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Abstract

Hashing has been widely used for approximate
nearest neighbor (ANN) search in big data appli-
cations because of its low storage cost and fast re-
trieval speed. The goal of hashing is to map the data
points from the original space into a binary-code
space where the similarity (neighborhood structure)
in the original space is preserved. By directly ex-
ploiting the similarity to guide the hashing code
learning procedure, graph hashing has attracted
much attention. However, most existing graph
hashing methods cannot achieve satisfactory per-
formance in real applications due to the high com-
plexity for graph modeling. In this paper, we pro-
pose a novel method, called scalable graph hashing
with feature transformation (SGH), for large-scale
graph hashing. Through feature transformation, we
can effectively approximate the whole graph with-
out explicitly computing the similarity graph ma-
trix, based on which a sequential learning method
is proposed to learn the hash functions in a bit-wise
manner. Experiments on two datasets with one mil-
lion data points show that our SGH method can
outperform the state-of-the-art methods in terms of
both accuracy and scalability.

1 Introduction

Nearest neighbor search [Andoni, 2009] plays an important
role in a large variety of areas including machine learning,
data mining, and information retrieval, and so on. In big data
applications, it is typically time-consuming or impossible to
return the exact nearest neighbors to the given queries. In fact,
approximate nearest neighbors (ANN) [Indyk and Motwani,
1998; Andoni and Indyk, 2008] are enough to achieve satis-
factory performance in many applications, such as the image
retrieval task in search engines. Furthermore, ANN search is
usually more efficient than exact nearest neighbor search to
solve large-scale problems. Hence, ANN search has attracted
more and more attention in this big data era [Andoni and In-
dyk, 2008]

Because of its low storage cost and fast retrieval speed,
hashing [Andoni and Indyk, 2008; Wang et al., 2010a; Gong
and Lazebnik, 2011; Zhen and Yeung, 2012; Zhu et al., 2013;

Song et al., 2013; Zhang et al., 2014; Liu et al., 2014] has
been widely used for ANN search. The hashing techniques
used for ANN search are usually called similarity-preserving
hashing, which tries to map the data points from the origi-
nal space into a binary-code Hamming space where the sim-
ilarity (neighborhood structure) in the original space is pre-
served. More specifically, the Hamming distance between the
binary codes of two points should be small if these two points
are similar in the original space. Otherwise, the Hamming
distance should be as large as possible. With the binary-code
representation, hashing can achieve constant or sub-linear
time complexity for ANN search [Gong and Lazebnik, 2011;
Zhang et al., 2014]. Furthermore, hashing can also reduce the
storage cost dramatically. For example, only 4GB memory is
needed to store one billion data points if each point is repre-
sented as a binary code of 32 bits. Hence, hashing has be-
come one of the most popular methods for ANN search [Gio-
nis et al., 1999; Datar et al., 2004; Weiss et al., 2008;
Kulis and Darrell, 2009; Wang et al., 2010b; Liu et al., 2011;
Gong and Lazebnik, 2011; Kong and Li, 2012; Liu et al.,
2012; Xu et al., 2013; Zhang et al., 2014; Lin et al., 2014;
Liu et al., 2014].

Compared with traditional data-independent hashing
methods like locality sensitive hashing (LSH) [Gionis et al.,
1999; Datar et al., 2004] which do not use any data for train-
ing, data-dependent hashing methods, which are also called
learning to hash (LH) methods, can achieve comparable or
better accuracy with shorter codes by learning hash func-
tions from training data [Gong and Lazebnik, 2011; Liu et
al., 2012; Zhang et al., 2014; Liu et al., 2014]. Hence, LH
methods have become more popular than data-independent
methods [Wang et al., 2010b; Gong and Lazebnik, 2011;
Liu et al., 2012; Zhang et al., 2014; Lin et al., 2014;
Liu et al., 2014].

Existing LH methods can be divided into two main cate-
gories [Gong and Lazebnik, 2011; Liu et al., 2012; Zhang
et al., 2014]: unsupervised hashing and supervised hashing
methods. Unsupervised hashing tries to preserve the Eu-
clidean similarity between the attributes of training points,
while supervised hashing [Norouzi and Fleet, 2011; Zhang et
al., 2014; Lin et al., 2014] tries to preserve the semantic sim-
ilarity constructed from the semantic labels of the training
points. Although supervised hashing methods have demon-
strated promising performance in some applications with se-
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mantic labels, it is time-consuming or impossible to get se-
mantic labels in many real applications. Hence, we can only
perform unsupervised hashing for these cases, which is also
the focus of this paper.

Representative unsupervised hashing methods include
spectral hashing (SH) [Weiss et al., 2008], binary reconstruc-
tive embeddings (BRE) [Kulis and Darrell, 2009], princi-
pal component analysis based hashing (PCAH) [Gong and
Lazebnik, 2011], iterative quantization (ITQ) [Gong and
Lazebnik, 2011], anchor graph hashing (AGH) [Liu et al.,
2011], isotropic hashing (IsoHash) [Kong and Li, 2012], and
discrete graph hashing (DGH) [Liu et al., 2014]. Among
these methods, SH, BRE, AGH and DGH are graph hash-
ing methods. By directly exploiting the similarity (neighbor-
hood structure) to guide the hashing code learning procedure,
the objective of graph hashing exactly matches the goal of
similarity-preserving hashing. Hence, graph hashing should
be expected to achieve better performance than other non-
graph based hashing methods if the learning algorithms are
effective enough.

However, most existing graph hashing methods cannot
achieve satisfactory performance in real applications due to
the high complexity for graph modeling. More specifically,
the similarity typically reflects the pairwise relationship be-
tween two points. The memory cost for storing all the pair-
wise similarities is O(n2), where n is the number of train-
ing points. The time complexity for directly computing all
the pairwise similarities is also O(n2). Besides these costs
to compute and store the similarity graph, almost all meth-
ods will introduce extra computation and memory cost during
the learning procedure. Hence, it is memory-consuming and
time-consuming or even intractable to learn from the whole
similarity graph for large-scale datasets which are typical in
hashing applications. Existing methods have to adopt ap-
proximation or subsampling methods for graph hashing on
large-scale datasets. For example, SH uses an eigenfunc-
tion solution of 1-D Laplacian for approximation by assum-
ing uniform data distribution, which actually loses the neigh-
borhood structure in the data. BRE has to subsample a
small subset for training even if a large-scale dataset is avail-
able. Both SH and BRE cannot achieve satisfactory perfor-
mance in real applications, which has been verified by exist-
ing work [Liu et al., 2011]. Both AGH and DGH use an-
chor graphs to approximate the similarity graph, which suc-
cessfully avoid the O(n2) complexity for both memory and
computation cost. However, the accuracy of approximation
cannot be guaranteed, which might deteriorate the accuracy
of the learned codes. Furthermore, it need extra computation
cost to construct the anchors, which will be proved to be time-
consuming in our experiment. Hence, although the objective
is attractive, existing graph hashing methods cannot achieve
satisfactory performance in real applications.

In this paper, we propose a novel method, called scalable
graph hashing with feature transformation (SGH), for large-
scale graph hashing. The main contributions of SGH are
briefly outlined as follows:

• Inspired by the asymmetric LSH (ALSH) [Shrivastava
and Li, 2014], SGH adopts a feature transformation
method to effectively approximate the whole graph with-

out explicitly computing the pairwise similarity graph
matrix. Hence, the O(n2) computation cost and storage
cost are avoided in SGH, which makes SGH suitable for
large-scale applications.

• A sequential learning method is proposed to learn the
hash functions in a bit-wise manner, which is effective
because the residual caused by former bits can be com-
plementarily captured in the following bits.

• Experiments on two datasets with one million data
points show that our SGH method can outperform the
state-of-the-art methods in terms of both accuracy and
scalability.

The rest of this paper is organized as follows. Section 2 in-
troduces the problem definition of this paper. We present our
SGH method in Section 3. Experiments are shown in Sec-
tion 4, and finally we conclude the whole paper in Section 5.

2 Problem Definition

2.1 Notation

We use boldface lowercase letters like v to denote vectors,
and the ith element of v is denoted as vi. Boldface uppercase
letters like V denote matrices. The ith row of V is denoted as
Vi∗, the jth column of V is denoted as V∗j , and the (i, j)th
element in V is denoted as Vij . V

T is the transpose of V,

and tr(V) is the trace of matrix V. ‖V‖F =
√∑

ij V
2
ij

is the Frobenius norm, which can also be used to define the
length of a vector. sgn(·) is an element-wise sign function.
[u;v] denotes the concatenation of two vectors u and v. Id is
an identity matrix with dimensionality d.

2.2 Graph Hashing

Assume we are given n data points X = [x1;x2; · · · ;xn]
T ∈

Rn×d, where d is the dimensionality of the data points and
Xi∗ = x

T
i . Without loss of generality, the data are assumed

to be zero centered which means
∑n

i=1 xi = 0. Hashing is to
map each point xi into a binary code bi ∈ {−1,+1}c, where
c denotes the code size (length). In general, we use c binary
hash functions {hk(·)|k = 1, 2, · · · , c} to compute the binary
code of xi, i.e., bi = [h1(xi), h2(xi), · · · , hc(xi)]

T .
We have different metrics to measure the similarity be-

tween two points in the original space. Let Sij denote the
similarity between xi and xj . One most widely used metric

is defined as: Sij = e−
‖xi−xj‖

2
F

ρ , where ρ > 0 is a parame-
ter. We can find that Sij ∈ (0, 1]. Hashing need to preserve
the similarity in the original feature space. More specifically,
the larger the similarity between xi and xj is, the smaller
the Hamming distance between bi and bj will be. In other
words, for any three points xi,xj and xk, if Sij < Sik, the
Hamming distance between bk and bi should be smaller than
that between bj and bi.

If we compute all the pairwise similarities between any two
points in X, we can get a similarity graph with the graph ma-
trix S = [Sij ]n×n ∈ Rn×n. Graph hashing tries to use all the
information or part of the information in S to learn the binary
codes. It’s obvious that both the time complexity and storage
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complexity are O(n2) if we explicitly compute all the pair-
wise similarities in S, which is not acceptable in large-scale
applications. Hence, as stated in the introduction, existing
methods have to adopt approximation or subsampling tech-
niques to solve it. However, they cannot achieve satisfactory
performance, which motivates the work in this paper.

3 Scalable Graph Hashing with Feature

Transformation

In this section, we present the details of our graph hashing
method SGH, including the model, learning algorithm, and
complexity analysis.

3.1 Model

The model of SGH contains two key components: the objec-
tive function and the feature transformation method.

Objective Function

The aim of SGH is to approximate the similarity matrix S

by the learned hashing codes, which results in the following
objective function:

min
{bl}n

l=1

n∑

i,j=1

(S̃ij −
1

c
b
T
i bj)

2, (1)

where S̃ij = 2Sij − 1. Note that S̃ij ∈ (−1, 1], and the rela-

tive distance in S is kept in S̃. We use S̃ in the objective func-
tion to keep consistent with the range of 1

c
b
T
i bj ∈ [−1, 1].

It is NP-hard to directly learn the binary codes {bl} in (1).
As in kernelized locality-sensitive hashing (KLSH) [Kulis
and Grauman, 2009] and supervised hashing with ker-
nels (KSH) [Liu et al., 2012], we define the hash function
for the kth bit of bi as follows:

hk(xi) = sgn(
m∑

j=1

Wkjφ(xi,xj) + biask),

where W ∈ Rc×m is the weight matrix, φ(xi,xj) is a kernel
function which is a RBF (Gaussian) function in our experi-
ment, m denotes the number of kernel bases, and biask is a
bias value. Our goal is to learn H(x) = {h1(x), · · · , hc(x)}
to map the whole training set X to a binary matrix B ∈
{−1,+1}n×c with Bi∗ = b

T
i . biask is typically set to

− 1
n

∑n

i=1

∑m

j=1 Wkjφ(xi,xj), which has the same effect as

that by making the training data in the kernel space zero-
centered. In fact, the above hash function can be rewrit-
ten as hk(x) = sgn(K(x)wk), where wk = W

T
k∗ and

K(x) = [φ(x,x1) −
∑n

i=1 φ(xi,x1)/n, · · · , φ(x,xm) −∑n

i=1 φ(xi,xm)/n]. Then, by substituting the H(x) into (1),
we can get the objective function with the parameter W to
learn:

min
W

‖cS̃− sgn(K(X)WT )sgn(K(X)WT )T ‖2F , (2)

where K(X) ∈ Rn×m is the kernel feature matrix for all
training points in X.

Figure 1: Approximation in feature transformation.

Feature Transformation

As stated in Section 2, both time complexity and storage com-
plexity are O(n2) if we explicitly compute all the pairwise

similarities in S̃, which is obviously unscalable. Here, we
propose a feature transformation method to use all the simi-

larities without explicitly computing S̃.
We first define P (x) and Q(x) as follows:

P (x) = [

√
2(e2 − 1)

eρ
e−

‖x‖2
F

ρ x;

√
e2 + 1

e
e−

‖x‖2
F

ρ ; 1]

Q(x) = [

√
2(e2 − 1)

eρ
e−

‖x‖2
F

ρ x;

√
e2 + 1

e
e−

‖x‖2
F

ρ ;−1]

(3)

where we multiply a value

√
2(e2−1)

eρ
e−

‖x‖2
F

ρ to x, and then

add two extra dimensions.
Then we can get:

P (xi)
T
Q(xj) =2[

e2 − 1

2e
×

2xT
i xj

ρ
+

e2 + 1

2e
]e

−
‖xi‖

2
F

+‖xj‖
2
F

ρ − 1

≈ 2e
−‖xi‖

2
F

−‖xj‖
2
F

+2xT
i

xj
ρ − 1

= 2e
−

‖xi−xj‖
2
F

ρ − 1

= S̃ij .

Here, we use an approximation e2−1
2e x + e2+1

2e ≈ ex,
which is shown in Figure 1 when x ∈ [−1, 1]. We can
find that these two functions are close to each other with
x ∈ [−1, 1]. Hence, to make the approximation reasonable,
we assume −1 ≤ 2

ρ
x
T
i xj ≤ 1. It is easy to prove that

ρ = 2max{‖xi‖
2
F }

n
i=1 can make −1 ≤ 2

ρ
x
T
i xj ≤ 1. Ac-

tually, 2max{‖xi‖
2
F }

n
i=1 is not a tight bound of ρ. In real

applications, we can also treat ρ as a hyper-parameter, and
tune it with cross-validation techniques.

By using this simple feature transformation, we can

derive the similarity matrix S̃ = P (X)TQ(X), where

P (X) = {P (x1), · · · , P (xn)} ∈ R(d+2)×n and Q(X) =
{Q(x1), · · · , Q(xn)} ∈ R(d+2)×n. Both the time and stor-
age complexities are still O(n2) if we explicitly comput-

ing S̃ = P (X)TQ(X) even if the feature transformation is
adopted. However, we use only P (X) and Q(X) for com-

putation, but do not explicitly computing S̃ in our follow-
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ing learning algorithm. Hence, the O(n2) complexity can be
avoided in our method.

Please note that the feature transformation is inspired by
ALSH [Shrivastava and Li, 2014], which is proposed for
maximum inner product search with data-independent hash-
ing. Different from ALSH, our SGH is for data-dependent
hashing. Furthermore, the feature transformation method in
SGH is different from that in ALSH.

3.2 Learning

The discrete sgn(·) function in (2) makes the problem very
difficult to solve. One possible solution is to discard the
discrete constraints and relax the whole H(·) function to
a real-valued function, which has been adopted by many
methods such as SH [Weiss et al., 2008] and AGH [Liu
et al., 2011]. However, this relaxation procedure may lead
to poor performance, which has been verified by existing
work [Kong and Li, 2012; Zhang and Li, 2014]. Here, we
design a sequential learning strategy in a bit-wise manner,
where the residual caused by former bits can be comple-
mentarily captured in the following bits [Liu et al., 2012;
Zhang and Li, 2014].

Assuming that we have already learned t−1 bits which are
parameterized by {wi}

t−1
i=1 , the residual matrix to reconstruct

the similarity matrix can be computed as follows:

Rt = cS̃−
t−1∑

i=1

sgn(K(X)wi)sgn(K(X)wi)
T . (4)

Then our objective function to learn the tth bit can be writ-
ten as follows:

min
wt

‖Rt − sgn(K(X)wt)sgn(K(X)wt)
T ‖2F (5)

The objective function in (5) is still a NP-hard problem due
to the sgn(·) function. In order to solve the problem in (5), we
apply spectral relaxation [Weiss et al., 2008] and impose an
orthogonality constraint to get the following formulation:

min
wt

‖Rt −K(X)wtw
T
t K(X)T ‖2F

s.t. wT
t K(X)TK(X)wt = 1

(6)

The problem in (6) can be further simplified to:

‖Rt − K(X)wtw
T
t K(X)

T
‖
2

F

= tr[(Rt − K(X)wtw
T
t K(X)

T
)(Rt − K(X)wtw

T
t K(X)

T
)
T
]

= tr[K(X)wtw
T
t K(X)

T
K(X)wtw

T
t K(X)

T
]

− 2tr(w
T
t K(X)

T
RtK(X)wt)) + tr(RtR

T
t )

= −2tr(w
T
t K(X)

T
RtK(X)wt)) + const.

Then we reformulate the problem in (6) as follows:

min
wt

−tr(wT
t K(X)TRtK(X)wt)

s.t. wT
t K(X)TK(X)wt = 1

(7)

Then we can obtain a generalized eigenvalue problem as
follows:

K(X)TRtK(X)wt = λK(X)TK(X)wt.

If we define At = K(X)TRtK(X), then we have:

At = At−1−

K(X)T sgn(K(X)wt−1)sgn(K(X)wt−1)
TK(X)

and

A1 = cK(X)T S̃K(X)

= cK(X)TP (X)TQ(X)K(X)

= c[K(X)TP (X)T ][Q(X)K(X)].

(8)

Equation (8) is the key component of our learning algo-
rithm. It is easy to see that we not only implicitly include

all the information of the pairwise similarity matrix S̃ for
training, but also successfully avoid the high computation and

storage complexity without explicitly computing S̃.
After t iterates from 1 to c, we can learn all the W =

{wi}
c
i=1. Actually, the sequential learning procedure can fur-

ther continue by adopting the following residual matrix:

Rt = cS̃−
c∑

i=1
i 6=t

sgn(K(X)wi)sgn(K(X)wi)
T .

We find that this procedure can further improve the accu-
racy. In our paper, we continue it for another c iterations,
which achieves a good tradeoff between accuracy and speed.

The sequential learning strategy is briefly summarized in
Algorithm 1. Here, γ is a very small positive number to avoid
numerical problems, which is 10−6 in our experiments.

Algorithm 1 Sequential learning algorithm for SGH

Input: Feature vectors X ∈ Rn×d; code length c; number of
kernel bases m.
Output: Weight matrix W ∈ Rc×m.
Procedure
Construct P (X) and Q(X) according to (3);
Construct K(X) based on the kernel bases, which are m points
randomly selected from X;
A0 = [K(X)TP (X)T ][Q(X)K(X)];
A1 = cA0;
Z = K(X)TK(X) + γId;
for t = 1→ c do

Solve the following generalized eigenvalue problem
Atwt = λZwt;
U = [K(X)T sgn(K(X)wt)][K(X)T sgn(K(X)wt)]

T ;
At+1 = At −U;

end for
Â0 = Ac+1

Randomly permutate {1, 2, · · · , c} to generate a random index
setM;
for t = 1→ c do

t̂ =M(t);

Â0 = Â0 +K(X)T sgn(K(X)w
t̂
)sgn(K(X)w

t̂
)TK(X);

Solve the following generalized eigenvalue problem

Â0v = λZv;
Update w

t̂
← v

Â0 = Â0 −K(X)T sgn(K(X)w
t̂
)sgn(K(X)w

t̂
)TK(X);

end for
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Table 1: Top-1000 precision on TINY-1M and MIRFLICKR-1M. The best accuracy is shown in boldface.

Method
TINY-1M MIRFLICKR-1M

32 bits 64 bits 96 bits 128 bits 256 bits 32 bits 64 bits 96 bits 128 bits 256 bits

SGH 0.4697 0.5742 0.6299 0.6737 0.7357 0.4919 0.6041 0.6677 0.6985 0.7584

ITQ 0.4289 0.4782 0.4947 0.4986 0.5003 0.5177 0.5776 0.5999 0.6096 0.6228

AGH 0.3973 0.4402 0.4577 0.4654 0.4767 0.4299 0.4741 0.4911 0.4998 0.506

DGH-I 0.3974 0.4536 0.4737 0.4874 0.4969 0.4299 0.4806 0.5001 0.5111 0.5253

DGH-R 0.3793 0.4554 0.4871 0.4989 0.5276 0.4121 0.4776 0.5054 0.5196 0.5428

PCAH 0.2457 0.2203 0.2000 0.1836 0.1421 0.2720 0.2384 0.2141 0.1950 0.1508

LSH 0.2507 0.3575 0.4122 0.4529 0.5212 0.2597 0.3995 0.466 0.5160 0.6072

(a) 64 bits @TINY-1M (b) 128 bits @TINY-1M (c) 64 bits @MIRFLICKR-1M (d) 128 bits @MIRFLICKR-1M

Figure 2: Performance of Top-K precision on TINY-1M and MIRFLICKR-1M

3.3 Complexity Analysis

The computation cost can be divided in two parts: initial-
ization and the main procedure. Initialization of P (X) and
Q(X), kernel initialization, and initialization of A0 and Z

will cost O(dn+ dmn+mn+ (m2 +mn)(d+ 2) +m2n).
The main procedure will cost O(c(mn +m2) +m3). Typi-
cally, m, d, c will be much less than n. Hence, the time com-
plexity of SGH is O(n) although all the n2 similarities have
been used. Furthermore, the memory cost is also O(n) since

the similarity matrix S̃ is not explicitly computed. Therefore,
it is expected that SGH is not only accurate but also scalable.

4 Experiment

We use two datasets with one million data points for evalua-
tion. All the experiments are conducted on a workstation with
Intel (R) CPU E5-2620V2@2.1G 12 cores and 64G RAM.

4.1 Datasets

We evaluate our method on two widely used large-scale
benchmark datasets: TINY-1M [Liu et al., 2014] and
MIRFLICKR-1M [Huiskes et al., 2010].

The first dataset is TINY-1M which contains one million
images from the 80M tiny images. Each tiny image is rep-
resented by a 384-dim GIST descriptors extracted from the
original image of size 32×32.

The second dataset is MIRFLICKR-1M from LIACS Medi-
alab at Leiden University. This dataset has one million Flickr
images which are downloaded from Flickr. We extract 512
features from each image.

4.2 Evaluation Protocols and Baselines

For each dataset, we randomly select 5000 data points to con-
struct the test (query) set and the remaining points will be
used for training. The groundtruth neighbors of each query

are defined as the top 2% nearest neighbors in the training set
in terms of the Euclidean distance. So each query has 19900
ground truth neighbors for both datasets.

The baselines for comparison contain one data-
independent method LSH [Datar et al., 2004] and some
representative unsupervised hashing methods, including two
graph-based hashing methods AGH [Liu et al., 2011] and
DGH [Liu et al., 2014], two linear projection based methods
PCAH [Gong and Lazebnik, 2011] and ITQ [Gong and
Lazebnik, 2011]. By using different initialization strategies,
DGH has two variants [Liu et al., 2014], DGH-I and DGH-R,
both of which are used for comparison. Please note that two
other graph hashing methods SH and BRE are not adopted
for comparison because existing works have shown that AGH
and DGH can outperform them [Liu et al., 2014]. For kernel
feature construction, we use Gaussian kernel and take 300
randomly sampled points as kernel bases for our method. We
set the parameter ρ = 2 in P (X) and Q(X). For all the other
baselines, we set the parameters by following the suggestions
of the corresponding authors.

The Top-K precision [Liu et al., 2014] is adopted as a met-
ric to evaluate our method and baselines. In real applications
such as search engines, the users may only be interested in
the top returned results given a query. Hence, the Top-K pre-
cision is a good metric for evaluation.

4.3 Accuracy

The Top-1000 precision based on the Hamming ranking re-
sults is shown in Table 1. We can see that SGH achieves
the best accuracy in all the cases except on MIRFLICKR-1M
with 32 bits. In particular, SGH can outperform all the other
graph hashing methods in all cases. This shows that SGH is
effective to capture the similarity information in the data.

We also report the Top-K precision with other numbers of
K (returned samples) in Figure 2 on two datasets with 64 bits
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Table 2: Training time on TINY-1M (in second).

Method 32 bits 64 bits 96 bits 128 bits 256 bits

SGH 34.49 52.37 71.53 89.65 164.23

ITQ 31.72 60.62 89.01 149.18 322.06

AGH 18.60 + 1438.60 19.40 + 1438.60 20.08 + 1438.60 22.48 + 1438.60 25.09 + 1438.60

DGH-I 187.57 + 1438.60 296.99 + 1438.60 518.57 + 1438.60 924.08 + 1438.60 1838.30 + 1438.60

DGH-R 217.06 + 1438.60 360.18 + 1438.60 615.74 + 1438.60 1089.10 + 1438.60 2300.10 + 1438.60

PCAH 4.29 4.54 4.75 5.85 6.49

LSH 1.68 1.77 1.84 2.55 3.76

Table 3: Training time on MIRFLICKR-1M (in second).

Method 32 bits 64 bits 96 bits 128 bits 256 bits

SGH 41.51 59.02 74.86 97.25 168.35

ITQ 36.17 64.61 89.50 132.71 285.10

AGH 17.99 + 1564.86 18.80 + 1564.86 20.30 + 1564.86 19.87 + 1564.86 21.60 + 1564.86

DGH-I 85.81 + 1564.86 143.68 + 1564.86 215.41 + 1564.86 352.73 + 1564.86 739.56 + 1564.86

DGH-R 116.25 + 1564.86 206.24 + 1564.86 308.32 + 1564.86 517.97 + 1564.86 1199.44 + 1564.86

PCAH 7.65 7.90 8.47 9.23 10.42

LSH 2.44 2.43 2.71 3.38 4.21

(a) TINY-1M (b) MIRFLICKR-1M

Figure 3: Top-1000 precision using different numbers of ker-
nel bases (m)

and 128 bits. The cases with other numbers of bits are similar
to these reported results, which are omitted for space saving.
We can see that SGH achieves the best accuracy for different
numbers of K.

4.4 Speed

We report the time consumption on two datasets in Table 2
and Table 3, respectively. Please note the “+1438.60” and
“+1564.86” in the two tables denote the anchor graph con-
structing time in AGH and DGH. It is fair to include this
anchor graph constructing time for comparison because the
time of our SGH also includes all the training time. We can
find that our SGH is much faster than AGH and DGH in all
cases, and is faster than ITQ in most cases. LSH and PCAH
are faster than SGH, but their accuracy is not satisfactory.

4.5 Sensitivity to Parameters

Figure 3 shows the Top-1000 precision on TINY-1M and
MIRFLICKR-1M for different numbers of kernel bases (m).
We can find that better accuracy can be achieved with larger
m, which is consistent with our intuition. However, larger m
will result in higher computation cost. Hence, in real appli-
cations, we need to choose a suitable m for tradeoff between
accuracy and cost.

(a) TINY-1M (b) MIRFLICKR-1M

Figure 4: Top-1000 precision using different values of ρ

Figure 4 shows the Top-1000 precision on TINY-1M and
MIRFLICKR-1M for different values of ρ. We can find that
the accuracy is not sensitive to ρ when 1 ≤ ρ ≤ 5. One nice
phenomenon is that our method achieves the best accuracy
when ρ = 2 on both datasets.

5 Conclusion

In this paper, we have proposed a novel method, called SGH,
for large-scale graph hashing. SGH is scalable by avoiding
explicitly computing the similarity matrix, and simultane-
ously SGH can preserve the entire similarity information in
the dataset. Experiments show that SGH can outperform the
state-of-the-art methods in terms of both accuracy and scala-
bility.
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