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Abstract. Group signatures are a central cryptographic primitive, si-
multaneously supporting accountability and anonymity. They allow users
to anonymously sign messages on behalf of a group they are members of.
The recent years saw the appearance of several constructions with secu-
rity proofs in the standard model (i.e., without appealing to the random
oracle heuristic). For a digital signature scheme to be adopted, an efficient
revocation scheme (as in regular PKI) is absolutely necessary. Despite
over a decade of extensive research, membership revocation remains a
non-trivial problem in group signatures: all existing solutions are not
truly scalable due to either high overhead (e.g., large group public key
size), or limiting operational requirement (the need for all users to follow
the system’s entire history). In the standard model, the situation is even
worse as many existing solutions are not readily adaptable. To fill this gap
and tackle this challenge, we describe a new revocation approach based,
perhaps somewhat unexpectedly, on the Naor-Naor-Lotspiech framework
which was introduced for a different problem (namely, that of broadcast
encryption). Our mechanism yields efficient and scalable revocable group
signatures in the standard model. In particular, the size of signatures and
the verification cost are independent of the number of revocations and the
maximal cardinality N of the group while other complexities are at most
polylogarithmic in N . Moreover, the schemes are history-independent:
unrevoked group members do not have to update their keys when a re-
vocation occurs.
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1 Introduction

As suggested by Chaum and van Heyst in 1991 [31], group signatures allow
members of a group to anonymously sign messages on behalf of a population
groupmembers managed by a group authority. Using some trapdoor information,
a tracing authority must be able to “open” signatures and identify the signer.
A complex problem in group signatures is the revocation of members whose
signing capability should be disabled (either because they misbehaved or they
intentionally leave the group).
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1.1 Related Work

Group signatures without revocation. The first efficient and provably
coalition-resistant group signature was described by Ateniese, Camenisch, Joye
and Tsudik in 2000 [7]. At that time, the security of group signatures was not
totally understood and proper security definitions were given later on by Bellare,
Micciancio and Warinschi [9] (BMW) whose model captures all the requirements
of group signatures in three properties. In (a relaxation of) this model, Boneh,
Boyen and Shacham [16] obtained a construction in the random oracle model
[10] with signatures shorter than 200 bytes [13].

In the BMW model, the population of users is frozen after the setup phase
beyond which no new member can be added. Dynamic group signatures were
independently formalized by Kiayias and Yung [42] and Bellare-Shi-Zhang [11].
In these models, pairing-based schemes with relatively short signatures were put
forth in [50,32]. Ateniese et al. [6] also gave a construction without random or-
acles using interactive assumptions. In the BMW model [9], Boyen and Waters
independently came up with a different standard model proposal [19] using more
classical assumptions and they subsequently refined their scheme [20] to obtain
constant-size signatures. In the dynamic model [11], Groth [37] described a sys-
tem with constant-size signatures without random oracles but this scheme was
rather a feasibility result than an efficient construction. Later on, Groth gave
[38] a fairly efficient realization – with signatures consisting of about 50 group
elements – in the standard model with the strongest anonymity level.

Revocation. In group signatures, membership revocation has received much
attention in the last decade [21,8,28,18] since revocation is central to digital sig-
nature schemes. One simple solution is to generate a new group public key and
deliver a new signing key to each unrevoked member. However, in large groups,
it may be inconvenient to change the public key and send a new secret to signers
after they joined the group. An alternative approach taken by Bresson and Stern
[21] is to have the signer prove that his membership certificate does not appear
in a public list or revoked certificates. Unfortunately, the signer’s workload and
the size of signatures grow with the number of expelled users.

Song [51] presented an approach handling revocation in forward-secure group
signatures. However, verification takes linear time in the number of revocations.

Using accumulators1 [12], Camenisch and Lysyanskaya [28] proposed a method
(followed by [55,26]) to revoke users in the ACJT group signature [7] while keep-
ing O(1) costs for signing and verifying. While elegant, this approach is history-
dependent and requires users to keep track of all changes in the population of
the group: at each modification of the accumulator value, unrevoked users need
to update their membership certificates before signing new messages, which may
require up to O(r) exponentiations if r is the number of revoked users.

Brickell [22] suggested the notion of verifier-local revocation group signa-
tures, which was formalized by Boneh and Shacham [18] and further studied

1 An accumulator allows hashing a set of values into a short string of constant size
while allowing to efficiently prove that a specific value was accumulated.
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in [47,56,45]. In their systems, revocation messages are only sent to verifiers
(making the signing algorithm independent of the number of revocations). The
group manager maintains a revocation list (RL) which is used by verifiers to
make sure that signatures were not generated by a revoked member. The RL
contains a token for each revoked user and the verification algorithm has to ver-
ify signatures w.r.t. each token (a similar revocation mechanism is used in [23]).
As a result, the verification cost is inevitably linear in the number of expelled
users.

More recently, Nakanishi, Fuji, Hira and Funabiki [46] described a construc-
tion with constant complexities for signing/verifying and where group members
never have to update their credentials. On the other hand, their proposal has
the disadvantage of linear-size group public keys (in the maximal number N of
users), although a tweak allows reducing the size to O(N1/2).

In the context of anonymous credentials, Tsang et al. [53,54] showed how
to blacklist users without compromising their anonymity or involving a trusted
third party. Their protocols either have linear proving complexity in the num-
ber of revocations or rely on accumulators (which may be problematic for our
purposes). Camenisch, Kohlweiss and Soriente [27] handle revocations by period-
ically updating users credentials in which a specific attribute indicates a validity
period. While useful in certain applications of anonymous credentials, in group
signatures, their technique would place quite a burden on the group manager
who would have to generate updates for each unrevoked individual credential.

1.2 Our Contribution

For the time being and despite years of research efforts, group signatures in
the standard model have no revocation mechanism allowing for scalable (i.e.,
constant or polylogarithmic) verification time without dramatically degrading
the efficiency in other metrics and without being history-dependent. In pairing-
based group signatures, accumulator-based approaches are unlikely to result in
solutions supporting very large groups. The reason is that, in known pairing-
based accumulators [49,26], public keys have linear size in the maximal number
of accumulated values (unless one sacrifices the constant size of proofs of non-
membership as in [5]), which would result in linear-size group public keys in
straightforward implementations. Recently [34], Fan et al. suggested a different
way to use the accumulator of [26] and announced constant-size group public
keys but their scheme still requires the group manager to publicize O(N) values
at each revocation. In a revocation mechanism along the lines of [28], Boneh,
Boyen and Shacham [16] managed to avoid linear dependencies. However, their
technique seems hard to combine2 with Groth-Sahai proofs [39] so as to work

2 In [16], signing keys consist of pairs (g1/(ω+s), s) ∈ G×Zp, where ω ∈ Zp is the private
key of the group manager, and the revocation mechanism relies on the availability
of the exponent s ∈ Zp. In the standard model, the Groth-Sahai techniques would
require to turn the membership certificates into triples (g1/(ω+s), gs, us), for some
u ∈ G (as in [20]), which is no longer compatible with the revocation technique.
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in the standard model. In addition, we would like to save unrevoked users from
having to update their keys after each revocation. To this end, it seems possible
to adapt the approach of [46] in the standard model. However, merely replac-
ing sigma-protocols by Groth-Sahai proofs in the scheme of [46] would result in
group public keys of size O(N1/2) in the best case.

In this paper, we describe a novel and scalable revocation technique that in-
teracts nicely with Groth-Sahai proofs and gives constructions in the standard
model with O(1) verification cost and at most polylogarithmic complexity in
other metrics. Our approach bears similarities with the one of Nakanishi et al.
[46] in that it does not require users to update their membership certificates at
any time but, unlike [46], our group public key size is either O(logN) or con-
stant. Like the scheme of [46], our main system uses revocation lists (RLs) of size
O(r) – which is in line with RLs of standard PKIs – and we emphasize that these
are not part of the group public key: verifiers only need to know the number of
the latest revocation epoch and they do not have to read RLs entirely.

To obtain our constructions, we turn to the area of broadcast encryption and
build on the Subset Cover framework of Naor, Naor and Lotspiech [48] (NNL).
In a nutshell, the idea is to use the NNL ciphertext as a revocation list and
have non-revoked signers prove their ability to decrypt in order to convince veri-
fiers that they are not revoked. In its public-key variant, due to Dodis and Fazio
[33], the Subset Cover framework relies on hierarchical identity-based encryption
(HIBE) [41,36] and each NNL ciphertext consists of several HIBE encryptions.
To anonymously sign a message, we let group members commit to the specific
HIBE ciphertext that they can decrypt (which gives constant-size signatures
since only one ciphertext is committed to), and provide a non-interactive proof
that: (i) they hold a private key which decrypts the committed HIBE ciphertext.
(ii) The latter belongs to the revocation list.

By applying this approach to the Subset Difference (SD) method [48], we
obtain a scheme with O(1)-size signatures, O(logN)-size group public keys,
membership certificates of size O(log3 N) and revocation lists of size O(r). The
Layered Subset Difference method [40] can be used in the same way to obtain
membership certificates of sizeO(log2.5 N). Using the Complete Subtree method,
we obtain a tradeoff with O(r · logN) revocation lists, log-size membership cer-
tificates and constant-size group public keys.

A natural question is whether our SD-based revocable group signatures can
generically use any HIBE scheme. The answer is negative as the Boneh-Boyen-
Goh (BBG) construction [15] is currently the only suitable candidate. Indeed, for
anonymity reasons, ciphertexts should be of constant size and our security proof
requires the HIBE system to satisfy a new and non-standard security property
which is met by [15]. As we will see, the proof can hardly rely on the standard
security notion for HIBE schemes [36].

We note that the new revocation mechanism can find applications in con-
texts other than group signatures. For example, it seems that it can be used in
the oblivious transfer with access control protocol of [25], which also uses the
technique of Nakanishi et al. [46] to revoke credentials.
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2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G × G → GT over groups of prime order p where
e(g, h) �= 1GT whenever g, h �= 1G. We assume the hardness of several problems.

Definition 1 ([16]). The Decision Linear Problem (DLIN) in G, is to
distinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with
a, b, c, d R← Z

∗
p, z

R← Z
∗
p.

Definition 2 ([13]). The q-Strong Diffie-Hellman Problem (q-SDH) in
G is, given (g, ga, . . . , g(a

q)), for some g R← G and a R← Zp, to find a pair
(g1/(a+s), s) ∈ G× Zp.

We appeal to yet another “q-type” assumption introduced by Abe et al. [2].

Definition 3 ([2]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃ ∈ G

)
and q ∈ poly(λ)

tuples (zj , rj , sj , tj, uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),

to find a new tuple (z�, r�, s�, t�, u�, v�, w�) ∈ G7 satisfying the above relation
and such that z� �= 1G and z� �= zj for j ∈ {1, . . . , q}.

2.2 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors or matrices A and B con-
taining group elements, A�B stands for their entry-wise product.

In their instantiations based on the DLIN assumption, the Groth-Sahai (GS)
techniques [39] make use of prime order groups and a common reference string

comprising vectors �f1, �f2, �f3 ∈ G3, where �f1 = (f1, 1, g), �f2 = (1, f2, g) for some

f1, f2 ∈ G. To commit to an elementX ∈ G, one sets �C = (1, 1, X)� �f1
r� �f2

s� �f3
t

with r, s, t R← Z∗
p. When the CRS is configured to give perfectly sound proofs,

we have �f3 = �f1
ξ1 � �f2

ξ2
where ξ1, ξ2 ∈ Z∗

p. Commitments to group elements
�C = (f r+ξ1t

1 , f s+ξ2t
2 , X · gr+s+t(ξ1+ξ2)) are then Boneh-Boyen-Shacham (BBS)

ciphertexts [16] that can be decrypted using β1 = logg(f1), β2 = logg(f2). In the

witness indistinguishability (WI) setting, vectors �f1, �f2, �f3 are linearly indepen-

dent and �C is a perfectly hiding commitment. Under the DLIN assumption, the
two kinds of CRS are computationally indistinguishable.

To commit to a scalar x ∈ Zp, one computes �C = �ϕx� �f1
r� �f2

s
, where r, s R←

Z
∗
p, using a CRS comprising vectors �ϕ, �f1, �f2. In the soundness setting, �ϕ, �f1, �f2

are linearly independent (typically �ϕ = �f3 � (1, 1, g) where �f3 = �f1
ξ1 � �f2

ξ2
)

whereas, in the WI setting, choosing �ϕ = �f1
ξ1 � �f2

ξ2
gives a perfectly hiding
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commitment since �C is always a BBS encryption of 1G, no matter which expo-
nent x is committed to.

To prove that committed variables satisfy a set of relations, the prover com-
putes one commitment per variable and one proof element (made of a constant
number of group elements) per relation.

Such proofs are available for pairing-product equations, which are of the type
n∏

i=1

e(Ai,Xi) ·
n∏

i=1

·
n∏

j=1

e(Xi,Xj)
aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}. Efficient proofs also exist for multi-exponentiation equations

m∏

i=1

Ayi

i ·
n∏

j=1

X bj
j ·

m∏

i=1

·
n∏

j=1

X yiγij

j = T, (2)

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (1))
only take 3 group elements each. Linear multi-exponentiation equations of the
type

∏m
i=1Ayi

i = T demand 2 group elements.
Multi-exponentiation equations admit zero-knowledge (NIZK) proofs at no

additional cost. On a simulated CRS (prepared for the WI setting), a trapdoor
makes it is possible to simulate proofs without knowing witnesses and simulated
proofs have the same distribution as real proofs.

2.3 Structure-Preserving Signatures

Several applications (see [2,3,35,30,4] for examples) require to sign groups el-
ements while preserving the feasibility of efficiently proving that a committed
signature is valid for a committed group element.

In [2,3], Abe, Haralambiev and Ohkubo showed how to conveniently sign n
group elements at once using signatures consisting of O(1) group elements. Their
scheme (which is referred to as the AHO signature in the paper) makes use of
bilinear groups of prime order. In the context of symmetric pairings, the descrip-
tion below assumes public parameters pp =

(
(G,GT ), g

)
consisting of groups

(G,GT ) of order p > 2λ, where λ ∈ N is a security parameter, with a bilinear
map e : G×G→ GT and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
that can be signed altogether, choose generators Gr, Hr

R← G. Pick γz , δz
R←

Zp and γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγz

r , Hz = Hδz
r and

Gi = Gγi
r , Hi = Hδi

r for each i ∈ {1, . . . , n}. Finally, choose αa, αb
R← Zp and

define A = e(Gr, g
αa) and B = e(Hr, g

αb). The public key is

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

) ∈ G
2n+4 ×G

2
T

while the private key consists of sk =
(
αa, αb, γz , δz, {γi, δi}ni=1

)
.
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Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using the private
key sk = (αa, αb, γz, δz, {γi, δi}ni=1), choose ζ, ρ, τ, ν, ω R← Zp and compute
θ1 = gζ as well as

θ2 = gρ−γzζ ·
n∏

i=1

M−γi

i , θ3 = Gτ
r , θ4 = g(αa−ρ)/τ ,

θ5 = gν−δzζ ·
n∏

i=1

M−δi
i , θ6 = Hω

r , θ7 = g(αb−ν)/ω ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7).

Verify(pk, σ, (M1, . . . ,Mn)): parse σ as (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7 and return
1 iff these equalities hold:

A = e(Gz , θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏

i=1

e(Gi,Mi), (3)

B = e(Hz , θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏

i=1

e(Hi,Mi). (4)

The scheme was proved [2,3] existentially unforgeable under chosen-message at-
tacks under the q-SFP assumption, where q is the number of signing queries.

Abe et al. [2,3] also showed that signatures can be publicly randomized to
obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on (M1, . . . ,Mn). After
randomization, we have θ′1 = θ1 while {θ′i}7i=2 are uniformly distributed among
the values satisfying the equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) · e(θ3, θ4) and

e(Hr, θ
′
5) · e(θ′6, θ′7) = e(Hr, θ5) · e(θ6, θ7). Moreover, {θ′i}i∈{3,4,6,7} are statisti-

cally independent of (M1, . . . ,Mn) and the rest of the signature. This implies
that, in anonymity-related protocols, re-randomized {θ′i}i∈{3,4,6,7} can be safely
revealed as long as (M1, . . . ,Mn) and {θ′i}i∈{1,2,5} are given in committed form.

In [4], Abe, Groth, Haralambiev and Ohkubo described a more efficient
structure-preserving signature based on interactive assumptions. Here, we use
the scheme of [2,3] so as to rely on non-interactive assumptions.

2.4 The NNL Framework for Broadcast Encryption

The Subset Cover framework [48] considers secret-key broadcast encryption
schemes with N = 2 registered receivers. Each one of them is associated with
a leaf of a complete binary tree T of height � and each tree node is assigned a
secret key. If N denotes the universe of users and R ⊂ N is the set of revoked
receivers, the idea of the framework is to partition the set of non-revoked users
into m disjoint subsets S1, . . . , Sm such that N\R = S1 ∪ . . . ∪ Sm. Depending
on the way to partition N\R and the distribution of keys to users, different
instantiations and tradeoffs are possible.
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The Complete Subtree Method. In this technique, each subset Si consists of
the leaves of a complete subtree rooted at some node xi of T. Upon registration,
each user obtains secret keys for all nodes on the path connecting his leaf to
the root of T (and thus O(�) keys overall). By doing so, users in N\R can
decrypt the content if the latter is enciphered using symmetric keys K1, . . . ,Km

corresponding to the roots of subtrees S1, . . . , Sm. As showed in [48], the CS
partitioning method entails at most m ≤ r · log(N/r) subsets, where r = |R|.
Each transmission requires to send O(r · logN) symmetric encryptions while, at
each user, the storage complexity is O(logN).

As noted in [48,33], a single-level identity-based encryption scheme allows
implementing a public-key variant of the CS method. The master public key
of the IBE scheme forms the public key of the broadcast encryption system,
which allows for public keys of size O(1) (instead of O(N) in instantiations using
ordinary public-key encryption). When users join the system, they obtain O(�)
IBE private keys (in place of symmetric keys) associated with the “identities”
of nodes on the path between their leaf and the root.

The Subset Difference Method. The SD method reduces the transmission
cost to O(r) at the expense of increased storage requirements. For each node
xj ∈ T, we call Txj the subtree rooted at xj . The set N\R is now divided into
disjoint subsets Sk1,u1 , . . . , Skm,um . For each i ∈ {1, . . . ,m}, the subset Ski,ui is
determined by a node xki and one of its descendants xui – which are called pri-
mary and secondary roots of Ski,ui , respectively – and it consists of the leaves of
Txki

that are not in Txui
. Each user thus belongs to much more generic subsets

than in the CS method and this allows reducing the maximal number of subsets
to m = 2r − 1 (see [48] for a proof of this bound).

A more complex key distribution is necessary here. Each subset Ski,ui is as-
signed a “proto-key” Pxki

,xui
that allows deriving the actual symmetric encryp-

tion key Kki,ui for Ski,ui and as well as proto-keys Pxki
,xul

for any descendant
xul

of xui . At the same time, Pxki
,xul

should be hard to compute without a
proto-key Pxki

,xui
for an ancestor xui of xul

. The key distribution phase then
proceeds as follows. Let user i be assigned a leaf vi and let ε = x0, x1, . . . , x = vi
denote the path from the root ε to vi. For each subtree Txj (with j ∈ {1, . . . , �}),
if copathxj

denotes the set of all siblings of nodes on the path from xj to vi, user
i must obtain proto-keys Pxj ,w for each node w ∈ copathxj

because he belongs
to the generic subset whose primary root is xj and whose secondary root is w.
By storing O(�2) proto-keys (i.e., O(�) for each subtree Txj ), users will be able
to derive keys for all generic subsets they belong to.

In [33], Dodis and Fazio extended the SD method to the public-key setting
using hierarchical identity-based encryption. In the tree, each node w at depth
≤ � has a label 〈w〉 which is defined by assigning the label ε to the root (at depth
0). The left and right children of w are then labeled with 〈w〉||0 and 〈w〉||1, re-
spectively. For each subset Ski,ui of N\R, the sender considers the primary and
secondary roots xki , xui and parses the label 〈xui〉 as 〈xki〉||ui,i,1 . . . ui,i,2 , with
ui,j ∈ {0, 1} for each j ∈ {�i,1, . . . , �i,2}. Then, he computes a HIBE ciphertext
for the hierarchical identity (〈xki〉, ui,i,1 , . . . , ui,i,2) at level �i,2− �i,1+2. Upon
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registration, if ε = x0, . . . , x = vi denotes the path from the root to his leaf
vi, for each subtree Txj , user i receives exactly one HIBE private key for each
w ∈ copathxj

: namely, for each w ∈ copathxj
, there exist �1, �2 ∈ {1, . . . , �} such

that 〈w〉 = 〈xj〉||w1 . . . w2 with wj ∈ {0, 1} for all j ∈ {�1, . . . , �2} and user i
obtains a HIBE private key for the hierarchical identity (〈xj〉, w1 , . . . , w2). By
construction, this key will allow user i to decrypt any HIBE ciphertext encrypted
for a subset whose primary root is xj and whose secondary root is a descendant
of w. Overall, each user thus has to store O(log2 N) HIBE private keys.

2.5 Revocable Group Signatures

We consider schemes that have their lifetime divided into revocation epochs at
the beginning of which group managers update their revocation lists.

The syntax and the security model are similar to [46] but they build on those
defined by Kiayias and Yung [42]. Like the Bellare-Shi-Zhang model [11], the
latter assumes an interactive join protocol between the group manager and the
user. This protocol provides the user with a membership certificate and a mem-
bership secret. Such protocols may consist of several rounds of interaction.

Syntax. We denote by N ∈ poly(λ) the maximal number of group members. At
the beginning of each revocation epoch t, the group manager publicizes an up-to-
date revocation list RLt and we denote by Rt ⊂ {1, . . . , N} the corresponding
set of revoked users (we assume that Rt is part of RLt). A revocable group
signature (R-GS) scheme consists of the following algorithms or protocols.

Setup(λ,N): given a security parameter λ ∈ N and a maximal number of mem-
bers N ∈ N, this algorithm (which is run by a trusted party) generates a
group public key Y, the group manager’s private key SGM and the open-
ing authority’s private key SOA. SGM and SOA are given to the appropriate
authority while Y is publicized. The algorithm initializes a public state St
containing a set data structure Stusers = ∅ and a string structure Sttrans = ε.

Join: is an interactive protocol between the group manager GM and a user Ui
where the latter becomes a group member. The protocol involves two in-
teractive Turing machines Juser and JGM that both take as input Y. The
execution, denoted as [Juser(λ,Y), JGM(λ, St,Y,SGM)], terminates with user
Ui obtaining a membership secret seci, that no one else knows, and a mem-
bership certificate certi. If the protocol successfully terminates, the group
manager updates the public state St by setting Stusers := Stusers ∪ {i} as
well as Sttrans := Sttrans||〈i, transcripti〉.

Revoke: is a (possibly randomized) algorithm allowing the GM to generate an
updated revocation list RLt for the new revocation epoch t. It takes as input
a public key Y and a set Rt ⊂ Stusers that identifies the users to be revoked.
It outputs an updated revocation list RLt for epoch t.

Sign: given a revocation epoch t with its revocation list RLt, a membership
certificate certi, a membership secret seci and a message M , this algorithm
outputs ⊥ if i ∈ Rt and a signature σ otherwise.
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Verify: given a signature σ, a revocation epoch t, the corresponding revocation
list RLt, a messageM and a group public key Y, this deterministic algorithm
returns either 0 or 1.

Open: takes as input a message M , a valid signature σ w.r.t. Y for the indicated
revocation epoch t, the opening authority’s private key SOA and the public
state St. It outputs i ∈ Stusers ∪ {⊥}, which is the identity of a group
member or a symbol indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.
A R-GS scheme must satisfy three security notions, that are formally defined

in the full version of the paper. The first one is called security against misidenti-
fication attacks. It requires that, even if the adversary can introduce and revoke
users at will, it cannot produce a signature that traces outside the set of unre-
voked adversarially-controlled users.

As in ordinary (i.e., non-revocable) group signatures, the notion of security
against framing attacks mandates that, even if the whole system colludes against
a user, that user will not bear responsibility for messages that he did not sign.
Finally, the notion of anonymity is also defined (in the presence of a signature
opening oracle) as in the models of [11,42].

3 A Revocable Group Signature Based on the Subset
Difference Method

The idea is to turn the NNL global ciphertext into a revocation list in the group
signature. Each member is assigned to a leaf of a binary tree of height � and the
outcome of the join protocol is the user obtaining a membership certificate that
contains the same key material as in the public-key variant of the SD method
(i.e., O(�2) HIBE private keys). To ensure traceability and non-frameability,
these NNL private keys are linked to a group element X , that only the user
knows the discrete logarithm of, by means of structure-preserving signatures.

At each revocation epoch t, the group manager generates an up-to-date re-
vocation list RLt consisting of O(r) HIBE ciphertexts, each of which is signed
using a structure-preserving signature. When it comes to sign a message, the
user Ui proves that he is not revoked by providing evidence that he is capable
of decrypting one of the HIBE ciphertexts in RLt. To this end, Ui commits to
that HIBE ciphertext Cl and proves that he holds a key that decrypts Cl. To
convince the verifier that Cl belongs to RLt, he proves knowledge of a signature
on the committed HIBE ciphertext Cl (this technique is borrowed from the set
membership proofs of [52,24]). Of course, to preserve the anonymity of signers,
we need a HIBE scheme with constant-size ciphertexts (otherwise, the length of
the committed ciphertext could betray the signer’s location in the tree), which
is why the Boneh-Boyen-Goh construction [15] is the ideal candidate.

The scheme is made anonymous and non-frameable using the same techniques
as Groth [38] in steps 4-6 of the signing algorithm. As for the security against
misidentification attacks, we cannot prove it by relying on the standard collusion-
resistance (captured by the definition of [36]) of the HIBE scheme. In the proof of
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security against misidentification attacks, the problem appears in the treatment
of forgeries that open to a revoked user: while this user cannot have obtained
a private key that decrypts the committed HIBE ciphertext of the forgery (be-
cause he is revoked), unrevoked adversarially-controlled users can. To solve this
problem, we need to rest on a non-standard security property (formally defined
in the full version of the paper) called “key-robustness”. This notion asks that,
given a private key generated for some hierarchical identity using specific ran-
dom coins, it be infeasible to compute the private key of a different identity for
the same random coins and even knowing the master secret key of the HIBE
scheme. While unusual, this property can be proved (as shown in the full version
of the paper) under the Diffie-Hellman assumption for the BBG construction.

Perhaps surprisingly, even though we rely on the BBG HIBE, we do not need
its underlying q-type assumption [15]. The reason is that the master secret key
of the scheme is unnecessary here as its role is taken over by the private key
of a structure-preserving signature. In the ordinary BBG system, private keys
contain components of the form (gα2 · F (ID)r, gr), for some r ∈ Zp, where gα2 is
the master secret key and F (ID) is a function of the hierarchical identity. In the
join protocol, the master key gα2 disappears: the user obtains a private key of
the form (F (ID)r, gr) and an AHO signature is used to bind the user’s mem-
bership public key X to gr. The latter can be thought of as a public key for
a one-time variant of the Boneh-Lynn-Shacham signature [17]. The underlying
one-time private key r ∈ Zp is used to compute F (ID)r as well as a number of
delegation components allowing to derive signatures for messages that ID is a
prefix of (somewhat in the fashion of wildcard signatures [1][Section 6]).

3.1 Construction

As in Section 2.4, 〈x〉 denotes the label of node x ∈ T and, for any sub-tree Txj

rooted at xj and any leaf vi of Txj , copathxj
denotes the set of all siblings of

nodes on the path from xj to vi, not counting xj itself.
As is standard in group signatures, the description below assumes that, be-

fore joining the group, user Ui chooses a long term key pair (usk[i], upk[i]) and
registers it in some PKI.

Setup(λ,N): given λ ∈ N and the permitted number of users N = 2,

1. Choose bilinear groups (G,GT ) of prime order p > 2λ, with g R← G.

2. Generate two key pairs (sk
(0)
AHO, pk

(0)
AHO) and (sk

(1)
AHO, pk

(1)
AHO) for the AHO

signature to sign messages of two group elements. These pairs consist of

pk
(d)
AHO =

(
G(d)

r , H(d)
r , G(d)

z = G
γ(d)
z

r , H(d)
z = H

δ(d)z
r ,

{G(d)
i = G

γ
(d)
i

r , H
(d)
i = H

δ
(d)
i

r }2i=1, A(d), B(d)
)

and sk
(d)
AHO =

(
α
(d)
a , α

(d)
b , γ

(d)
z , δ

(d)
z , {γ(d)

i , δ
(d)
i }2i=1

)
, where d ∈ {0, 1}.
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3. As a CRS for the NIWI proof system, select vectors f = (�f1, �f2, �f3) s.t.

�f1 = (f1, 1, g) ∈ G
3, �f2 = (1, f2, g) ∈ G

3, and �f3 = �f1
ξ1 · �f2

ξ2
, with

f1 = gβ1 , f2 = gβ2 R← G and β1, β2, ξ1, ξ2
R← Z∗

p.

4. Choose (U, V ) R← G2 that, together with f1, f2, g, will form a public
encryption key.

5. Generate a master public key mpkBBG for the Boneh-Boyen-Goh HIBE.
Such a public key consists3 of mpkBBG =

( {hi}i=0

)
, where � = log2(N),

and no master secret key is needed.
6. Select an injective encoding4 function H : {0, 1}≤ → Z∗

p and a strongly
unforgeable one-time signature Σ = (G,S,V).

7. Set SGM :=
(
sk

(0)
AHO, sk

(1)
AHO

)
, SOA :=

(
β1, β2

)
as authorities’ private keys

and the group public key is

Y :=
(
g, pk

(0)
AHO, pk

(1)
AHO, mpkBBG, f , (U, V ), H, Σ

)
.

Join(GM,Ui): the GM and the prospective user Ui run the following protocol
[Juser(λ,Y), JGM(λ, St,Y,SGM)]:
1. Juser(λ,Y) computes X = gx, for a randomly chosen x R← Zp, and sends

it to JGM(λ, St,Y,SGM). If the value X already appears in some entry
transcriptj of the database Sttrans, JGM aborts and returns ⊥ to Juser.

2. JGM assigns to Ui an available leaf vi of label 〈vi〉 = vi,1 . . . vi, ∈ {0, 1}
in the tree T. Let x0 = ε, x1, . . . , x−1, x = vi be the path from vi to
the root ε of T. For j = 0 to �, JGM does the following.

a. Consider the sub-tree Txj rooted at node xj . Let copathxj
be the

co-path from xj to vi.
b. For each node w ∈ copathxj

, since xj is an ancestor of w, 〈xj〉 is a

prefix of 〈w〉 and we denote by w1 . . . w2 ∈ {0, 1}2−1+1, for some
�1 ≤ �2 ≤ �, the suffix of 〈w〉 coming right after 〈xj〉.
b.1 Choose a random r R← Zp and compute a HIBE private key

dw=(Dw,1, Dw,2,Kw,2−1+3, . . . ,Kw,)

=
((

h0 · hH(〈xj〉)
1 · hH(w�1

)
2 · · ·hH(w�2

)

2−1+2

)r
, gr, hr

2−1+3, . . . , h
r


)

for the identity (H(〈xj〉),H(w1 ), . . . ,H(w2)) ∈ (Z∗
p)

2−1+2.

b.2 Using sk
(0)
AHO, generate an AHO signature σw = (θw,1, . . . , θw,7)

on (X,Dw,2) ∈ G2 so as to bind the HIBE private key dw to the
value X that identifies Ui.

3 In comparison with the original HIBE scheme where mpkBBG includes (g1 = gα, g2)
and mskBBG = gα2 , the public elements g1 and g2 have disappeared.

4 This encoding allows making sure that “identities” will be non-zero at each level.
Since the set {0, 1}≤� is of cardinality

∑�
i=0 2

i = 2�+1 − 1 < p− 1, such a function
can be efficiently constructed without any intractability assumption.
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3. JGM sends 〈vi〉 ∈ {0, 1}, and the HIBE private keys {{dw}w∈copathxj
}j=0

to Juser that verifies their validity. If these keys are all well-formed, Juser
acknowledges them by generating an ordinary digital signature sigi =
Signusk[i]

(
X ||{{dw}w∈copathxj

}j=0

)
and sends it back to JGM.

4. JGM checks that Verifyupk[i]
(
X ||{{dw}w∈copathxj

}j=0, sigi
)
= 1. If not,

then JGM aborts. Otherwise, JGM returns the set of AHO signatures
{{σw}w∈copathxj

}j=0 to Juser and stores the entire conversation transcript

transcripti = (X, {{dw, σw}w∈copathxj
}j=0, sigi) in the database Sttrans.

5. Juser defines user Ui’s membership certificate certi to be the tuple certi =(〈vi〉, {{dw, σw}w∈copathxj
}j=0, X

)
, where X will serve as the tag that

identifies Ui. The membership secret seci is defined to be seci = x.

Revoke(Y,SGM, t,Rt): Parse SGM as SGM :=
(
sk

(0)
AHO, sk

(1)
AHO

)
. Using the SD cov-

ering algorithm, find a cover of the unrevoked user set {1, . . . , N}\Rt as the
union of disjoint subsets Sk1,u1 , . . . , Skm,um , with m ≤ 2 · |Rt| − 1. Then, for
i = 1 to m, do the following.

a. Consider Ski,ui as the difference between sub-trees rooted at an internal
node xki and one of its descendants xui . The label of xui can be written
〈xui 〉 = 〈xki〉||ui,i,1 . . . ui,i,2 for some �i,1 < �i,2 ≤ � and where ui,κ ∈
{0, 1} for each κ ∈ {�i,1, . . . , �i,2}. Then, compute an encoding of Ski,ui

as a group element

Ci = h0 · hH(〈xki
〉)

1 · hH(ui,�i,1
)

2 · · ·hH(ui,�i,2
)

i,2−i,1+2,

which can be seen as a de-randomized HIBE ciphertext for the hierar-
chical identity

(H(〈xki 〉),H(ui,i,1), . . . ,H(ui,i,2)
) ∈ (Z∗

p)
i,2−i,1+2.

b. To authenticate the HIBE ciphertext Ci and bind it to the revocation

epoch t, use sk
(1)
AHO to generate an AHO signature Θi = (Θi,1, . . . , Θi,7) ∈

G7 on the pair (Ci, g
t) ∈ G2, where the epoch number t is interpreted

as an element of Zp.

Return the revocation data RLt which is defined to be

RLt =
(
t, Rt, {〈xki〉, 〈xui〉,

(
Ci, Θi = (Θi,1, . . . , Θi,7)

)}mi=1

)
(5)

Sign(Y, t, RLt, certi, seci,M): return⊥ if i ∈ Rt. Otherwise, to signM ∈ {0, 1}∗,
generate a one-time signature key pair (SK,VK) ← G(λ). Parse certi as(〈vi〉, {{(dw, σw)}w∈copathxj

}j=0, X
)
and seci as x ∈ Zp.

1. Using RLt, determine the set Skl,ul
, with l ∈ {1, . . . ,m}, that contains

the leaf vi (this subset must exist since i �∈ Rt) and let xkl
and xul

denote
the primary and secondary roots of Skl,ul

. Since xkl
is an ancestor of xul

,
we can write 〈xul

〉 = 〈xkl
〉||ul,1 . . . ul,2 , for some �1 < �2 ≤ � and with

ul,κ ∈ {0, 1} for each κ ∈ {�1, . . . , �2}. The signer Ui computes a HIBE
decryption key of the form

(Dl,1, Dl,2) =
((

h0 · hH(〈xkl
〉)

1 · hH(ul,�1
)

2 · · ·hH(ul,�2
)

2−1+2

)r
, gr

)
. (6)
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This is possible since, if we denote by 〈xk,l〉||ul,1 . . . ul,′1 the shortest
prefix of 〈xul

〉 that is not a prefix of 〈vi〉, the key material {dw}w∈copathxkl

corresponding to the sub-tree rooted at xkl
contains a HIBE private key

dw = (Dw,1, Dw,2,Kw,′1−1+3, . . . ,Kw,) such that

dw =
((

h0 · hH(〈xkl
〉)

1 · hH(ul,�1
)

2 · · ·hH(ul,�′1
)

′1−1+2

)r
, gr, hr

′1−1+3, . . . , h
r


)
,

which allows deriving a key of the form (6) such that Dl,2 = Dw,2.

2. To prove his ability to “decrypt” Cl, user Ui first re-randomizes Θl

as {Θ′
l,i}7i=1 ← ReRand(pk

(1)
AHO, Θl). Then, he computes a Groth-Sahai

commitment comCl
to Cl as well as commitments {comΘ′

l,i
}i∈{1,2,5} to

{Θ′
l,i}i∈{1,2,5}. He generates a proof πCl

that Cl is a certified HIBE ci-
phertext for epoch t: i.e., πCl

provides evidence that

A(1) · e(Θ′
l,3, Θ

′
l,4)

−1 · e(G(1)
2 , gt)−1 (7)

= e(G(1)
z , Θ′

l,1) · e(G(1)
r , Θ′

l,2) · e(G(1)
1 , Cl),

B(1) · e(Θ′
l,6, Θ

′
l,7)

−1 · e(H(1)
2 , gt)−1

= e(H(1)
z , Θ′

l,1) · e(H(1)
r , Θ′

l,5) · e(H(1)
1 , Cl). (8)

Then, Ui generates commitments {comDl,i
}2i=1 to the HIBE key com-

ponents {Dl,i}2i=1 derived at step 1 and computes a proof πDl
that

e(Dl,1, g) = e(Cl, Dl,2). The latter is quadratic and requires 9 group ele-
ments. Since {Θ′

l,i}i∈{3,4,6,7} are constants, equations (7) are linear and
require 3 elements each. So, πCl

and πDl
take 15 elements altogether.

3. Let σl = (θl,1, . . . , θl,7) be the AHO signature on (X,Dl,2). Compute

{θ′l,i}7i=1 ← ReRand(pk
(0)
AHO, σl) as well as commitments {comθ′

l,i
}i∈{1,2,5}

to {θ′l,i}i∈{1,2,5} and a commitment comX to X . Then, generate a proof
πσl

that committed variables satisfy the verification equations

A(0) · e(θ′l,3, θ′l,4)−1 = e(G(0)
z , θ′l,1) · e(G(0)

r , θ′l,2) · e(G(0)
1 , X) · e(G(0)

2 , Dl,2),

B(0) · e(θ′l,6, θ′l,7)−1 = e(H(0)
z , θl,1) · e(H(0)

r , θ′l,5) · e(H(0)
1 , X) · e(H(0)

2 , Dl,2)

Since these equations are linear, πσl
requires 6 group elements.

4. Using VK as a tag (we assume that it is first hashed onto Zp in such a
way that it can be interpreted as a Zp element), compute a tag-based

encryption [44] of X by drawing z1, z2
R← Zp and setting

(Ψ1, Ψ2, Ψ3, Ψ4, Ψ5) =
(
fz1
1 , fz2

2 , X · gz1+z2 , (gVK · U)z1 , (gVK · V )z2
)
.

5. Generate a NIZK proof that comX = (1, 1, X) · �f1
φX,1 · �f2

φX,2 · �f3
φX,3

and (Ψ1, Ψ2, Ψ3) are BBS encryptions of the same value X . If we write
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�f3 = (f3,1, f3,2, f3,3), the Groth-Sahai commitment comX can be written

as (f
φX,1

1 · fφX,3

3,1 , f
φX,2

2 · fφX,3

3,2 , X · gφX,1+φX,2 · fφX,3

3,3 ), so that we have

comX � (Ψ1, Ψ2, Ψ3)
−1 =

(
f τ1
1 · f τ3

3,1, f τ2
2 · f τ3

3,2, gτ1+τ2 · f τ3
3,3

)
(9)

with τ1 = φX,1 − z1, τ2 = φX,2 − z2, τ3 = φX,3. The signer Ui commits

to τ1, τ2, τ3 ∈ Zp (by computing comτj = �ϕτj · �f1
φτj,1 · �f2

φτj,2 , for j ∈
{1, 2, 3}, using the vector �ϕ = �f3 · (1, 1, g) and random {φτj ,1, φτj ,2}3j=1),

and generates proofs {πeq-com,j}3j=1 that τ1, τ2, τ3 satisfy the three rela-

tions (9). Since these are linear equations, proofs {πeq-com,j}3j=1 cost 2
elements each.

6. Compute σVK = g1/(x+VK) and generate a commitment comσVK
to σVK.

Then, generate a NIWI proof that committed variables σVK andX satisfy
e(σVK, X · gVK) = e(g, g). This relation is quadratic and costs 9 group
elements to prove. We denote this proof by πσVK

= (�πσVK ,1, �πσVK,2, �πσVK,3).

7. Compute σots = S(SK, (M,RLt, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π)), where
we define Ω = {Θ′

l,i, θ
′
l,i}i∈{3,4,6,7}, and

com =
(
comCl

, {comDl,i
}2i=1, comX , {comΘ′

l,i
}i∈{1,2,5},

{comθ′
l,i
}i∈{1,2,5}, {comτi}3i=1, comσVK

)

Π = (πCl
, πDl

, πσl
, πeq-com,1, πeq-com,2, πeq-com,3, πσVK

)

Return the signature σ =
(
VK, Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π, σots

)
.

Verify(σ,M, t, RLt,Y): parse σ as above and do the following.

1. If V(VK, (Ψ1, Ψ2, Ψ3, Ψ4, Ψ5, Ω, com,Π), σots) = 0, return 0.
2. Return 0 if e(Ψ1, g

VK · U) �= e(f1, Ψ4) or e(Ψ2, g
VK · V ) �= e(f2, Ψ5).

3. Return 1 if all proofs properly verify. Otherwise, return 0.

Open(M, t,RLt, σ,SOA,Y, St): given SOA = (β1, β2), parse the signature σ as
above and return ⊥ if Verify(σ,M, t, RLt,Y) = 0. Otherwise, compute the

value X̃ = Ψ3 · Ψ−1/β1

1 · Ψ−1/β2

2 . In the database of transcripts Sttrans, find a
record 〈i, transcripti = (X, {{dw, σw}w∈copathxj

}j=0, sigi)〉 such that X = X̃ .

If no such record exists in Sttrans, return ⊥. Otherwise, return i.

From an efficiency point of view, for each i ∈ {1 . . . ,m}, RLt comprises 8 group
elements plus the labels of nodes that identify Ski,ui . If λG denotes the bitlength
of a group element, the number of bits of RLt is thus bounded by 2 · |Rt| · (8 ·
λG + 2 logN) < 2 · |Rt| · (9λG) bits (as logN < λG/2 since λ ≤ λG and N is
polynomial). The size of revocation lists thus amounts to that of at most 18 · |Rt|
group elements.

Users need O(log3 N) group elements to store their membership certificate. As
far as the size of signatures goes, com and Π require 42 and 36 group elements,
respectively. If the one-time signature of [37] is used, σ consists of 96 group
elements, which is less than twice the size of Groth’s signatures [38]. At the
128-bit security level, a signature takes 6 kB.
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Verifying signatures takes constant time. The cost of each signature genera-
tion is dominated by at most � = logN exponentiations to derive a HIBE private
key at step 1. However, this step only has to be executed once per revocation
epoch, at the first signature of that epoch.

The scheme is proved secure against misidentification attacks assuming the
hardness of the q-SFP problem, where q is a polynomial function of � = log2 N ,
the number of adversarially-controlled users and the number of revocations. The
security against framing attacks is proved under the SDH assumption and as-
suming that the one-time signature is strongly unforgeable. As for the anonymity
property, we prove it under the DLIN assumption and assuming the strong un-
forgeability of the one-time signature. Due to space limitation, all security proofs
are deferred to the full version of the paper.
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