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Abstract. Motivated by the goal of factoring large integers using the
Number Field Sieve, several special-purpose hardware designs have been
recently proposed for solving large sparse systems of linear equations
over finite fields using Wiedemann’s algorithm. However, in the context
of factoring large (1024-bit) integers, these proposals were marginally
practical due to the complexity of a wafer-scale design, or alternatively
the difficulty of connecting smaller chips by a huge number of extremely
fast interconnects.

In this paper we suggest a new special-purpose hardware device for
the (block) Wiedemann algorithm, based on a pipelined systolic archi-
tecture reminiscent of the TWIRL device. The new architecture offers
simpler chip layout and interconnections, improved efficiency, reduced
cost, easy testability and greater flexibility in using the same hardware
to solve sparse problems of widely varying sizes and densities. Our analy-
sis indicates that standard fab technologies can be used in practice to
carry out the linear algebra step of factoring 1024-bit RSA keys.

As part of our design but also of independent interest, we describe a
new error-detection scheme adaptable to any implementation of Wiede-
mann’s algorithm. The new scheme can be used to detect computational
errors with probability arbitrarily close to 1 and at negligible cost.

Keywords: Factorization, number field sieve, sparse systems of linear
equations.

1 Introduction

In recent years, various special-purpose hardware implementations of the Num-
ber Field Sieve (NFS) algorithm have been proposed for factoring large (e.g.,
1024-bit) integers. These devices address two two critical steps of the NFS: the
sieving step [1,2,3,4,5,6,7] and the linear algebra step [8,9,10,11].
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This work focuses on the linear-algebra step of the NFS. While the cost of
this step seems to have been reduced to below that of the sieving step (for 1024-
bit composites) by the most recent proposals [10,11], practically these designs
are not fully satisfactory: they require (various combinations of) extremely large
chips, non-local wiring and high-bandwidth chip interconnects, and thus pose
significant technological hurdles.

Below we describe a new systolic design for the NFS linear algebra step, and
specifically for the matrix-by-vector multiplications which dominate the cost of
the Wiedemann algorithm. This design is both more efficient and more realistic
than previous ones. In its simplest form, it consists of a one dimensional chain
of identical chips with purely local interconnects, which from a practical stand-
point makes it an attractive alternative to previous wafer-scale mesh proposals.
For higher efficiency it can be generalized to a two-dimensional array of chips,
but unlike previous proposals, this device has standard chip sizes, purely local
interconnects, and can use standard DRAM chips for some of its components.
In addition, the new design is highly scalable: there is no need to commit to
particular problem sizes and densities during the chip design phase, and there
is no need to limit the problem size to what can be handled by a single wafer.
Since a single chip design of small fixed size can handle a wide range of sparse
matrix problems (some of which may be related to partial differential equations
rather than cryptography), the new architecture can have additional applica-
tions, greatly reduced technological uncertainties, and lower initial NRE cost.

Unlike previous routing based proposals, whose complex data flows required
simulation of the whole device and were not provably correct, the present device
has a simple and deterministic data flow, so that each unit can be simulated inde-
pendently. This facilitates the simulation and actual construction of meaningful
proof-of-concept sub-devices.

We have evaluated the cost of this device for a specific choice of matrix
parameters, which is considered a conservative estimate for the matrix size in
factoring 1024-bit integers using NFS. The estimated area×time cost is 6.5 lower
than the best previous proposal; the concrete cost estimate is 0.4M US$×year
(i.e., excluding non-recurring R&D costs, US$ 0.4M buys enough hardware to
obtain a throughput of one solved linear algebra instance per year).

The present design adapts efficiently and naturally to operations over any
finite field GF(q), since it does not depend on the in-transit pairwise cancellation
of values in GF(2). In particular, it can support the new algorithm of Frey [12,13].
In fact, it can be used with minor modifications over any ground field, such as
the rationals or complex numbers.

Section 2 recalls basic facts about Wiedemann’s algorithm and its context in
the NFS. Section 3 describes the new hardware architecture. In any large-scale
computation the handling of faults is crucial; Section 4 presents a particularly
efficient error detection scheme, which can also be adapted to other implemen-
tations of block Wiedemann. Section 5 gives a preliminary cost analysis for pa-
rameters currently considered as plausible for 1024-bit numbers, and compares
it to previous proposals.
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2 Preliminaries

For an introduction to the NFS algorithm we refer to [14], and for a detailed
account to [15]. Here it is sufficient to keep in mind that the overall running time
of the NFS algorithm is dominated by the sieving step and the linear algebra
step. In this paper we exclusively consider the linear algebra step, defined as
follows. We are given a D × D matrix A over GF(2), whose columns correspond
to relations found in the preceding sieving step (after some pre-processing). Our
goal is to find a few vectors in the kernel of A, i.e., several sets of relations that
sum to the zero vector. This matrix is large but sparse, with a highly non-uniform
distribution of row densities. As in previously proposed devices [8,9,10,11], we
employ the block Wiedemann algorithm [16,17] for solving sparse systems of
linear equations. Basically, the block Wiedemann algorithm reduces the above
to the problem of computing sequences of the form

Av, A2v, . . . , Atv (1)

for some v ∈ GF(2)D. Such a sequence can be computed by means of t matrix-by-
vector multiplications, where the matrix A remains fixed and the vector varies.
Overall, roughly 2D such multiplications are needed, divided into 2K chains,
where K > 32 is the blocking factor. The resulting products are not explicitly
output after each multiplication; depending on the phase of Wiedemann’s algo-
rithm, only their inner product with some fixed vectors or their (partial) sums
are needed.

Parameters for 1024-bit Composites. At present there is considerable un-
certainty about the size and density of the matrix one would encounter in the
factorization of a 1024-bit composite, for several reasons: freedom in the choice
of the NFS parameters, freedom in the application of pre-processing to the ma-
trix (e.g., to cancel out “large primes”), and lack of complete analysis of this
aspect of the NFS algorithm. For concreteness and ease of comparison, in the
following we shall assume the “large matrix” parameters from [9], namely a size
of D × D for D ≈ 1010 and density of 100 entries per column. This leaves a
generous conservative margin compared to the smaller matrix expected to be
produced by TWIRL [4].

For the sake of concreteness, we propose a concrete instance of our architec-
ture where various design parameters are chosen suitable for the above NFS pa-
rameters. In the following, these concrete parameters are designated by angular
brackets (e.g., D 〈〈= 1010〉〉). Section 5 provides additional details and discusses
the cost of the device for these parameters.

3 The New Architecture

We shall unravel the architecture in several stages, where each stage generalizes
the former and (when appropriately parameterized) improves its efficiency.
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3.1 Basic Scheme

The proposed hardware device is preloaded with a compressed representation of
the sparse matrix A ∈ GF(2)D×D, as will be detailed below. For each multipli-
cation chain, we load the input vector v and iteratively operate the device to
compute the vectors Av, A2v, . . . , Atv and output the appropriate sums or inner
products.

We begin by describing an inefficient and highly simplified version of the
device, to illustrate its high-level data flow.1 This simplified device consists of
D 〈〈= 1010〉〉 stations connected in a pipeline. The i-th station is in charge of
the i-th matrix row, and contains a compressed representation of the 〈〈≈ 100〉〉
non-zero entries in that row. It is also in charge of the i-th entry of the output
vector, and contains a corresponding accumulator W ′[i].

In each multiplication, the input vector v ∈ GF(2)D is fed into the top of
the pipeline, and moves down as in a shift register. As the entries of v pass by,
the i-th station looks at all vector entries vj passing through it, identifies the
ones corresponding to the non-zero matrix entries Ai,j in row i, and for those
entries adds Ai,j · vj to its accumulator W ′[i]. Once the input vector has passed
all stations in the pipeline, the accumulators W ′[·] contain the entries of the
product vector Av. These can now be off-loaded and fed back to the top of the
pipeline in order to compute the next multiplication.

The one-dimensional chain of stations can be split across several chips: each
chip contains one or more complete stations, and the connections between sta-
tions may span chip boundary. Note that since communication is unidirectional,
inter-chip I/O latency is not a concern (though we do need sufficient bandwidth;
the amount of bandwidth needed will increase in the variants given below, and
is taken into account in the cost analysis of Section 5).

3.2 Compressed Row Handling

Since the matrix A is extremely sparse, it is wasteful to dedicate a complete
station for handling each row of A, as it will be idle most of the time. Thus, we
partition A into u 〈〈= 9600〉〉 horizontal stripes and assign each such stripe to a
single station (see Figure 1). The number of rows per station is µ ≈ D/u 〈〈= 220〉〉,
and each station contains µ accumulators W ′[i] with i ranging over the set of
row indices handled by the station.

Each station stores all the non-zero matrix entries in its stripe, and contains
an accumulator for each row in the stripe. As before, the input vector v passes
through all stations, but now there are just u of these (rather than D). Since the
entries of v arrive one by one, each station implicitly handles a µ×D submatrix
of A at each clock cycle.

1 This basic version is analogous to the electronic pipeline-of-adders version of TWIN-
KLE [2], and many of the improvements described in the following have correspond-
ing analogues in the TWIRL architecture [4].
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Fig. 2. Subdivision of a chip into stations and
processors

3.3 Compressed Vector Transmission

For additional efficiency, we add parallelism to the vector transmission. Instead
of each station processing a single entry of v in each clock-cycle, we process v in
chunks of k 〈〈= 32〉〉 consecutive entries.2 The inter-station pipeline is thickened
by a factor of k. The vector v now passes in chunks of k entries over an inter-
station pipeline (in Figure 2 from right to left); in each clock cycle, each station
obtains such a chunk from the previous station (to its right), processes it and
passes it to the next station (to its left). The first (rightmost) station gets a new
part of the vector received from the outside. At each clock cycle, each station
now implicitly handles a µ × k submatrix of A.

Each station is comprised of k processors, each connected to a separate
pipeline line (see Figure 2), and these k processors inside each station are con-
nected via γ 〈〈= 2〉〉 intra-station channels, which are circular shift registers span-
ning the station. The µ accumulators W ′[i] contained in this station are parti-
tioned equally between the k processors.

For processing a k-element chunk of the vector, each of the k processors has to
decide whether the vector element vi it currently holds is relevant for the station
it belongs to, i.e., whether any of the µ matrix rows handled by this station
contains a non-zero entry in column i. If so, then vi should be communicated
to the processor handling the corresponding accumulator(s) and handled there.
This is discussed in the following subsection.

3.4 Processing Vector Elements

Fetching Vector Elements. The relevance of a vector entry vi to a given sta-
tion depends only on i, which is uniquely determined by the clock cycle and the
processor (out of the k) it reached. Consequently, each processor needs to read
the content of one pipeline line (to which it is attached) at a predetermined set of

2 The choice of k depends mainly on the number of available I/O pins for inter-chip
communication.
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clock cycles, specific to that processor, which is constant across multiplications
and easily precomputed. This set of cycles is encoded in the processor as follows.

Each processor contains a fetches table which instructs it when to read the
next vector element from the pipeline. It contains fetch events, represented as
triplets (τ, f, �) where τ is an δu 〈〈= 7〉〉-bit integer, f is a one-bit flag and � is
a �log2(γ)�-bit integer. Such a triplet means: “ignore the incoming vector entries
for τ clock cycles; then, if f = 1, read the input vector element and transmit it on
the �-th intra-station channel”.3 The table is read sequentially, and is stored in
compact DRAM-type memory.

Updating the Accumulators. Once a relevant vector element vi has been
fetched by some processor and copied to an intra-station channel, we still need to
handle it by adding Aj,i ·vi to the accumulator W ′[j], for every row j handled by
this station for which Aj,i �= 0. These accumulators (usually just one) may reside
in any processor in this station. Thus, each processor also needs to occasionally
fetch values from the intra-station channels and process it. Similarly to above,
the timing of this operation is predetermined, identical across multiplications
and easily precomputed.

To this end, each processor also holds an updates table containing update
events represented as a 5-tuple (τ, f, �, j′, x) where τ is an δf 〈〈= 7〉〉-bit integer, f
is a one-bit flag, � is a �log2(i)�-bit integer, j′ is a �log2(µ/k)�-bit integer and x
is a field element.4 Such a 5-tuple means: “ignore the intra-station channels for
τ clock cycles; then, if f = 1, read the element y ∈ GF(q) currently on channel �,
multiply it by x, and add the product to the j′-th accumulator in this processor.”
This table is also read sequentially and stored in compact DRAM-type memory.

During a multiplication, each processor essentially just keeps pointers into
those two tables (which can actually be interleaved in a single DRAM bank),
and sequentially executes the events described therein.

An update operation requires a multiplication over GF(q) and addition of
the product to an accumulator stored in DRAM (which is very compact but has
high latency). These operations occur at non-regular intervals, as prescribed by
the updates table; the processors use small queues to handle congestion, where a
processor gets several update events within a short interval. Crucially, the load
on these queues is known in advance as a side effect of computing the tables. If
some processor is over-utilized or under-utilized, we can change the assignments
of rows to stations, or permute the matrix columns, to even the load.

Handling Dense Rows. All the entries arriving from the intra-station channels
while the updated vector is stored into the DRAM have to be held in the proces-
sor’s queues. As the random-access latency of DRAM is quite large (≈ 70ns), the
entries must not arrive too fast. Some of the rows of A are too dense, and could
cause congestions of the queues and intra-station channels. To overcome this
problem we split such dense rows into several sparser rows, whose sum equals

3 The flag f is used to handle the cases where the interval between subsequent fetches
is more than 2δu − 1.

4 Over GF(2), x = 1 always and can thus be omitted.
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Fig. 3. Arranging the stations into a circle

the original. In this way we also ensure that all stations have a similar load and
handle the same number of rows. This increases the matrix size by an insignif-
icant amount (〈〈≈ 106〉〉 additional rows5), and the post-processing required to
re-combine the split rows is trivial.

Precomputation and Simulation. The content of the two tables used by each
processor fully encodes the matrix entries. These tables are precomputed once for
each matrix A, e.g., using ordinary PCs. Once computed, they allow us to easily
simulate the operation of any processor at any clock cycle, as it is completely
independent of the rest of the device and of the values of the input vectors.
We can also accurately (though inefficiently) simulate the whole device. Unlike
the mesh-based approaches in [9,10,11], we do not have to rely on heuristic
run time assumptions for the time needed to complete a single matrix-vector
multiplication.

3.5 Skewed Assignment for Iterated Multiplication

In the above scheme, once we have started feeding the initial vector v into the
pipeline, after (D/k) + u clock cycles6 the vector v has passed through the
complete pipeline and the vector A · v is stored in the stations. More precisely,
each of the u stations contains µ = D/u consecutive components of v, and we
next want to compute the matrix-by-vector product A · Av. Thus, we need to
somehow feed the computed result Av back into the inter-station pipeline.

To feed the vector Av back into the inter-station pipeline, first we physically
close the station interconnects into a circle as depicted in Figure 3; this can be
done by appropriate wiring of the chips on the PCB. We also place a memory
bank of D/u GF(q) elements at each of the u stations. Collectively, denote these
banks by W . At the beginning of each multiplication chain, the initial vector v
is loaded into W sequentially, station by station.

During a multiplication, the content of W is rotated, by having each station
treat its portion of W as a FIFO of k-tuples: in each clock cycle it sends the last
k-tuple of its portion of W to the next station, and accepts a new k-tuple from the
previous station. Meanwhile, the processors inside each station function exactly
5 Extrapolated from a pre-processed RSA-155 NFS matrix from [18], provided to us

by Herman te Riele.
6 Actually slightly more, due to the need to empty the station channels and processor

queues.
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as before, by tapping the flow of k-tuples of vector elements in W at some fixed
point (e.g., the head of the FIFO in that station). Thus, after D/k clock cycles,
we have completed a full rotation of the content of W and the multiplication
result is ready in the accumulators W . A key point here is that each station sees
the contents of W in cyclic order starting at a different offset, but owing to the
commutativity of addition in GF(q) this does not affect the final result.

Having obtained the matrix-by-vector, we can now continue to the next mul-
tiplication simply by switching the roles (or equivalently, the contents) of the
memory banks W and accumulators W ′: this amounts to a simple local opera-
tion in each processor (note that size and distribution among processors of the
cells W [·] and the cells W ′[·] is indeed identical). Thus, the matrix-by-vector
multiplications can be completed at a rate of one per D/k cycles.

3.6 Amortizing Matrix Storage Cost

Recall that in the block Wiedemann algorithm, we actually execute 2K multi-
plication chains with different initial vectors but identical matrix A. These are
separated into two phases, and in each phase we can handle these K chains in
parallel. An important observation is that we can handle these K chains using
a single copy of the matrix (whose representation, in the form of the two event
tables, has so far dominated the cost). This greatly reduces the amortized circuit
cost per multiplication chain, and thus the overall cost per unit of throughput.

The above is achieved simply by replacing every field element in W and W ′ by
a K-tuple of field elements, and replacing all field additions and multiplications
with element-wise operations on the corresponding K-tuples. The event tables
and the logic remain the same. Note that the input and output of each station
(i.e., the pipeline width) is now k · K field elements.

3.7 Two-Dimensional Chip Array

As described above, each of the processors inside the station incorporates two
types of memory storage: a fixed storage for the representation of the matrix
elements (i.e., the event tables), and vector-specific storage (W and W ′) which
increases with the parallelization factor K. Ideally, we would like to use a large
K in order to reduce the amortized cost of matrix storage. However, this is
constrained by the chip area available for W and W ′.

To obtain further parallelization without increasing the chip sizes, we could
simply run several copies of the device in parallel. By itself, this does not improve
the cost per unit of throughput. But now all of these devices use identical storage
for the matrix representation, and access it sequentially at the same rate, so in
fact we can “feed” all of them from a single matrix representation. In this variant,
the event tables are stored in an external DRAM bank, and are connected to the
chips hosting the processors and chain-specific storage through a unidirectional
pipeline, as illustrated in Figure 4. Note that communication remains purely
local—there are no long broadcast wires.
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Fig. 4. Using external memory to store the matrix A and b parallel devices, each
hosting a circle of stations

This variant splits each of the monolithic chips used by the previous variants
into a standard DRAM memory chip for matrix storage, plus a chain of small
ASIC chips for the processors and the storage of the vectors. By connecting
b 〈〈= 90〉〉 such ASIC chips to each DRAM chip, we can increase the blocking
factor K by a factor of b without incurring the cost of duplicate matrix storage.

4 Fault Detection and Correction

4.1 A Generic Scheme

To successfully complete the Wiedemann algorithm, the device must compute
all the matrix-by-vector multiplications without a single error.7 For the problem
parameters of interest the multiplications will be realized by tens of thousands
of chips operating over several months, and it would be unrealistic to hope (or
alternatively, expensive to ensure) that all the computations will be faultless.
The same concern arises for other special-purpose hardware designs, and also for
software implementations on commodity hardware. It is thus crucial to devise
algorithmic means for detecting and correcting faults.

A simple real time error-detection scheme would be to apply a linear test:
during a preprocessing stage, choose a random d×D matrix B for an appropriate
d, precompute on a reliable host computer and store in the hardware the d × D
matrix C = BA, and verify that Bw′ = Cw whenever the hardware computes
a new product w′ = Aw. Over GF(q) each row of the matrix B reduces the
probability of an undetected error by a factor of q, and thus for q = 2 we need
at least a hundred rows in B to make this probability negligible. Since each one
of the dense 100 × D matrices B and C contains about the same number of 1’s
as the sparse D × D matrix A (with one hundred 1’s per row), this linear test
can triple the storage and processing requirements of the hardware, and meshes
poorly with the overall design whose efficiency relies heavily on the sparseness of
the matrix rows. Note that we cannot solve this problem by making the 100×D
matrix B sparse, since this would greatly reduce the probability of detecting
single bit errors.

7 Note the contrast with the NFS sieving step, which can tolerate both false positive
and false negative errors in its smoothness tests.
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In the following we describe an alternative error-detection scheme, which
provides (effectively) an arbitrarily small error probability at a negligible cost,
under reasonable assumptions. It inspects only the computed (possibly erro-
neous) matrix-by-vector products, and can thus be applied to any implementa-
tion of Wiedemann’s algorithm. We will consider its operation over any finite
field GF(q), though for integer factoring via NFS only q = 2 is of interest.

Detection. Let w0, w1, w2, . . . ∈ GF(q)D denote the sequence of vectors com-
puted by the device, where w0 = v. To verify that indeed wi = Aiv for all i > 0,
we employ the following randomized linear test. For a small integer d 〈〈= 200〉〉,
choose a single vector b ∈ GF(q)D uniformly at random, and precompute on a
reliable computer the single vector ct = btAd (here t denotes transpose). After
each wi is computed, compute also the inner products btwi and ctwi (which are
just field elements). Save the last d results of the latter in a small shift register,
and after each multiplication test the following condition:

b
t

wi = c
t

wi−d . (2)

If equality does not hold, declare that at least one of the last d multiplications
was faulty.

Correctness. If no faults have occurred then (2) holds since both sides equal
btAiv. Conversely, we will argue that the first faulty multiplication wj �= Awj−1
will be detected within d steps with overwhelming probability, under reasonable
assumptions.

Let us first demonstrate this claim in the simplest case of some transient error
ε which occurs in step j. This changes the correct vector Ajv into the incorrect
vector wj = Ajv + ε. All the previous wi for i < j are assumed to be correct,
and all the later wi for i > j are assumed to be computed correctly, but starting
with the incorrect wj in step j. It is easy to verify that the difference between
the correct and incorrect values of the computed vectors wi for i > j evolves as
Ai−jε, and due to the randomness of the matrix A generated by the sieving step
these error vectors are likely to point in random directions in the D-dimensional
space GF(q)D. The device has d chances to catch the error by considering pairs
of computed vectors which are d apart, with the first vector being correct and
the second vector being incorrect. The probability that all these d random error
vectors will be orthogonal to the single random test vector b is expected to be
about q−d, which is negligible; the computational cost was just two vector inner
products per matrix-by-vector multiplication.

The analysis becomes a bit more involved when we assume that the hardware
starts to malfunction at step j, and adds (related or independent) fault patterns
to the computed result after the computation of each matrix-vector product from
step j onwards. Let the result of the i-th multiplication be wi = Awi−1 + εi,
where the vector εi is the error in the output of this multiplication. We consider
the first fault, so εi = 0 for all i < j. Assume that j ≥ d (j < d will be addressed
below). By the linearity of the multiplication and the minimality of j, we can
expand the above recurrence to obtain wi = Aiv +

∑i
i′=j(A

i−i′
εi′) (i ≥ j).



Scalable Hardware for Sparse Systems of Linear Equations 141

Plugging this into (2) and canceling out the common term btAiv, we get that
for j ≤ i < j + d, (2) is equivalent to:

b
t

ri = 0 where ri =
∑i

i′=j
(Ai−i′

εi′) . (3)

We assume that each error εi is one of at most (qD)α possibilities for some
α 
 D/d (e.g., 〈〈α = 105〉〉), regardless of A and b. This suffices to enumerate all
reasonably likely combinations of local faults (corrupted matrix entries, faulty
pipeline connections, errors in GF(q) multipliers, memory bit flips, etc.). We also
make the simplifying (though not formally correct) assumption that A10, ..., Ad−1

are random matrices drawn uniformly and independently.8 Then for any fixed
values of εi, the vectors in the set R = {ri}j+d−1

i=j+10 are drawn uniformly and
independently from GF(q)D (recall that εj �= 0), and thus the probability that
the span of R has dimension less than |R| = d − 10 is smaller than dq−(D−d)

(which is a trivial upper bound on the probability that one of the d − 10 vectors
falls into the span of the others). By assumption, there are at most (qD)αd

possible choices of (εi)
j+d
i=j+1. Hence, by the union bound, the probability that

the span of R has dimension less than d − 10 is at most (qD)αd · dq−(D−d) =
d · qαd logq D+d− D, which is negligible. Conditioned on the span of R having full
rank d−10, the probability of the random vector b being orthogonal to the span
of R is q−(d−10), which is also negligible. Hence, with overwhelming probability,
at least one of the tests (3) for j + 10 < i < j + d will catch the fault in wj .

Startup and Finalization. Note that the test (2) applies only to i > d, and
moreover that our analysis assumes that the first d multiplications are correct.
Thus, for each of the 2K multiplication chains of block Wiedemann, we start
the computation by computing the first d multiplications on a reliable general-
purpose computer, and then load the state (including the queue of ctwi values
for i = 0, . . . , d) into the device for further multiplications.

Also note that in the analysis, the results of the j-th multiplications are
implicitly checked by (2) for i = j, . . . , j +d−1. Thus, in order to properly check
the last d multiplications in each chain, we run the device for d extra steps and
discard the resulting vectors but still test (2).

Recovery. The above method will detect a fault within d clock cycles (with
overwhelming probability), but will not correct it. Once the fault is detected,
we must backtrack to a known-good state without undoing too much work.

8 The sieving and preprocessing steps of NFS yield a matrix A that has nearly full
rank and is“random-looking” except for some biases in the distribution of its val-
ues: A is sparse (with density 〈〈≈ 100/1010〉〉) and its density is decreasing with the
row number. The first few self-multiplications increase the density exponentially and
smoothen the distribution of values, so that A10 has full and uniform density. The
independence approximation is applicable since we are looking at simple local prop-
erties (corresponding to sparse error vectors), which are “mixed” well by the matrix
multiplication. While the resulting matrices do have some hidden structure, realistic
fault patterns are oblivious to that structure.
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Assuming a sufficiently low probability of error, it is simplest to dump a full
copy of the current vector wi from the device into a general-purpose computer,
at regular but generously-spaced intervals; this can be done by another special
station tapping the pipeline. The backup vectors may be stored on magnetic
media, and thus their storage has negligible cost. When a fault is detected,
the faulty component can be replaced (or a spare device substituted) and the
computation restarted from the last known-good backup.

4.2 Device-Specific Considerations

Implementation. The above scheme requires only the computation of two in-
ner products (btwi and ctwi) for each multiplication. In the proposed hardware
device, this is achieved by one additional station along the pipeline, which taps
the vector entries flowing along the pipeline and verifies their correctness by the
above scheme. This station contains the entries of b and c in sequential-access
DRAM. For each of the K vectors being handled, it processes a k-tuple of vector
entries at every clock cycle, keeps the d most recent values of ctwi in a local
FIFO queue at this station, and performs the test according to (2).

Halving the Cost. The storage cost can be halved by choosing b pseudoran-
domly instead of purely randomly; the number of multipliers can also be nearly
halved by choosing b to be very sparse.

Using Faulty Chips. In addition to the above high-level error-recovery scheme,
it is also useful to work around local faults in the component chips: this increases
chip yield and prevents the need to disassemble multi-chip devices if a fault was
discovered after assembly. To this end, the proposed device offers a significant
level of fault tolerance due to its uniform pipelined design: we can add a “bypass”
switch to each station, which effectively removes it from the pipeline (apart
for some latency). Once we have mapped the faults, we can work around any
fault in the internals of some station (this includes the majority circuit area) by
activating the bypass for that station and assigning its role to one of a few spare
stations added in advance. The chip containing the fault then remains usable,
and only slightly less efficient.

5 Cost and Performance

5.1 Cost for 1024-Bit NFS Matrix Step

As explained in Section 2, there is considerable uncertainty about the size and
density of the matrices that would appear in the factorization of 1024-bit com-
posites using the Number Field Sieve. For concreteness and ease of comparison,
throughout Section 3 and in the following we assume the rather conservative
“large matrix” parameters (see Section 2).

Clearly there are many possibilities for fixing the different parameters of
our device, depending on such parameters as desired chip size and number of
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chips. One may even consider combining the above design with the splitting of
the processed matrix into submatrices as put forward in [10], thereby giving up
the homogeneity and purely local communication but decreasing the dimension
of the vectors that have to be handled. In the following we consider a specific
parameter set, which focuses on practicality with today’s technology.

We assume 90nm chip manufacturing technology with DRAM-type process9,
a net chip area of 1 cm2, a per-chip I/O bandwidth of 1024 Gbit/s, and a
clock rate of 1GHz. A DRAM access is assumed to take 70 clock cycles. These
parameters are quite realistic with current technology.

We employ a 300×90 array of ASIC chips. Each column of 300 chips contains
u = 9600 stations (32 per chip). Each station consists of k = 32 processors,
communicating over γ = 2 intra-station channels, with a parallelization factor of
10. Each of the 300 rows, of 90 chips each, is fed by a 108Gbit DRAM module.
Overall, the blocking factor is K = 10 · 90 = 900. This array can complete all
multiplication chains in ≈ 2.4 months.

The total chip area, including the matrix storage, is less than 90 full 30cm
wafers. Assuming a “silicon cost” of US$ 5000 per wafer, and a factor 4 increase
for overheads such as faulty chips, packaging, testing and assembly, the total
cost is under US$ 2M.

Comparison to Previous Designs. A mesh-based design as considered in [11],
adapted to 90nm technology and using 85×85 chips of size 12.25 cm2 each, will
require about 11.7 months to process the above matrix. The higher complexity
of this design limits the clocking rate to 200 MHz only. Comparing throughput
per silicon area, the new device is 6.5 more efficient; it also has much smaller
individual chips and no need for non-local wiring.

Implications for 1024-Bit Factorization. With the above device and matrix
size, the cost of the NFS linear algebra step is 0.4M US$×year, which is sig-
nificantly lower than that of the NFS sieving step using the TWIRL device [4].
Moreover, TWIRL is expected to produce a matrix significantly smaller than the
conservative estimate used above, so the cost of the linear algebra step would be
lower than the above estimate. Since TWIRL, being a wafer-scale design, is also
more technologically challenging, this reaffirms the conclusion that at present
the bottleneck of factoring large integers is the NFS sieving step [9].

5.2 Further Details

To derive concrete cost and performance estimates for the 1024-bit case, several
implementation choices for parameters, such as δu, δf, γ, τ , have been determined
experimentally as follows. For the above problem and technology parameters, and
a large randomly drawn matrix, we used a software simulation of a station to
check for congestions in bus and memory accesses, and chose design parameters
for which such congestions never occur experimentally. Recall that the device’s

9 Amortized DRAM density is assumed to be 0.1µm2 per bit, and the logic is assumed
to have an average density of 1.4µm2 per transistor.
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operation is deterministic and repetitive (see Section 3.4), so the simulation
accurately reflects the device’s operation with the given parameters.

In the following we briefly mention some aspects of the circuit area and
its analysis, as used to derive the above estimate. Note that we employ the
split design of Section 3.7, which puts the matrix storage in plain DRAM chips
and the logic and vector storage in ASIC chips. For these parameters, memory
storage dominates area: approximately 97% of the ASIC chip area is occupied
by the DRAM which stores the intermediate vectors (i.e., W and W ′). Thus,
the suitable chip production process is a DRAM process optimized for maximum
memory density (at the expense of slightly larger logic circuits); similar cases
arose in previous proposals [9,10,11]. Each of the k 〈〈= 32〉〉 processors in each of
the 32 stations in each of the 300 × 90 ASIC chips contains the following logic:

– A K/b-bit register for storing the K/b-tuples of GF(2) elements flowing along
from the inter-station pipeline (≈ 8 · K/b transistors).

– A K/b-bit register for each of the γ 〈〈= 2〉〉 intra-station channels (≈ 8 · γ ·
K/b transistors).

– A FIFO queue of depth 〈〈2〉〉 for storing elements arriving on the inter-station
pipeline along with the number of the internal bus onto which the respective
element is to be written. For this ≈ 2 · 8 · (K + �log2(γ)�) transistors per
queue entry are sufficient.

– A FIFO queue of depth 〈〈4〉〉 for storing elements arriving on the intra-station
channels that have to be XORed to the vector. Each entry consists of a K/b-
tuple of bits for the vector and a row number in the submatrix handled by
the station has to be stored. This occupies ≈ 4 · 8 · (K/b + �log2�D/(ku)��)
〈〈= 4 · 8 · (10 + 15)〉〉 transistors per queue entry.

In addition to the registers and queues, we need some logic for counters (to iden-
tify the end of a vector and to decide when to read another element from a bus),
multiplexers, etc. For the parameters of interest, < 1500 transistors are sufficient
for this. Overall, the 32 × 32 processors on each chip occupy 〈〈≈ 3.2mm2〉〉.

The DRAM needed splits into three parts.

– For storing 2·K/b vectors in GF(2)�D/(uk)�,: 2·K/b·D/(uk) bit 〈〈≈ 650 Kbit〉〉.
– For the fetches table: δu + 1 + �log2(γ)� bits per entry.
– For the updates table: δf + 1 + �log2(γ)� + �log2�D/(uk)�� bits per entry.

Overall, the DRAM on each chip occupies 〈〈≈ 67mm2〉〉. The time for each of
the ≈ 2D/K matrix-by-vector multiplications is ≈ e + D/k clock cycles, where
e gives some leeway for emptying queues and internal buses (for the parameters
we are interested in e 
 1000 is realistic).

6 Conclusion

We have described a pipelined systolic design for the matrix-by-vector multi-
plications of the block Wiedemann algorithm, which exhibits several advantages
over the prior (mesh-based) approach. It has lower cost and modest technological
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requirements; specifically, unlike previous proposals it uses standard chip sizes
and purely local communication. The architecture is scalable, and offers the flex-
ibility to handle problems of varying sizes. The operation is deterministic and
allows local simulation and verification of components. We have also described
an efficient error detection and recovery mechanism, which can also be adapted
to other software or hardware implementations of Wiedemann’s algorithm.

For 1024-bit RSA keys, executing the linear algebra step of the NFS using
this device appears quite realistic with present technology, at a cost lower than
that of the NFS sieving step.
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