  64.0  6 

Table 1.  Suite of benchmark graphs 

 
(a) wikipedia-20070206 

 
(b) europe.osm 

 

(c) grid7pt.300 

 

Fig. 3.  Sample frontier plots of logical vertex and edge-frontier sizes during graph traversal. 
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For a given BFS iteration, our test kernels simply read an array 
of preprocessed row-ranges that reference the adjacency lists to be 
expanded and then load the corresponding neighbors into local 
registers1.  The gathered neighbors are not output into a global 
edge frontier (which would require extra overhead from prefix 
sum and scatter).  

Serial gathering.  Each thread obtains its preprocessed row-
range bounds for the vertex it is to expand and then serially 
acquires the corresponding neighbors from the column-indices 
array C.  Fig. 4a illustrates four threads assigned to gather four 
unexplored adjacency lists having lengths 2, 1, 0, and 3.  Graphs 

                                                                 
1
 For full BFS, we do not perform any preprocessing 

having non-uniform degree distributions can impose significant 
load imbalance between threads within the same warp. 

Coarse-grained, warp-based gathering.  This approach 
performs a coarse-grained redistribution of gathering workloads.  
Instead of processing adjacency lists individually, each thread will 
enlist its entire warp to gather its assigned adjacency list.  
Consider our example adjacency lists as being assigned to threads 
from different warps.  Fig. 4b illustrates three warps gathering the 
three non-empty adjacency lists in “broadside” parallel fashion, 
each under the control of a specific thread.   

Enlistment operates by having each thread attempt to vie for 
control of its warp by writing its thread-identifier into a single 
word shared by all threads of that warp.  Only one write will 
succeed, thus determining which is subsequently allowed to 
command the warp as a whole to gather its corresponding 
neighbors.  The enlistment process repeats until all threads have 
all had their adjacent neighbors gathered. 

Although it provides better workload balance, this approach 
can suffer underutilization within the warp.  Many datasets have 
an average adjacency list size that is much smaller than the warp 
width, leaving warp read transactions under filled. Furthermore, 
there may also be load imbalance between warps when threads 
within one warp have significantly larger adjacency lists to 
expand than those in others. 

Fine-grained, scan-based gathering.  This approach performs 
a fine-grained redistribution of gathering workloads.  Threads 
construct a shared array of column-indices offsets corresponding 
to a CTA-wide concatenation of their assigned adjacency lists.  
For our running example, the prefix sum in Fig. 2 illustrates the 
cooperative expansion of column-indices offsets into a shared 
gather vector.  As illustrated in Fig. 4c, we then enlist the entire 
CTA to gather the referenced neighbors from the column-indices 
array C using this perfectly packed gather vector.  This 
assignment of threads ensures that no SIMD lanes are unutilized 
during global reads from C.   

Compared to the two previous strategies, the entire CTA 
participates in every read.  Any workload imbalance between 
threads is not magnified by expensive global memory accesses to 
C.  Instead, workload imbalance can occur in the form of 
underutilized cycles during offset-sharing.  The worst case entails 
a single thread having more neighbors than the gather buffer can 
accommodate, resulting in the idling of all other threads while it 
alone shares gather offsets.  

Scan+warp+CTA gathering.  We can mitigate this imbalance 
by supplementing fine-grained scan-based expansion with coarser 
CTA-based and warp-based expansion.  CTA-wide gathering is 
similar to warp-based gathering, except threads vie for control of 
the entire CTA for strip-mining very large adjacency lists.  Then 
we apply warp-based gathering to acquire adjacency smaller than 
the CTA size, but greater than the warp width.  Finally we 
perform scan-based gathering to efficiently acquire the remaining 
“loose ends”.   

This hybrid strategy limits all forms of load imbalance from 
adjacency list expansion.  The fine-grained work redistribution of 

 
(a) Average gather rate (log) 

 

 
(b) Average DRAM overhead 

 

 
(c) Average computational intensity (log) 

 
Fig. 5.  Neighbor-gathering behavior.  Harmonic means are normalized with 
respect to serial-gathering. 
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(a) serial 

 
(b) coarse-grained, warp-based cooperative expansion  

(emphasis on controlling thread) 

 

(c) fine-grained, scan-based  

cooperative expansion 

 

Fig. 4.  Alternative strategies for gathering four unexplored adjacency lists having lengths 2, 1, 0, and 3. 
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scan-based gathering limits imbalance from SIMD lane 
underutilization.  Warp enlistment limits offset-sharing imbalance 
between threads.  CTA enlistment limits imbalance between 
warps.  And finally, any imbalance between CTAs can be limited 
by oversubscribing GPU cores with an abundance of CTAs or 
implementing coarse-grained tile-stealing mechanisms for CTAs 
to dequeue tiles at their own rate.  We implement both CTA-
scheduling policies, binding one or the other for each kernel as an 
architecture-specific tuning decision.  

Analysis.  We performed 100 randomly-sourced traversals of 
each dataset, evaluating these kernels on the logical vertex-
frontier for every iteration.  Fig. 5a plots the average edge-
processing throughputs for each strategy in log-scale.  The 
datasets are ordered from left-to-right by decreasing average 
search depth. 

The serial approach performs poorly for the majority of 
datasets.  Fig. 5b reveals it suffers from dramatic over-fetch.  It 
plots bytes moved through DRAM per edge.  The arbitrary 
references from each thread within the warp result in terrible 
coalescing for SIMD load instructions. 

The warp-based approach performs poorly for the graphs on 
the left-hand side having average  ≤ 10.  Fig. 5c reveals that it is 
computationally inefficient for these datasets.  It plots a log scale 
of computational intensity, the ratio of thread-instructions versus 
bytes moved through DRAM.  The average adjacency lists for 
these graphs are much smaller than the number of threads per 
warp.  As a result, a significant number of SIMD lanes go unused 
during any given cycle.     

Fig. 5c also reveals that that scan-based gathering can suffer 
from extreme workload imbalance when only one thread is active 
within the entire CTA.  This phenomenon is reflected in the 
datasets on the right-hand size having skewed degree 
distributions.  The load imbalance from expanding large 
adjacency lists leads to increased instruction counts and 
corresponding performance degradation. 

Combining the benefits of bulk-enlistment with fine-grained 
utilization, the hybrid scan+warp+CTA demonstrates good 
gathering rates across the board.  

4.2 Isolated status-lookup and concurrent discovery 

Status-lookup is the other half to neighbor-gathering; it entails 
checking vertex labels to determine which neighbors within the 
edge-frontier have already been visited. Our strategy for status-
lookup incorporates a bitmask to reduce the size of status data 
from a 32-bit label to a single bit per vertex.  CPU parallelizations 
have used atomically-updated bitmask structures to reduce 
memory traffic via improved cache coverage [3, 27].   

Because we avoid atomic operations, our bitmask is only a 
conservative approximation of visitation status.  Bits for visited 
vertices may appear unset or may be “clobbered” due to false-
sharing within a single byte.  If a status bit is unset, we must then 
check the corresponding label to ensure the vertex is safe for 

marking.  This scheme relies upon capacity and conflict misses to 
update stale bitmask data within the read-only texture caches. 

Similar to the neighbor-gathering analysis, we isolate the 
status-lookup workload using a test-kernel that consumes the 
logical edge-frontier at each BFS iteration.  The filtered neighbors 
are not output into a global vertex frontier (which would require 
extra overhead from prefix sum and scatter).  Fig. 6 compares the 
throughputs of lookup versus gathering workloads.  We observe 
that status-lookup is generally the more expensive of the two.  
This is particularly true for the datasets on the right-hand side 
having high average vertex out-degree.  The ability for neighbor-
gathering to coalesce accesses to adjacency lists increases with , 
whereas accesses for status-lookup have arbitrary locality.   

Concurrent discovery.  The effectiveness of status-lookup 
during frontier contraction is influenced by the presence of 
duplicate vertex identifiers within the edge-frontier.  Duplicates 
are representative of different edges incident to the same vertex.  
This can pose a problem for implementations that allow the 
benign race condition.  When multiple threads concurrently 
discover the same vertices via these duplicates, the corresponding 
adjacency lists will be expanded multiple times.   

 
Fig. 6.  Comparison of status-lookup with neighbor-gathering. 
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Fig. 7.  Actual expanded and contracted queue sizes without local 
duplicate culling, superimposed over logical frontier sizes.  The 
redundant expansion factors are 2.6x, 1.7x, and 1.1x for the grid7pt.300, 
nlpkkt160, and coPapersCiteseer datasets, respectively. 
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Prior CPU parallelizations have noted the potential for 
redundant work, but concluded its manifestation to be negligible 
[21].  Concurrent discovery on CPU platforms is rare due to a 
combination of relatively low parallelism (~8 hardware threads) 
and coherent L1 caches that provide only a small window of 
opportunity around status-inspections that are immediately 
followed by status updates.   

The GPU machine model, however, is much more vulnerable.  
If multiple threads within the same warp are simultaneously 
inspecting same vertex identifier, the SIMD nature of the warp-
read ensures that all will obtain the same status value.  If 
unvisited, the adjacency list for this vertex will be expanded for 
every thread.   

We illustrate the effects of redundant expansion upon overall 
workload for several datasets using a simplified version of the 
two-phase BFS implementation described in Section 5.3.  These 
expansion and contraction kernels make no special effort to curtail 
concurrent discovery.  Fig. 7 plots the actual numbers of vertex 
identifiers expanded and contracted for each BFS iteration 
alongside the corresponding logical frontiers.  The deltas between 
these pairs reflect the generation of unnecessary work.  We define 
the redundant expansion factor as the ratio of neighbors actually 
enqueued versus the number of edges logically traversed.   

The problem is severe for spatially-descriptive datasets.  These 
datasets exhibit nearby duplicates within the edge-frontier due to 
their high frequency of convergent exploration.  For example, 
simple two-phase traversal incurs 4.2x redundant expansion for 
the 2D lattice grid5pt.5000 dataset.  Even worse, the 
implementation altogether fails to traverse the kron_g500-logn20 
dataset which encodes sorted adjacency lists.  The improved 
locality enables the redundant expansion of ultra-popular vertices, 
ultimately exhausting physical memory when filling the edge 
queue.   

This issue of redundant expansion appears to be unique to 
GPU BFS implementations having two properties: (1) a work-
efficient traversal algorithm; and (2) concurrent adjacency list 
expansion.  Quadratic implementations do not suffer redundant 
work because vertices are never expanded by more than one 
thread.  In our evaluation of linear-work serial-expansion, we 
observed negligible concurrent SIMD discovery during serial 
inspection due to the independent nature of thread activity.  

In general, the issue of concurrent discovery is a result of 
false-negatives during status-lookup, i.e., failure to detect 
previously-visited and duplicate vertex identifiers within the edge-
frontier.  Atomic read-modify-write updates to visitation status 
yield zero false-negatives.  As alternatives, we introduce two 
localized mechanisms for reducing false-negatives: (1) warp 
culling and (2) history culling.   

Warp culling.  This heuristic attempts to mitigate concurrent 
SIMD discovery by detecting the presence of duplicates within 
the warp’s immediate working set.  Using shared-memory per 

warp, each thread hashes in the neighbor it is currently inspecting.  
If a collision occurs and a different value is extracted, nothing can 
be determined regarding duplicate status.  Otherwise threads write 
their thread-identifier into the same hash location.  Only one write 
will succeed.  Threads that subsequently retrieve a different 
thread-identifier can safely classify their neighbors as duplicates 
to be culled. 

History culling.  This heuristic complements the instantaneous 
coverage of warp culling by maintaining a cache of recently-
inspected vertex identifiers in local shared memory.  If a given 
thread observes its neighbor to have been previously recorded, it 
can classify that neighbor as safe for culling.    

Analysis.  We augment our isolated lookup tests to evaluate 
these heuristics.  Kernels simply read vertex identifiers from the 
edge-frontier and determine which should not be allowed into the 
vertex-frontier.  For each dataset, we record the average 
percentage of false negatives with respect to m – n, the ideal 
number of culled vertex identifiers. 

Fig. 8 illustrates the progressive application of lookup 
mechanisms.  The bitmask heuristic alone incurs an average false-
negative rate of 6.4% across our benchmark suite.  The addition of 
label-lookup (which makes status-lookup safe) improves this to 
4.0%.  Without further measure, the compounding nature of 
redundant expansion allows even small percentages to accrue 
sizeable amounts of extra work.  For example, a false-negative 
rate of 3.5% for traversing kkt_power results in a 40% redundant 
expansion overhead. 

The addition of warp-based culling induces a tenfold reduction 
in false-negatives for spatially descriptive graphs (left-hand side).  
The history-based culling heuristic further reduces culling 
inefficiency by a factor of five for the remainder of high-risk 
datasets (middle-third). The application of both heuristics allows 
us to reduce the overall redundant expansion factor to less than 
1.05x for every graph in our benchmark suite. 

4.3 Coupling of gathering and lookup 

A complete BFS implementation might choose to fuse these 
workloads within the same kernel in order to process one of the 
frontiers online and in-core.  We evaluate this fusion with a 
derivation of our scan+warp+CTA gathering kernel that 
immediately inspects every gathered neighbor using our bitmap-
assisted lookup strategy.  The coupled kernel requires O(m) less 
overall data movement than the other two put together (which 
effectively read all edges twice).   

Fig. 9 compares this fused kernel with the aggregate 
throughput of the isolated gathering and lookup workloads 
performed separately.  Despite the additional data movement, the 
separate kernels outperform the fused kernel for the majority of 
the benchmarks.  Their extra data movement results in net 
slowdown, however, for the latency-bound datasets on the left-

 
Fig. 8  Percentages of false-negatives incurred by status-lookup strategies. 
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Fig. 9.  Comparison of isolated versus fused neighbor-gathering and lookup. 
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hand side having limited bulk concurrency.  The implication is 
that fused approaches are preferable for fleeting BFS iterations 
having edge-frontiers smaller than the number of resident threads. 

The fused kernel likely suffers from TLB misses experienced 
by the neighbor-gathering workload.  The column-indices arrays 
occupy substantial portions of GPU physical memory.  Sparse 
gathers from them are apt to cause TLB misses.  The fusion of 
these two workloads inherits the worst aspects of both: TLB 
turnover during uncoalesced status lookups.  

 

5. Single-GPU Parallelizations 

A complete solution must couple expansion and contraction 
activities.  In this section, we evaluate the design space of 
coupling alternatives by constructing full implementations for 
processing BFS iterations.  Further algorithmic detail can be 
found in our technical report [25]. 

5.1 Expand-contract (out-of-core vertex queue) 

Our single-kernel expand-contract strategy is loosely based upon 
the fused gather-lookup benchmark kernel from Section 4.3.  It 
consumes the vertex queue for the current BFS iteration and 
produces the vertex queue for the next.  It performs parallel 
expansion and filtering of adjacency lists online and in-core using 
local scratch memory. 

This kernel requires 2n global storage for input and output 
vertex queues.  The roles of these two arrays are reversed for 
alternating BFS iterations.  A traversal will generate 5n+2m 
explicit data movement through global memory.  All m edges will 
be streamed into registers once.  All n vertices will be streamed 
twice: out into global frontier queues and subsequently back in.  
The bitmask bits will be inspected m times and updated n times 
along with the labels.  Each of the n row-offsets is loaded twice.  

Each CTA performs three local prefix sums per block of 
dequeued input.  One is computed during scan-based gathering.  
The other two are used for computing global enqueue offsets for 
valid neighbors during CTA-based and scan-based gathering.  
Although GPU cores can efficiently overlap concurrent prefix 
sums from different CTAs, the turnaround time for each can be 
relatively long.  This can hurt performance for fleeting, latency-
bound BFS iterations. 

5.2 Contract-expand (out-of-core edge queue) 

Our contract-expand strategy filters previously-visited and 
duplicate neighbors from the current edge queue.  The adjacency 
lists of the surviving vertices are then expanded and copied out 
into the edge queue for the next iteration. 

This kernel requires 2m global storage for input and output 
edge queues.  Variants that label predecessors, however, require 
an additional pair of “parent” queues to track both origin and 
destination identifiers within the edge-frontier.  A traversal will 
generate 3n+4m explicit global data movement.  All m edges will 
be streamed through global memory three times: into registers 
from C, out to the edge queue, and back in again the next 
iteration.  The bitmask, label, and row-offset traffic remain the 
same as for expand-contract. 

Despite a much larger queuing workload, the contract-expand 
strategy is often better suited for processing small, fleeting BFS 
iterations.  It incurs lower latency because CTAs only perform 
local two prefix sums per block: one each for computing global 
enqueue offsets during CTA/warp-based and scan-based 
gathering.  We overlap these prefix sums to further reduce 
latency.  By operating on the larger edge-frontier, the contract-
expand kernel also enjoys better bulk concurrency in which fewer 
resident CTAs sit idle. 

5.3 Two-phase (out-of-core vertex and edge queues) 

Our two-phase implementation isolates the expansion and 
contraction workloads into separate kernels.  The expansion 
kernel employs the scan+warp+CTA gathering strategy to obtain 
the neighbors of vertices from the input vertex queue.  As with the 
contract-expand implementation above, it performs two 
overlapped local prefix sums to compute scatter offsets for the 
expanded neighbors into the global edge queue. 

The contraction kernel begins with the edge queue as input.  
Threads filter previously-visited and duplicate neighbors.  The 
remaining valid neighbors are placed into the outgoing vertex 
queue using another local prefix sum to compute global enqueue 
offsets. 

These kernels require n+m global storage for vertex and edge 
queues.  A two-phase traversal generates 5n+4m explicit global 
data movement.  The memory workload builds upon that of 
contract-expand, but additionally streams n vertices into and out 
of the global vertex queue.  

5.4 Hybrid 

Our hybrid implementation combines the relative strengths of the 
contract-expand and two-phase approaches: low-latency 
turnaround for small frontiers and high-efficiency throughput for 
large frontiers.  If the edge queue for a given BFS iteration 
contains more vertex identifiers than resident threads, we invoke 
the two-phase implementation for that iteration.  Otherwise we 
invoke the contract-expand implementation.  The hybrid approach 
inherits the 2m global storage requirement from the former and 
the 5n+4m explicit global data movement from the latter.   

5.5 Strategy evaluation  

In comparing these strategies, Fig. 10 plots average traversal 
throughput across 100 randomly-sourced traversals of each 
dataset using a single NVIDIA Tesla C2050.  As anticipated, the 
contract-expand approach excels at traversing the latency-bound 
datasets on the left and the two-phase implementation efficiently 
leverages the bulk-concurrency exposed by the datasets on the 
right.  Although the expand-contract approach is serviceable, the 
hybrid approach meets or exceeds its performance for every 
dataset. 

The importance of work-compaction.  With in-core edge-
frontier processing, the expand-contract implementation is 
designed for one-third as much global queue traffic.  The actual 
DRAM savings are substantially less.  We only measured a 50% 
reduction in measured DRAM workload for datasets with large .  
Furthermore, the workload differences are effectively lost in 
excess over-fetch traffic for the graphs having small : they use 
large memory transactions to retrieve small adjacency lists. 

Fig. 10  BFS traversal performance.  Harmonic means are normalized 

with respect to the expand-contract implementation. 
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The contract-expand implementation performs poorly for 
graphs having large .  This behavior is related to a lack of 
explicit workload compaction before neighbor gathering.  It 
executes nearly 50% more thread-instructions during BFS 
iterations with very large contraction workloads.  This is 
indicative of SIMD underutilization.  The majority of active 
threads have their neighbors invalidated by status-lookup and 
local duplicate removal.  Cooperative neighbor-gathering 
becomes much less efficient as a result.   

5.6 Comparative performance 

Table 2 compares the distance and predecessor-labeling versions 
of our hybrid strategy with prior BFS parallelizations for both 
GPU and multicore CPU architectures. 

Distance vs. predecessor-labeling.  Our performance disparity 
between the two BFS problem types is largely dependent upon 
average vertex degree .  Smaller  incurs larger DRAM over-
fetch which reduces the relative significance of added parent 
queue traffic.   For example, the performance impact of 
exchanging parent vertices is negligible for europe.osm, yet is as 
high as 19% for rmat.2Mv.128Me.   

Contemporary GPU parallelizations. In comparing our 
approach with the recent quadratic-work method of Hong et al. 
[18], we evaluated their implementation directly on our corpus of 
sparse graphs.  We observed a 4.2x harmonic mean slowdown 
across all datasets.  As expected, their implementation incurs 
particularly large overheads for high diameter graphs, notably a 
2300x slowdown for europe.osm.  At the other end of the 
spectrum, we measured a 2.5x slowdown for rmat.2Mv.128Me, 
the lowest diameter dataset.  

The only prior published linear-work GPU performance 
evaluation is from Luo et al. [22].  In the absence of their hand-
tuned implementation, we compared our implementation against 
the specific collections of 6-pt lattice datasets2 and DIMACS road 
network datasets3 referenced by their study.  Using the same 
model GPU (a previous-generation NVIDIA GTX280), our hybrid 
parallelization respectively achieved 4.1x and 1.7x harmonic 
mean speedups for these two collections. 

Contemporary multicore parallelizations.  It is challenging to 
contrast CPU and GPU traversal performance.  The construction 
of high performance CPU parallelizations is outside the scope of 
this work.  Table 2 cites the recent single-socket  CPU traversal 
rates by Leiserson et al. [21] and Agarwal et al. [3] for datasets 
common to our experimental corpus.  With an NVIDIA C2050, 

                                                                 
2
 Regular degree-6 cubic lattice graphs of size 1M, 2M, 5M, 7M, 9M, and 

10M vertices 
3
 New York, Florida, USA-East, and USA-West datasets from the 9th 

DIMACS Challenge corpus [2]. 

we achieve harmonic mean speedups of 8.1x and 4.2x versus their 
respective 4-core and 8-core parallelizations. 

To give perspective on the datasets for which we do not have 
published CPU performance rates, we note these two studies 
report sub-linear performance scaling per core.  In this vein, we 
compare GPU traversal performance with our own efficient 
sequential implementation on a state-of-the-art Intel 4-core 3.4 
GHz Core i7 2600K.  Despite fewer memory channels on our 
newer CPU, the performance of our sequential implementation 
exceeds their single-threaded results.   

With respect to this single-threaded implementation, we 
consider a 4x GPU speedup as being competitive with 
contemporary CPU parallelizations.  As listed in Table 2, our 
C2050 traversal rates exceed this factor for all benchmark 
datasets.  In addition, the majority of our graph traversal rates 
exceed 12x speedup, the perfect scaling of three such CPUs.  At 
the extreme, our average wikipedia-20070206 traversal rates 
outperform the sequential CPU version by 25x, i.e., eight CPU-
equivalents.   

Relative to the sequential CPU implementation, we also note 
that our methods perform equally well for large and small-
diameter graphs alike.  Our hybrid strategy provides traversal 
speedups of an order of magnitude for both the europe.osm and 
the kron_g500-logn20 datasets.  

6. Multi-GPU Parallelization 

Communication between GPUs is simplified by a unified virtual 
address space in which pointers can transparently reference data 
residing within remote GPUs.  PCI-express 2.0 provides each 
GPU with an external bidirectional bandwidth of 6.6 GB/s.  Under 
the assumption that GPUs send and receive equal amounts of 
traffic, the rate at which each GPU can be fed with remote work is 
conservatively bound by 825x106 neighbors / sec, where 
neighbors are 4-byte identifiers.  This rate is halved for 
predecessor-labeling.     

6.1 Design 

We implement a simple partitioning of the graph into equally-
sized, disjoint subsets of V.  For a system of p GPUs, we initialize 
each processor pi with an (m/p)-element Ci and (n/p)-element Ri 
and Labelsi arrays.   Because the system is small, we can 
provision each GPU with its own full-sized n-bit best-effort 
bitmask.   

We stripe ownership of V across the domain of vertex 
identifiers.  Striping provides good probability of an even 
distribution of adjacency list sizes across GPUs, an important 
property for maintaining load balance in small systems.  However, 
this method of partitioning progressively loses any inherent 
locality as the number of GPUs increases.  

Graph Dataset 

CPU Parallel (linear‐work)  GPU
* (quadratic‐work [18])  GPU

* (linear‐work hybrid strategy)  

Distance  
BFS rate** [21]  

Predecessor  
BFS rate*** [3]  

Distance BFS rate 
Distance BFS rate 

 (sequential speedup ****) 
Predecessor BFS rate  

(sequential speedup ****) 

europe.osm        0.00014  0.31 (11x)  0.31  (11x) 
grid5pt.5000        0.00078  0.6 (7.4x)  0.57  (7.0x) 
hugebubbles‐00020        0.00061  0.43 (15x)  0.42  (15x) 
grid7pt.300  0.12     0.012  1.1 (29x)  0.97  (26x) 
nlpkkt160  0.47     0.21  2.5 (9.7x)  2.1  (8.2x) 
audikw1        1.2  3.0 (4.6x)  2.5  (3.9x) 
cage15  0.23     0.50  2.2 (18x)  1.9  (15x) 
kkt_power  0.11     0.18  1.1 (23x)  1.0  (21x) 
coPapersCiteseer        2.2  3.0 (6.0x)  2.5  (5.0x) 
wikipedia‐20070206  0.19     0.39  1.6 (25x)  1.4  (22x) 
kron_g500‐logn20        1.5  3.1 (13x)  2.5  (10x) 
random.2Mv.128Me     0.50  1.2  3.0 (29x)  2.4  (23x) 
rmat.2Mv.128Me     0.70  1.3  3.3 (22x)  2.6  (17x) 

 

Table 2.  Average single-socket graph traversal rates (109 TE/s).  * NVIDIA 14-core 1.15 GHz Tesla C2050.  ** Intel 4-core 2.5 

GHz Core i7.  *** Intel 8-core 2.7 GHz Xeon X5570.  **** GPU speedup versus sequential method on Intel 3.4GHz Core i7 2600K.   
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Graph traversal proceeds in level-synchronous fashion.  The 
host program orchestrates BFS iterations as follows: 

1. Invoke the expansion kernel on each GPUi, transforming the 
vertex queue Qvertexi into an edge queue Qedgei. 

2. Invoke a fused filter+partition operation for each GPUi that 
sorts neighbors within Qedgei by ownership into p bins.  
Vertex identifiers undergo opportunistic local duplicate 
culling and bitmask filtering during the partitioning process.  
This partitioning implementation is analogous to a three-
kernel radix-sorting pass [23].   

3. Barrier across all GPUs.  The sorting must be completed on 
all GPUs before any can access their bins on remote peers.  
The host program uses this opportunity to terminate traversal 
if all bins are empty on all GPUs. 

4. Invoke p-1 contraction kernels on each GPUi to stream and 
filter the incoming neighbors from its peers.  Kernel 
invocation simply uses remote pointers that reference the 
appropriate peer bins.  This assembles each vertex queue 
Qvertexi for the next BFS iteration.  

The implementation requires (2m+n)/p storage for queue arrays 
per GPU: two edge queues for pre and post-sorted neighbors and a 
third vertex queue to avoid another global synchronization after 
Step 4. 

6.2 Evaluation 

Fig. 11 presents traversal throughput as we scale up the number of 
GPUs.  We experience net slowdown for datasets on the left 
having average search depth > 100.  The cost of global 
synchronization between BFS iterations is much higher across 
multiple GPUs. 

We do yield notable speedups for the three rightmost datasets.  
These graphs have small diameters and require little global 
synchronization.  The large average out-degrees enable plenty of 
opportunistic duplicate filtering during partitioning passes.  This 
allows us to circumvent the PCI-e cap of 825x106 edges/sec per 
GPU.  With four GPUs, we demonstrate traversal rates of 7.4 and 
8.3 billion edges/sec for the uniform-random and RMAT datasets 
respectively. 

As expected, this strong-scaling is not linear.  For example, we 
observe 1.5x, 2.1x, and 2.5x speedups when traversing 
rmat.2Mv.128Me using two, three, and four GPUs, respectively.    
Adding more GPUs reduces the percentage of duplicates per 
processor and increases overall PCI-e traffic.   

Fig. 12 further illustrates the impact of opportunistic duplicate 
culling for uniform random graphs up to 500M edges and varying 
out out-degree .  Increasing  yields significantly better 

performance.  Other than a slight performance drop at n=8 million 
vertices when the bitmask exceeds the 768KB L2 cache size, 
graph size has little impact upon traversal throughput.   

To our knowledge, these are the fastest traversal rates 
demonstrated by a single-node machine.  The work by Agarwal et 
al. is representative of the state-of-the-art in CPU parallelizations, 
demonstrating up to 1.3 billion edges/sec for both uniform-
random and RMAT datasets using four 8-core Intel Nehalem-
based XEON CPUs [3].  However, we note that the host memory 
on such systems can further accommodate datasets having tens of 
billions of edges. 

7. Conclusion 

This paper has demonstrated that GPUs are well-suited for sparse 
graph traversal and can achieve very high levels of performance 
on a broad range of graphs.  We have presented a parallelization 
of BFS tailored to the GPU’s requirement for large amounts of 
fine-grained, bulk-synchronous parallelism. 

Furthermore, our implementation performs an asymptotically 
optimal amount of work.  While quadratic-work methods might be 
acceptable in certain very narrow regimes [18, 19], they suffer 
from high overhead and did not prove effective on even the lowest 
diameter graphs in our experimental corpus.  Our linear-work 
method compares very favorably to state-of-the-art multicore 
implementations across our entire range of benchmarks, which 
spans five orders of magnitude in graph diameter. 

Beyond graph search, our work distills several general themes 
for implementing sparse and dynamic problems for the GPU 
machine model: 

 Prefix sum can serve as an effective alternative to atomic 
read-modify-write mechanisms for coordinating the 
placement of items within shared data structures by many 
parallel threads. 

 In contrast to coarse-grained parallelism common on 
multicore processors, GPU kernels cannot afford to have 
individual threads streaming through unrelated sections of 
data.  Groups of GPU threads should cooperatively assist 
each other for data movement tasks. 

 Fusing heterogeneous tasks does not always produce the best 
results.  Global redistribution and compaction of fine-grained 
tasks can significantly improve performance when the 
alternative would allow significant load imbalance or 
underutilization. 

 The relative I/O contribution from global task redistribution 
can be less costly than anticipated.  The data movement from 
reorganization may be insignificant in comparison to the 

 
Fig. 11.  Average multi-GPU traversal rates.  Harmonic means are 

normalized with respect to the single GPU configuration. 
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Fig. 12.  Multi-GPU sensitivity to graph size and average out-degree  
for uniform random graphs using four C2050 processors.  Dashed lines 

indicate predecessor labeling variants. 
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actual over-fetch traffic from existing sparse memory 
accesses. 

 It is useful to provide separate implementations for saturating 
versus fleeting workloads.  Hybrid approaches can leverage a 
shorter code-path for retiring underutilized phases as quickly 
as possible.  
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