
Scalable Hierarchical Aggregation
and Reduction Protocol (SHARP)TM

Streaming-Aggregation Hardware Design
and Evaluation

Richard L. Graham1(B), Lion Levi2, Devendar Burredy1, Gil Bloch2,
Gilad Shainer1, David Cho1, George Elias2, Daniel Klein2, Joshua Ladd1,

Ophir Maor1, Ami Marelli2, Valentin Petrov2, Evyatar Romlet2, Yong Qin1,
and Ido Zemah2

1 Mellanox Technologies, Inc., 350 Oakmead Parkway, Sunnyvale, CA 94085, USA
richardg@mellanox.com

2 Mellanox Technologies, Ltd., HaKidma St 26, 2069200 Yokne’am, Israel

Abstract. This paper describes the new hardware-based streaming-
aggregation capability added to Mellanox’s Scalable Hierarchical Aggre-
gation and Reduction Protocol in its HDR InfiniBand switches. For
large messages, this capability is designed to achieve reduction band-
widths similar to those of point-to-point messages of the same size,
and complements the latency-optimized low-latency aggregation reduc-
tion capabilities, aimed at small data reductions. MPI Allreduce() band-
width measured on an HDR InfiniBand based system achieves about 95%
of network bandwidth. For medium and large data reduction this also
improves the reduction bandwidth by a factor of 2–5 relative to host-
based (e.g., software-based) reduction algorithms. Using this capability
also increased DL-Poly and PyTorch application performance by as much
as 4% and 18%, respectively. This paper describes SHARP Streaming-
Aggregation hardware architecture and a set of synthetic and application
benchmarks used to study this new reduction capability, and the range
of data sizes for which Streaming-Aggregation performs better than the
low-latency aggregation algorithm.

Keywords: In-network computing · All-reduce · Streaming
reduction · Hardware collectives · InfiniBand · Mellanox SHARP

1 Introduction

A parallel application is a collection of independent computational elements
that communicate with each other to the degree needed by the application. In
tightly coupled High Performance Computing (HPC) applications the type of
inter-process communication involved is either some form of point-to-point or

c© The Author(s) 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 41–59, 2020.
https://doi.org/10.1007/978-3-030-50743-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-50743-5_3

42 R. L. Graham et al.

collective communication. The Message Passing Interface (MPI) [1] and Open
SHMEM [2] define HPC oriented APIs that provide interfaces to such capabil-
ities. Network communication happens between end-points. In point-to-point
communication, data is moved from one source to a single destination, and
includes operations such as the non-blocking MPI Isend() and MPI Irecv() which
are used to initiate sending or receiving data, respectively. Collective communi-
cation involves some form of data exchange with participation of all members
of a group of endpoints, such as MPI Barrier() which is used to synchronize a
set of end-points (MPI processes), or MPI Allreduce() which is used to gather
equal-sized vectors from all members of the collective group, produce a single
output vector, and return this to all members of the group.

Collective communication is used by many HPC applications. Efficient imple-
mentations of such algorithms often use a chain of point-to-point communication
thus serializing algorithm communication, which tends to be scale dependent,
with the number of such communication in the critical path increasing with group
size. Therefore, collective communication often has a large impact on application
scalability.

This scalability challenge has spawned many efforts to optimize collective
communication algorithms. Most of these have used host-side logic to manage
the collective algorithm as well as the necessary data manipulation with the
network being used exclusively as a data pipe. Some network-hardware-based
solutions have been implemented, with those relevant to the focus of this paper
reviewed in Sect. 2.

Mellanox Technologies, as a provider of HPC network technology, has been
moving the implementation of portions of the collective operations to the net-
work, freeing up the computational elements, such as CPUs and GPUs, for com-
putation. For example, CORE-Direct R©[10] moved management of the commu-
nication dependencies in the chain of collective operations to network hardware
in support of asynchronous progress. Mellanox is in the process of IO Processing
Units (IPUs) that improve system efficiency by relocating the processing of net-
work operations and data algorithms from the main host into the network fabric.
As part of this effort the Mellanox SHARP [9] protocol has been developed to
optimize collective reduction and aggregation operations. The first set of capabil-
ities supported include those needed to implement reduction operations, includ-
ing allreduce, reduce and barrier-synchronization, with a latency-optimized short
vector reduction algorithm.

This paper describes and evaluates a new IPU SHARP capability added
to Mellanox’s HDR InfiniBand switches. This capability, called Streaming-
Aggregation, moves distributed large-data reductions from the host to the net-
work, using a bandwidth-optimized algorithm designed to handle wide radix
reduction at near wire speeds. Section 3 describes the Streaming-Aggregation
capability introduced in Mellanox’s QuantumTM R© switch, providing support for
long vector reduce, allreduce and broadcast operations. Due to space considera-
tions, we focus only on the reduction operations, and specifically the allreduce
operation. Streaming-Aggregation optimizes these often-used global reduction

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 43

operations by performing the data reduction operations as it traverses a reduc-
tion tree in the network. Data from each source is injected into the network only
once, and the volume of data is reduced as it goes towards the root of the tree.
This is in contrast to CPU-based algorithms where data traverses the network
multiple times between network endpoints, to be reduced at each stage at some
node in the system. The large-radix reduction trees used provide a highly scal-
able algorithm and shallow reduction trees, reducing the latency of a one MByte
(MB) data reduction across 64 hosts by a factor of 3.5. The effect of this opti-
mization on overall application performance depends on the frequency of using
such calls, as well as the skew in the collective initiation across the group of
participating processes. The greater the skew, the less pronounced the impact.
However, the latter is true for any aggregation algorithm, whether implemented
in hardware or software.

Section 2 describes previous work, Sect. 3 describes the Streaming-Aggregation
design and Sect. 4 provide some experimental data to demonstrate the effective-
ness of this approach in improving system performance, making more CPU cycles
available for computation.

2 Previous Work

Previous work on reduction algorithms for distributed vectors has included both
algorithmic level optimization with software-based implementation as well as
work on hardware acceleration of such algorithms. Most of this work is aimed
at accelerating small-to-medium data reduction, with relatively little work on
optimizing the reduction of longer vectors.

This algorithmic work has resulted in several algorithms in common use
today. For long vector reduction Rabensiefner [14] has developed a widely used
algorithm baring his name. This algorithm uses a reduce-scatter phase to com-
pute a distributed result vector, with this vector being distributed across mem-
bers of the communicator, and an allgather step to gather the full vector to all
group members. A ring algorithm [14] has also been developed to optimize large
vector reductions, and scales linearly with vector size.

Most of the work on hardware optimized collectives has focused on short-
vector reduction, with a limited number of published efforts aiming to address
large data reduction. The latter faces the challenge of handling very large
amounts of data in a single collective operation while staging data across the
network for performing the data reduction. In addition, for a given vector length,
the total volume of data being reduced, increases with group size, further increas-
ing the amount of data manipulated. To achieve reduction rates similar to the
available network bandwidth, such data needs to be reduced efficiently as it
is transferred, to form an efficient reduction pipeline. While multiple imple-
mentation of short-to-medium vector reductions have been found which offload
the full operation to the network, only one reference has been identified on
work that offloads the full large-vector reduction. Gao [8] implemented several
tree-based reduction algorithms for FPGA-based systems, and ran experiments

44 R. L. Graham et al.

on a 32 node system. The latencies are reported for messages up to 140 Kbyte
(KB) in size are high - on the order of milliseconds. Kumar et al. [11] developed
an efficient algorithm for the Blue Gene/Q platform, which leverages the sys-
tem’s 5D torus with the reductions being performed by the host CPU. Adachi
[6] implemented the Rabenseifner algorithm for the K-computer taking advan-
tage its 5D network topology, segmenting the vectors into three parts which are
reduced in parallel over three disjoint trees, and using the host CPU to perform
the data reductions. Stern [13] developed an FPGA based methodology that is
relevant for large reductions, but focuses on small-to-medium reductions.

The methodology being described in this paper offloads the full data reduc-
tion operations to the network, with the use of an efficient pipeline to achieve
reduction throughput similar to the peak network bandwidth.

3 Streaming-Aggregation

Streaming-Aggregation [7] is a new capability introduced with Mellanox’s HDR
InfiniBand technology to perform reductions on data in-flight while maintaining
near line-rate data transfers. This section describes the hardware enhancements
made to the Mellanox SHARP protocol in support of this capability. This new
protocol supplements the latency optimized reduction capabilities introduced
with Mellanox srp in Switch-IB R©-2 EDR switches [9].

Mellanox SHARP protocol details are described in [9], with a brief summary
below. Mellanox SHARP uses reduction trees where the interior nodes of the
tree and the root are instantiated in the switches. Hosts serve as the data source
and data destination, and are the leaves of the reduction-trees. Figure 1a shows
an example of a three-level fat tree and an aggregation group within this tree,
with the hexagons representing radix-six switches which include a Collective
Functional Unit (CFU) represented by a circle in the switch. Switch connectivity
is shown by the edges, and the hosts connecting into the switched fabric by
circles. One of several possible reduction-trees that may be defined within this
network include the switches with red and cyan aggregation nodes (ANs), with
the hosts that are the sources of data colored red or striped. In general, switches
need not be ANs within a reduction-tree, as is reflected by the AN in the second
level of the red tree on the left hand side, which is not colored.

The AN is used to support Mellanox SHARP’s reduction functionality. These
nodes reduce the data received from their children producing one output vec-
tor. Interior nodes forward the result to their parent and the root node initiates
the result distribution phase, replicating the data to its children. Interior nodes
replicate the result received from their parent to their children. The upper limit
on the node radix supported by the CFU leads naturally to a hierarchical app-
roach being used to implement collective operations, with a set of levels handling
host-side aspects of the collective operations, and the switching infrastructure
handling the network-side portion of these collective operations.

Reduction-trees are defined at network initialization time, and reduction
groups at run-time. An aggregation-group is defined by the hosts that serve

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 45

ANANANANANANAN

AN AN

AN

ANAN

AN AN AN AN AN AN AN

ANANANANANANANAN

(a) Aggregation Tree

combin
er

Out to the Network

1

2

3

4

5

1'

6

2
9

10

11

12

13
14

15

16

C1

C2

C3

C4

C5

C6

C7

C8

1

3

4

5

6

7

8 com
biner

com
biner

com
biner

com
biner

com
biner

com
biner

com
biner

com
biner

(b) Switch Reduction

Fig. 1. (a) Aggregation tree and a reduction group overlaid on this tree. Switches
are displayed as hexagons, nodes as circles and the edges showing switch-to-switch
connectivity. (b) Switch-level reduction operation. (Color figure online)

as sources of data for a given set of collective operation. For example, an MPI
implementation may create a Mellanox SHARP group at communicator initial-
ization time or on first use. In Fig. 1a the cyan colored nodes and striped hosts
define a two-level aggregation-group on the specified reduction-tree.

The following enhancements to Mellanox SHARP have been made in support
of the Streaming-Aggregation capability:

– Reduction-trees have a new trait added to specify their type, supporting either
low-latency reduction or Streaming-Aggregation.

– The ability to lock a Streaming-Aggregation tree for exclusive use is added.
This is done with new capabilities added to the low-latency reduction-tree,
with a topology that is identical to that of the Streaming-Aggregation tree.

– Switch-level support for a pipelined reduction ring.
– A single child is supported per tree per switch port. A given aggregation

group supports one outstanding operation at a time, with a switch supporting
operations on up to two trees at a time.

– A scalable reliable multicast is supported on the tree.

The reduction algorithms are implemented using existing InfiniBand trans-
ports, and as such inherit the characteristics of these transports. They include the
message size restrictions imposed by InfiniBand and HCA capabilities, such as
the gather/scatter capabilities. The low-latency aggregation protocol originally
implemented imposes a protocol-specific upper limit, on the order of hundreds

46 R. L. Graham et al.

of bytes, on the vector size which is well below the InfiniBand message size limit
of 2 GB. The Streaming-Aggregation protocol does not impose such additional
limitations.

3.1 Tree Type

The Streaming-Aggregation protocol uses a bandwidth-optimized protocol to
perform data reductions. A design decision is made to associate a single protocol
(e.g., latency-optimized or bandwidth-optimized) with a given reduction-tree,
with multiple trees being able to span identical network resources. A protocol
trait associated with the tree is used to specify which protocol is supported.

3.2 InfiniBand Transport Selection

To provide an asynchronous aggregation protocol, without requiring host-side
intervention, the reduction protocol must provide network-side reliability. In
addition, the aggregation protocol is designed to use transport protocols, and
not to mix network transport and aggregation elements in a single protocol.

It is desirable to use a reliable transport to send data between nodes towards
the root of the reduction-tree and let the hardware transports handle all relia-
bility issues. Such an approach does not slow down the aggregation by waiting
on CPU cycles to become available for progressing the protocol, or for timers
with long end-to-end timeout periods to expire. The InfiniBand Reliable Connec-
tion (RC) transport is favored over the Dynamically Connected (DC) transport
because the number of AN-to-AN connections is small, limited by the upper
limit on the AN radix, and remains constant unless the network is reconfigured.
Therefore, the scalability benefits of DC, with its ability to support multiple
destinations are not relevant in this case, which is why InfiniBand RC transport
is used for sending data between tree nodes.

Since the result of the aggregation is destined to one or more user-space
address spaces, depending on the collective operation being performed, using
host-based reliability algorithms as part of an algorithm that handles missing
result data is possible. Using Unreliable Datagram (UD) multicast to distribute
the results within the tree provides the lowest latency method for distributing
the aggregation result within the tree. However, since the protocol is unreliable,
a second transmission of the same data is needed, with appropriate handling of
duplicate data reception, to ensure that the result is received by each member of
the reduction group. For short messages sending the results twice makes sense,
once using InfiniBand’s UD multicast transport and then with the reliable RC
transport down the tree, as message rate, and not network bandwidth, is the
limiting latency factor determining the latency of the result distribution. Dupli-
cate data is handled by receiving data into temporary buffers and copying one
result into the user buffer, thus ensuring a second copy is not received into user
destination buffers after the user process has already been notified of completion
and could be modifying the data. For short messages, the cost of the memory
copy is small relative to the overall cost of the UD multicast data distribution,
and therefore makes sense from an aggregation latency perspective. However, for

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 47

large messages, sending the data twice effectively halves the available network
bandwidth, doubling the latency, and making such a solution impractical from
a performance perspective. Delivering the data to a temporary buffer and the
copying it to the user buffer, further increases the cost of distributing the result
with UD multicast. Therefore, RC transport is used to distribute the results.

With the aggregation protocols using existing transport protocols, access to
these capabilities is through the standard InfiniBand network access mechanisms.
Initiating a reduction operation from a given end-point is done by posting a send
request. Receive requests for the results are posted to receive queues, InfiniBand
completion queues are used to retrieve reduction completion notification. The
send request holds an aggregation protocol-specific header as part of the user
payload, with the destination address being used to indicate that a message is
part of an aggregation operation. New aggregation operations are introduced for
the management purposes, such as aggregation-group formation. Space consid-
erations do not allow a discussion of these operations.

3.3 Tree Locking

Streaming-aggregation is designed to perform long-vector distributed data reduc-
tions, while maintaining network throughput comparable to that of point-to-
point data transfers of the same length. Since data from different children needs
to be buffered long enough to combine the data from different sources at a
given AN, and there are no guarantees on the temporal nature of data from
different sources in specifications like MPI, it is desirable to delay occupying the
Streaming-Aggregation buffer resources until all aggregation-group input vec-
tors are ready. This is because the aggregation buffers are a shared switch-level
resource that should not be held indefinitely, allowing those operations that are
fully ready for the reduction to proceed.

To avoid occupying reduction buffers indefinitely, a protocol for locking a tree
for a specified number of streaming-aggregations has been added. This protocol
runs on a low-latency aggregation tree with an identical layout to that of the
Streaming-Aggregation tree. In addition, the ability to unlock the Streaming-
Aggregation tree has been added. This also allows for automatic unlocking of
the tree when the number of full message aggregations performed matches the
number requested. It is also possible for the tree to be used with no limit on the
number of aggregations. This mode is suited for systems that are used to run a
single job at time. The mode of operation is set when the lock request is made.

The locking protocol is similar to a Mellanox SHARP barrier operation, with
each process in the group initiating a request to lock the tree. These requests
propagate up the tree, locking the resources along the way. In the event that a
resource is already locked and is unavailable, the failed request is propagated up
the tree, with the root sending a failed-lock notification down the tree causing
locked resources to be released, and the calling host process to be notified of the
failure. The cost of such a lock is similar to a barrier-synchronization operation
on the same low-latency aggregation tree.

48 R. L. Graham et al.

As noted above, for resource locking purposes, each reduction-tree is associ-
ated with a low-latency reduction-tree of identical layout.

3.4 Reduction Tree

The Streaming-Aggregation reduction-tree is very similar in nature to the low-
latency reduction-trees, with respect to how the aggregation proceeds. Individual
ANs receive data from a predetermined number of children and reduce the data
to produce a single output vector. Interior aggregation-group nodes forward the
data to their parent, and the root of the aggregation-group initiates result distri-
bution. An important feature of the aggregation protocol is that a single result
is forwarded towards the root of the tree from each AN thereby reducing the
amount of data forwarded by its aggregation radix. Similarly, as data is dis-
tributed from the root, it is replicated once per child at each AN, keeping the
volume of data transferred to a minimum, and generally transferring much less
data than that of host-based algorithms.

3.5 Reduction Pipelining

To achieve high network bandwidth with long vectors while performing a data
reduction, an efficient pipeline needs to be established, which supports data
staging into the arithmetic units. These units are then used to operate on the
data, while maintaining high end-to-end data throughput. This data motion
must be maintained throughout the full distributed reduction data path.

To achieve good pipelining InfiniBand’s credit-based mechanism is used as a
means for the responder (e.g., the AN) to inform the producer, i.e., the source
of the data, of its available buffer space. This allows data to be sent between the
two at an optimal rate, while avoiding overwhelming the responder with data it
must drop. The credit mechanism runs over a reliable InfiniBand transport. This
synchronizes the responder and requester by sending the amount of credits in
response packets from the responder and allowing sending an additional single
“limited” packet when the requester runs out of credits. This is as described in
the InfiniBand specification for handling end-to-end credits.

3.6 Switch-Level Reduction

The AN in each switch takes input from a pre-configured set of children, and
then delivers the data to the pre-configured destination, as shown in Fig. 1b.
There is a one-to-one mapping between children and physical ports, on a per
reduction-tree basis. Switch ports are paired and assigned reduction resources.
The ports are arranged in two half rings, which meet in the middle, with the
top CFU producing the final result and sending it to the destination. Data is
supplied to the reduction tree at MTU granularity, which enables setting up an
efficient pipeline capable of achieving end-to-end reduction at near wire speed.

Figure 1b shows how a switch performs the reduction of data coming from
eight sources, for a switch of radix 16. The red arrows represent the children for

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 49

the reduction at the AN, with the circles representing the Streaming-Aggregation
reduction unit that handles data from two ports, and the pentagon represents
the CFU which produces the final result. On the left-hand branch there are five
reduction steps, with the first reduction taking data from the bottom two ports
forwarding the result to the second combiner.

On the left-hand side, data from ports 1 and 2 are combined by C1. The
result is forwarded to C2 where it is combined with the input from port 3 with
the result being combined by C2 with the input from port 4, and forwarded
to C3. At C3, the forwarded data is combined with the data from port 5 and
forwarded to C4, where the data is combined with the data from port 8.

On the right-hand side, data from port 10 is forwarded through the combiner
in C6 to C7 where it is combined with the data from port 14. The result is
forwarded through C8 to the CFU where it is combined with the data from C4,
and sent out to the appropriate exit port to the next AN in the tree.

At each step through the switch, data is processed at near wire speed, provid-
ing good throughput, with sufficient switch resources to keep the pipeline busy,
supporting near full wire speed reduction.

3.7 Result Distribution

With the reduction complete at the root of the aggregation-group, it is ready
to be distributed to data recipients, be it the host in the group for an allreduce
type of operation, or the root of a reduction operation. With the short message,
the latency-optimized hardware multicast protocol is used to provide low-latency
data distribution, and a reliable transport is used to send the result down the
tree to ensure reliable data distribution. For a bandwidth-oriented protocol,
distributing the result twice, with both reliable connections and UD multicast
protocols, reduces the operations bandwidth by a factor of two, making it a poor
option.

Therefore, a new reliable broadcast protocol has been developed to distribute
the data reliably at near wire bandwidths. This protocol uses unicast messages to
send data between nodes in the aggregation-group, encapsulating the Mellanox
SHARP reduction-tree which is used to distribute the data. When the CFU
receives the unicast message, it extracts the SHARP group handle, and uses this
to look up in its local SHARP group tables the list of ports through which the
data needs to be forwarded. An optimized reliable packet generator is used to
replicate the data which is sent out through each of the ports constructing new
RC messages, one for each of the group destinations. This is depicted in Fig. 2 for
a radix-6 switch and SHARP group 0X1. The process of extracting the SHARP
group handle, replicating the reliable packets and sending the data to the next
nodes in the reduction-tree is continued until the data reaches the destination.

3.8 Aggregation Protocol Resilience

The high performance computing community has yet to converge on a set of
agreed upon protocols to handle application-side error recovery. Therefore, the

50 R. L. Graham et al.

Packet A:
Meta Data (SHARP

Group ID=0X1)
Data=X SHARP Group

Distribu on
Context
List
0X1
0,3,4
0X2
0,1,4,5

Port 0 Port 1

Port 2

Port 3Port 4

Port 5

Sender

Packet B:
Meta Data (SHARP

Group ID=0X1)
Data=X

Packet C:
Meta Data (SHARP

Group ID=0X1)
Data=X

Ack/Nack

Ack/Nack
Ack/Nack

Fig. 2. Reliable Data Distribution. Black arrows represent ports, red arrows represent
the data path and green arrow represent the control path. (Color figure online)

protocol is designed to allow users to select their own method of handling aggre-
gation protocol failure.

With network error rates being rather low, with the average duration between
unrecoverable errors being orders of magnitude higher than that of the longest
aggregation protocol duration, Mellanox SHARP’s mode of handling errors is
limited to notifying the data sources when failure occurs, and letting the user
decide how to proceed. Upon failure, the affected aggregation trees are torn
down, and it is up to the host-side SHARP stack to decide if to re-initialize the
SHARP resources, with a potentially new network configuration (i.e., without
the failed resources).

Once the running application receives notification that a given aggregation
has failed, it can decide how to proceed. It can try and re-initialize the appli-
cation SHARP resources and use them again, or use an alternative host-based
algorithm, which bypasses the affected resources, and restarts the affected aggre-
gations. In addition, since successful local aggregation protocol completion does
not imply success across the full reduction group, the application is free to add
an agreement protocol, with the associated costs, before declaring the operation
complete and returning control over the result buffers to the user.

4 Experiments

The Mellanox SHARP Streaming-Aggregation capability is studied using syn-
thetic benchmarks and full applications, to explore the performance character-
istics of this capability and its impact on applications.

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 51

4.1 Test System Configuration

The primary system used to run the synthetic benchmarks included 64 nodes
of dual 18 core sockets of Intel(R©) Xeon(R©) Gold 6154 CPU running at
3.00 GHz. Each host uses the Red-Hat Linux version eight package and
MLNX OFED LINUX-4.7-1.0.0.1. Each node is connected to network using a
ConnectX R©-6 HDR InfiniBand Mellanox HCA which were connected to HDR
InfiniBand Mellanox QuantumTM switches. Each host is able to send data at the
limit imposed by the PCIe Gen-3.0x16 bus, which is just above 100 Gbit/sec.
The switches are connected in a two-level fat-tree topology, with four InfiniBand
HDR QuantumTM L1 switches connected to one QuantumTM L2 switch. The
HCAs used firmware version 20.26.1040, and the switches used firmware version
27.2000.2306.

The single switch scalability tests were run on a 32-node cluster. It has
16-core dual-socket Intel(R©) Xeon(R©) CPU E5-2697A v4 (Broadwell) running
at 2.60 GHz with 256 GB of physical memory. Operating system is CentOS
7.7.1908 with kernel version 3.10.0-1062.4.1.el7.x86 64 and MLNX OFED 4.7-
1.0.0.1. Cluster nodes are connected with ConnectX-6 HDR100 InfiniBand and
a QuantumTM switch. DL-Poly was also run on this system.

In addition, an 8-node cluster with AMD EPYC 7742 64-core Processors
with MLNX OFED version 4.7 running the RDY1003B BIOS connected to a
ConnectX R©-6 HDR InfiniBand HCA via a PCIe Gen-4 bus was also used to
measure performance on a fully enabled single-stream HDR configuration. Avail-
ability of systems with PCIe Gen-4 based CPUs has limited most of the testing
to network injection bandwidths limited to just over 100 Gbit/s.

The MLPerf data was collected on an HPE Apollo 6500 configured with 8
NVIDIA Tesla V100 SXM2 with 16 GB of memory. The CPU used was a dual
socket HPE DL360 Gen10 Intel Xeon-Gold 6134 (3.2 GHz/8-core/130 W) run-
ning Ubuntu 16.04, and connected via a PCIe Gen-3 PCI bus to HDR100 HCA
running at 100 Gbit/sec connected to a single Mellanox QuantumTM switch.

The MPI from HPC-X version 2.5 [3] was used in the experiments.

4.2 Synthetic Benchmarks

The OSU allreduce [4] benchmark is used to study the performance of reduction
capability. The test is modified to report the achieved bandwidth, in addition
to the latency, where the bandwidth is computed as the message size divided
by the measured latency. This is done to assess the hardware’s ability to utilize
available network bandwidth while performing the data reduction.

Measurements were taken to assess the efficiency at utilizing available net-
work bandwidth, its efficiency compared to the low-latency aggregation capabil-
ity and host-based distributed reduction algorithms. The host-based algorithm
used is a radix-2 Rabenseifner’s algorithm [14] - reduce-scatter followed by an
allgather. In addition, Streaming-Aggregation’s performance as a function of
switch configuration and job size is studied. All the experiments described in

52 R. L. Graham et al.

this subsection focus on the in-network Streaming-Aggregation feature, so only
a single process is used on each host.

The efficiency of the Streaming-Aggregation and its performance relative to
the low-latency aggregation and host-based implementations was measured using
all 64 hosts, with 16 hosts attached to each leaf switch. Ping-pong bandwidths are
also reported. The results of these experiments are displayed in Fig. 3a. As this
figure shows, the allreduce bandwidths obtained by the Streaming-Aggregation
are close to that obtained in the ping-pong experiment which transfers data
without manipulating it. The bandwidths obtained are much higher than those
obtained with the host-based reduction operations, varying from a factor of
about 2 higher at 4 KB message size to a factor of 4.8 higher at 256 MB message
size. The bandwidth obtained is also higher than that obtained with the low-
latency aggregation protocol, being similar at 8 KB message size and similar
to the host-based performance at large message size. The reduction bandwidth
achieved peaks out at about 96% of the ping-pong bandwidth, dropping off a bit
at larger message sizes.

Fig. 3. (a) Streaming-aggregation (SA), low-latency aggregation (LLA), host-based
MPI Allerduce implementations and MPI ping-pong bandwidth. (b) Streaming-
aggregation (SA), low-latency aggregation (LLA) and host-based MPI Allreduce.

The Streaming-Aggregation is designed for long message aggregation,
whereas the low-latency aggregation is designed to optimize for the small data
reductions, which are dominated by latency effects. It is therefore important to
figure out at what message size to switch from using the low-latency aggregation
to the Streaming-Aggregation algorithm. Figure 3b compares the MPI Allreduce
latency obtained using Streaming-Aggregation, low-latency aggregation and the
host-based algorithm. As expected, the hardware offloaded latency is better than
that of the host-based algorithm, with the latency optimized algorithm perform-
ing better at small message sizes, and bandwidth optimized algorithm overtaking
it in the range of 4 to 8 KB. These measurements do not take into account the cost
of reserving the Streaming-Aggregation resources, for those instances in which
this reservation is required. In such instances, the cross-over point will be at a
larger message size. The overheads of managing multiple message data segments

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 53

in the reduction pipeline, includes a credit mechanism, as well data orchestration
logic within the AN, which is absent from the low-latency aggregation protocol.
It is such logic that enables the high-bandwidths supported by the Streaming-
Aggregation protocol, but increases the latency, and is independent of the data
source.

Bandwidth was also measured on an AMD Rome cluster, supporting a PCIe
Gen-4 bus, which enables full HDR throughput. The reduction bandwidth as
a function of message size is displayed in Fig. 4a, peaking at close to 95% of
available network bandwidth and 96% of ping-pong bandwidth, which is about
4.5 times that of the host-based algorithms, and about a factor of 7.6 better
than using the low-latency aggregation capabilities.

Fig. 4. (a) Streaming-aggregation (SA), low-latency aggregation (LLA), host-based
MPI Allerduce implementations and MPI ping-pong bandwidth - Rome CPU. (b)
MPI Allreduce Streaming-aggregation using four leaf switches and varying the number
of hosts per switch.

Several other comparisons are made to further study the behavior of the
Streaming-Aggregation capabilities. Single switch measurements were performed
to understand how the distributing the reduction between the two reduction rings
in a single switch impact performance. Since the setup available had 32 nodes
per switch, 16 hosts MPI Allreduce() runs were made varying the configuration
from all 16 nodes on a single ring, to half and half. As expected, this showed no
discernible impact on the MPI-level reduction latency and bandwidth.

Figure 5a shows the MPI Allreduce() bandwidth as a function of message size
with all the hosts connected to the same switch and a variable number of hosts.
As this figure shows, the host count has a very small impact on the measured
reduction bandwidth.

Figure 4b shows the MPI Allreduce() bandwidth as a function of message
size and the number of hosts per switch, for a 4 switch two-level fat-tree con-
figuration. For this particular configuration the number of hosts has minimal
impact on measured bandwidth up to about 4 MB message size, but with 16
hosts per switch we see a drop of about 7% in measured bandwidth. Host based
measurements show a corresponding drop of about 12%.

54 R. L. Graham et al.

Fig. 5. (a) Single switch MPI Allreduce Streaming-aggregation reduction bandwidth
(Gbit/sec) as a function of message size. (b) 1048576 byte message size MPI Allreduce
bandwidth (Gbit/sec) as a function number of hosts per switch, for a fixed number of
total hosts. The number of switches varies from one to four.

Figure 5b showed the MPI Allreduce() bandwidth for fixed total host count
and an increasing number of leaf switches, decreasing the number of hosts per
switch with increased switch count. Increasing the total number of hosts has
only a small impact on overall bandwidth, with the largest impact being on
the case where 16 hosts are in use dropping by about 4.8% going from one
to four switches. The drop from two to four switches (both require using both
levels of the two-level fat-tree) is only about 1.6%. The corresponding drops in
performance for the host-base algorithm are 1.9% and 0.3%.

Fig. 6. (a) Streaming-Aggregation tree lock time, as a function of host count. 2 to 32
nodes are attached to a single switch and 64 hosts are configured in a two level fat-tree.

Locking the tree for the aggregation operation can be done either for the
duration of the life of the application, such as the lifetime of an MPI commu-
nicator, or for a specified number of reduction operations, thus allowing other
reduction trees to use the resources. Figure 6a shows the latency of the reduction
operation in the range of 2 to 64 hosts. The range of data points between 2 and
32 hosts was measured on the single switch Intel based system, and the 64-node

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 55

data on the two level fat-tree configuration. The cost of the lock is indeed similar
to that of the barrier operation, with a very small increase in latency for the
fixed single-switch configuration and the expected increase in latency going from
one to two levels in the reduction tree.

4.3 Application Benchmarks

The impact of the Streaming-Aggregation on the performance of two applica-
tions, DL-Poly and PyTorch is studied. These are described below.

DL-Poly [15] is a classical molecular dynamics code developed at Daresbury
Laboratory. The bars in Fig. 7a show the total run-time of the Sodium Chloride
melt with Ewald sum electrostatics and 27 K atoms (bench4) as a function of
host count, with (orange bars) and without (blue bars) using the Streaming-
Aggregation. The line plot represents the overall improvement in application
run-time as a percent of total application run time. Measurements were taking
using a host count varying between 2 and 24, with 32 processes per node. The
amount of time spent in the large MPI Allreduce() operations at 24 nodes and
32 ranks per node is 6.85 s out of a total run time of 45.02 s, or about 15%.
The Streaming-Aggregation reduces this time to 4.73 s, and is used to reduce
vectors of size 524288, 196608 and 98304 bytes. As the results indicate, using the
Streaming-Aggregation capabilities to speedup the MPI Allreduce() operations
improved overall simulation time by as much as 4% at 22 nodes, and about 2.5%
at 24 nodes. Reduction costs at these different sizes are similar, with most of the
fluctuations in run-time coming from other parts of the code.

PyTorch [12] is a machine learning library used in computer vision and natural
language processing. This was used to run the Transformer Translation model
[16] MPLerf benchmark, with and without using the Streaming-Aggregation
capabilities. The performance on a 4 host 8 GPU system, using one and two
HDR100 interfaces is shown in Fig. 7b, with the data being reduced from the
GPU buffers. The reduction capabilities are exposed through the NVIDIA Col-
lective Communication Library (NCCL) [5] which also includes support for
Mellanox’s Streaming-Aggregation capabilities. As the figure shows, using the
Streaming-Aggregation capabilities improves the benchmark performance rel-
ative to the default tree and ring reduction algorithms used by NCCL. The
single HCA performance is improved by about 10% relative to the ring-based
reduction algorithm, with the two-HCA performance improving by 3.7%. Inci-
dentally, the GNMT MLPerf benchmark running on 24 DGX1V nodes and the
VAE benchmark running on 32 DGX1V nodes, using 4 parallel HDR networks
and enabling the Streaming-Aggregation improves performance by 18% in both
cases, but analyzing these is beyond the scope of this paper. The vectors being
reduced are long, as shown in Table 1. When NCCL’s ring algorithm is used for
the reduction 28% of total run time is spent in reduction, but when Mellanox
SHARP is used this drops to 20% of total run time.

56 R. L. Graham et al.

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

40

50

60

70

80

90

100

110

4 6 8 10 12 14 16 18 20 22 24

ga
in

, %

El
ap

se
d,

 se
c

of nodes

hcpx hpxc+sharp_sat gain, %

(a) DL-Poly Run-time (sec) vs. host-count

0

200000

400000

600000

800000

1000000

1200000

NCCL default NCCL tree NCCL ring NCCL SHARP

MLPerf

1 HCA 2 HCAs

(b) ML Perf

Fig. 7. (a) DL-Poly run time (sec) as a function of host count, with 32 process per
host using Streaming-Aggregation.Test case: Bench4 - Sodium Chloride, 27 K atoms.
(b) MLPerf performance using PyTorch (Color figure online)

Table 1. MLPerf transformer translation model reduction message distribution. The
data type is 16 bit floating point.

Calls Message count Message size
(MByte)

Calls Message count Message size
(MByte)

1 210808832 402 1100 46169088 88

2200 46171136 88 1100 72297472 137

As Mellanox SHARP Streaming-Aggregation performance optimization
efforts continue, we expect to improve the performance of the aggregation oper-
ations. Improvement in application performance will depend on how this capa-
bility is used.

5 Summary

This paper describes the Mellanox SHARP Streaming-Aggregation capability
introduced in Mellanox’s HDR InfiniBand network hardware. It takes in vectors
from different network end-points, reduces the data to produce a single out-
put vector, which is then distributed to the specified nodes in the network. No
software is used in the reduction path.

As the MPI Allreduce() OSU benchmark results show, the efficiency of the
data reduction and distribution is close to that of the point-to-point bandwidth,
achieving good pipeline efficiency in reducing and forwarding data. On a 64-node
HDR system using a PCIe Gen-3 bus to connect to the network a reduction
efficiency of as high as 96% of ping-pong message efficiency for a 2 MByte mes-
sage, and at 64 KB achieves about 80% efficiency. Peak reduction bandwidth is
achieved with messages of size 8 MB. When the bandwidth limitation imposed
by the PCI bus is removed, using a PCIe Gen-4 bus, the bandwidth reaches

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 57

59 Gbps ate 64 Kbyte, which is 3.5 times higher than with the host-based algo-
rithm. With 67 GB message size it peaks at 190 Gbps, which is 95% of the
network bandwidth and 4.45 times higher than with the host-based algorithm.

Comparing Mellanox SHARP Streaming-Aggregation bandwidth to that
obtained using a host-based approach, a large increase in measured bandwidth
using the new capabilities is observed. As the data from Fig. 3a shows, Streaming-
Aggregation bandwidth is about a factor of two higher than the host-based
reduction algorithm bandwidth at 4 KB message size, and close to a factor of
five greater for messages of size 128 KB and above. Similarly, the Streaming-
Aggregation reduction bandwidth is greater than the low-latency aggregation
based reduction bandwidth, for all but the 4 KB message size.

For small message sizes, the latency of the low-latency aggregation based
reductions is lower than the Streaming-Aggregation based algorithm, with both
being lower than the host-based algorithm. For the 64 host configuration the
cross-over point between the algorithms is between 4 and 8 KB, and when tree
locking is necessary, this increases to about 16 KB. The cost of managing and
pipelining multiple data segments with the Streaming-Aggregation is what makes
the short message aggregation less efficient then when using low-latency aggre-
gation. When more than two to three message segments are required using
the low-latency aggregation protocol it is more efficient to use the Mellanox
Streaming-Aggregation protocol.

As a basic capability, the addition of the Streaming-Aggregation functionality
enables the asynchronous offloaded reduction capabilities to supersede the host-
based algorithms. Also, using these capabilities with DL-Poly and PyTorch shows
this to be a viable alternative to host-based reduction algorithms at the full
application level, improving the application performance for the tests run by
up to 7% and 10% for DL-Poly and PyTorch, respectively.

Finally, studying Streaming-Aggregation as a function of network configu-
ration has shown that performance remains as the system size increases, albeit
with some reduction in bandwidth. This is expected with a longer data path
which increases the latency for the first MTU to reach the destination, thus
reducing the measured bandwidth. Factors that are local to a single switch have
a much smaller impact on performance relative to factors such as reduction tree
depth and the width of the reduction tree. The distribution of hosts across the
reduction rings in the switch had no discernible effect on the end-to-end reduc-
tion performance, while the number of hosts per switch was shown to have a
small effect. The largest measured impact seems to be related to the reduction
tree depth, with a smaller impact exerted by the number of switches used at a
given tree depth. As larger switch configurations become available for testing,
the impact of scale on overall measured bandwidth can continue to be studied.
The large-radix reduction supports shallow reduction trees, with a three level
tree able to support systems with over 10,000 nodes using 40 port switches as
building blocks.

To summarize, the Streaming-Aggregation capability has been shown to
significantly improve the distributed reduction performance of medium and

58 R. L. Graham et al.

large messages relative to both low-latency aggregation hardware Mellanox
SHARP and host-based software reduction implementations. It provides reduc-
tion throughput similar to that of point-to-point traffic, and improves the per-
formance of both synthetic and full applications.

References

1. http://www.mpi-forum.org
2. http://www.openshmem.org
3. http://www.mellanox.com/page/products dyn?product family=189&mtag=hpc-x
4. http://mvapich.cse.ohio-state.edu/benchmarks/
5. https://github.com/NVIDIA/nccl
6. Adachi, T., et al.: The design of ultra scalable MPI collective communication on

the K computer. Comput. Sci. Res. Dev. 28, 147–155 (2006). https://doi.org/10.
1007/s00450-012-0211-7

7. Elias, G., Levi, L., Romlet, E., Marelli, A.: Parallel computation network device.
US Patent 16/357,356. Filed 19 March 2019

8. Gao, S., Schmidt, A.G., Sass, R.: Impact of reconfigurable hardware on accelerating
MPI Reduce. In: 2010 International Conference on Field-Programmable Technol-
ogy, pp. 29–36 (2010)

9. Graham, R., et al.: Scalable hierarchical aggregation protocol (SHArP): a hardware
architecture for efficient data reduction. In: 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC), COM-HPC 2016, pp. 1–10,
November 2016

10. Graham, R.L., et al.: ConnectX-2 infiniband management queues: first investiga-
tion of the new support for network offloaded collective operations. In: Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, CCGRID 2010, pp. 53–62 (2010)

11. Kumar, S., Mamidala, A., Heidelberger, P., Chen, D., Faraj, D.: Optimization of
MPI collective operations on the IBM blue Gene/Q supercomputer. Int. J. High
Perform. Comput. Appl. 28(4), 450–464 (2014)

12. Paszke, A., et. al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alche-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

13. Stern, J.A., Xiong, Q., Skjellum, A.: A novel approach to supporting communi-
cators for in-switch processing of MPI collectives. In: Workshop on Exascale MPI
(2019)

14. Thakur, R., Rabenseifner, R.: Optimization of collective communication operations
in MPICH. Int. J. High Perform. Comput. Appl. 19, 49–66 (2005)

15. Todorov, I., Smith, W., Trachenko, K., Dove, M.: J. Mater. Chem. 16, 1911–1918
(2006)

16. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017).
https://arxiv.org/abs/1706.03762

http://www.mpi-forum.org
http://www.openshmem.org
http://www.mellanox.com/page/products_dyn?product_family=189&mtag=hpc-x
http://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/NVIDIA/nccl
https://doi.org/10.1007/s00450-012-0211-7
https://doi.org/10.1007/s00450-012-0211-7
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1706.03762

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation Hardware Design and Evaluation
	1 Introduction
	2 Previous Work
	3 Streaming-Aggregation
	3.1 Tree Type
	3.2 InfiniBand Transport Selection
	3.3 Tree Locking
	3.4 Reduction Tree
	3.5 Reduction Pipelining
	3.6 Switch-Level Reduction
	3.7 Result Distribution
	3.8 Aggregation Protocol Resilience

	4 Experiments
	4.1 Test System Configuration
	4.2 Synthetic Benchmarks
	4.3 Application Benchmarks

	5 Summary
	References

