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ABSTRACT
Current approaches to RDF graph indexing suffer from weak
data locality, i.e., information regarding a piece of data ap-
pears in multiple locations, spanning multiple data struc-
tures. Weak data locality negatively impacts storage and
query processing costs. Towards stronger data locality, we
propose a Three-way Triple Tree (TripleT) secondary mem-
ory indexing technique to facilitate flexible and efficient join
evaluation on RDF data. The novelty of TripleT is that the
index is built over the atoms occurring in the data set, rather
than at a coarser granularity, such as whole triples occurring
in the data set; and, the atoms are indexed regardless of the
roles (i.e., subjects, predicates, or objects) they play in the
triples of the data set. We show through extensive empirical
evaluation that TripleT exhibits multiple orders of magni-
tude improvement over the state-of-the-art, in terms of both
storage and query processing costs.
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General Terms
Performance, Experimentation

1. INTRODUCTION
RDF [9] is becoming the data model of choice in many

emerging data generation and sharing scenarios. RDF data
sets (often referred to as “graphs” of “triples”) are typically
generated in social semantic domains where often a fixed
schema is not available a priori. The natural flexibility and
expressivity of triples was recognized early in the develop-
ment of modern logic [11]. Triples, which treat both objects
and relationships as first-class citizens, blur the traditional
divide between data and metadata, allowing for freer on-
the-fly generation of data. This is in contrast to previous
graph-oriented data models, which have more rigidly main-
tained the distinction between data and metadata [2].
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The format and flexibility of RDF call for new query
paradigms and processing techniques [6]. At the heart of
many RDF query languages, including the W3C standard
language SPARQL [12], are basic graph patterns [7]. Re-
cent research has begun to make headway on understanding
fundamental theoretical (e.g., [7]) and engineering (e.g., [10,
14]) aspects of basic graph pattern query processing.

In this paper, we focus on the problem of scalable in-
dexing of RDF data, to support efficient processing of ba-
sic graph patterns. As we discuss below, current indexing
techniques suffer from weak data locality, in the sense that
information about a piece of data can appear in multiple lo-
cations, possibly spanning several different data structures.
Weak data locality negatively impacts storage and query
processing costs. Towards stronger data locality, we propose
a Three-way Triple Tree (TripleT) secondary memory index.
The novelty of TripleT is that, in contrast to state of the art
approaches, (1) the index is built over the atoms occurring
in the graph, rather than at a coarser granularity, such as
whole triples occurring in the graph; and (2) the atoms are
indexed regardless of the roles they play in the triples of
the graph. TripleT is robust in the face of the dynamic un-
structured nature of typical RDF graphs. Furthermore, the
proposal is conceptually quite simple. We show through ex-
tensive empirical evaluation that TripleT exhibits multiple
orders of magnitude improvement over the state of the art,
in terms of both storage and query processing costs.

2. BACKGROUND
We begin with a brief presentation of basic notation and

definitions used in the paper, a statement of the indexing
problem considered, and an overview of the state of the art.

Data model. Full details of the RDF data model can be
found in the W3C standards [9, 12]. For our purposes here,
let A be an enumerable set of atoms (e.g., Unicode strings).
A triple is an element (s, p, o) ∈ A×A×A, typically inter-
preted as a statement to the effect that“object o stands in re-
lationship p to subject s.” Hence, the first element s is called
the subject of the triple; p is called the predicate; and o is
called the object. An RDF graph is a finite set of triples. In a
graph G, let S(G) denote the set of atoms appearing as sub-
jects; P(G) the set of atoms appearing as predicates; O(G)
the set of atoms appearing as objects; and A(G) = S(G) ∪
P(G)∪O(G). For example, in graph G of Figure 1, we have
S(G) = {Yamada, Herzog, McShea, doc1, doc2, doc3, knows}.

Basic graph patterns. Let V be an enumerable set of
variables, disjoint from A. A simple access pattern (SAP)
is an element of (A ∪ V) × (A ∪ V) × (A ∪ V). In other



˘〈Yamada, authored, doc1〉,
〈Yamada, knows, McShea〉,
〈knows, is a kind of, social action〉,
〈Herzog, authored, doc2〉,
〈Herzog, authored, doc3〉,
〈McShea, performed, doc3〉,
〈McShea, past action, authored〉,
〈doc1, type, PDF〉,
〈doc1, rating, 4/5〉,
〈doc2, type, MP3〉,
〈doc3, type, MP3〉,
〈doc3, createdOn, 29.6.09〉¯

Figure 1: A small triple graph.

words, an SAP is a triple in which roles (i.e., subjects, pred-
icates, and objects) may be either atoms or variables. A
basic graph pattern (BGP) is a conjunction of one or more
SAPs: (s1, p1, o1) ∧ · · · ∧ (sn, pn, on). Let V(P ) denote the
set of variables occurring in BGP P , and consider the set
M(P ) of functions f which map A∪V(P ) into A, such that
f is the identity on A:

M(P ) = {f | f : (A ∪ V(P )) → A and f |A = IdA}.
Then, the semantics of BGP P on a graph G is the set

P (G) = {f ∈ M(P ) | ∀(a, b, c) ∈ P : (f(a), f(b), f(c)) ∈ G}
where (a, b, c) ∈ P means that (a, b, c) is an SAP occurring
in P . In other words, P (G) is the set of bindings for the
variables of P , such that each binding maps all of the SAPs
of P into triples of G.

Example 1. Consider the query “What are the dates and
types of documents on which McShea was a performer?” over
the graph G given in Figure 1, as a BGP:

P = (McShea, performed, ?doc)

∧ (?doc, createdOn, ?date) ∧ (?doc, type, ?type).

On G, we have only one valid binding, P (G) = {〈?doc :
doc3, ?date : 29.6.09, ?type : MP3〉}.

BGPs are essentially conjunctive queries tailored for the
RDF data model [7]. Joins between the SAPs of a BGP are
induced by the co-occurrence of variables and atoms. There
are six native BGP join types: subject-subject, subject-
predicate, subject-object, predicate-predicate, predicate-object,
and object-object joins. In Example 1, there is a subject-
object join between the SAP (McShea, performed, ?doc) and
both of the other SAPs, due to the co-occurrence of vari-
able ?doc. Likewise, there is a subject-subject join between
(?doc, createdOn, ?date) and (?doc, type, ?type).

The problem. How can we index a graph G to support
efficient evaluation of BGPs on G? We specifically focus on
the design of native RDF index data structures, i.e., indexes
which support the full range of BGP join patterns.

State of the art solutions. In what follows, we use the
B+tree secondary-memory data structure [3] to implement
the various indexing techniques considered. We assume fa-
miliarity with this data structure and its use in conjunctive
query processing. To the best of our knowledge, the two
major competitive proposals for native RDF indexing are
multiple access patterns (MAP) and HexTree.

MAP. In this approach, all three positions of triples are
indexed: subjects (S), predicates (P), and objects (O), for

some permutation of S, P, and O. MAP requires up to six
separate B+trees, corresponding to the six possible order-
ings of roles: SPO, SOP, PSO, POS, OSP, OPS. For ex-
ample, for each (s, p, o) ∈ G, it is the case that o#p#s is
a key in the OPS index on G (where “#” is some reserved
separator symbol). A BGP join evaluation requires two or
more look-ups, potentially in different trees, followed by sort
merge joins. Major systems employing the MAP technique
include Virtuoso, YARS, and RDF-3X [5, 8, 10].

HexTree. Recently in the Hexastore system, Weiss et
al. [15] have proposed indexing two roles at a time. This
approach requires up to six separate data structures corre-
sponding to the six possible orderings of roles: SO, OS, SP,
PS, OP, PO. Payloads are shared between indexes with sym-
metric orderings. For example, for each (s, p, o) ∈ G, it is
the case that s#p is a key in the SP index on G, p#s is a
key in the PS index on G, and both of these keys point to a
shared payload of {o ∈ O(G) | (s, p, o) ∈ G}. As with MAP,
join evaluation requires two or more look-ups, potentially
in different trees, followed by sort merge joins. Hexastore
has only been proposed and evaluated as a main-memory
data structure [15]. We propose HexTree as an effective
secondary-memory realization of the Hexastore proposal us-
ing the B+tree data structure.

Limitations of current solutions. In both MAP and
HexTree, information about a piece of data can appear in
multiple locations, possibly spanning several different data
structures. For example, consider the atom doc1 in the
graph of Figure 1. In the MAP indexing scheme, locating
all triples related to doc1 requires lookups in three different
data structures: the SPO B+tree (or the SOP B+tree) to lo-
cate those triples in which the atom occurs as a subject (e.g.,
〈doc1, type, PDF〉), the PSO (or POS) B+tree to determine
that the atom does not occur as a predicate, and the OSP
(or OPS) B+tree to locate those triples in which the atom
occurs as an object (e.g., 〈Yamada, authored, doc1〉). Simi-
larly, reconstructing doc1 in the HexTree indexing scheme
also requires three separate lookups.

This loss of data locality is a primary limitation of the
MAP and HexTree indexing schemes. Weak data locality
leads to (1) redundant storage (e.g., each B+tree in the
MAP scheme contains a separate copy of essentially the same
set of data), and (2) increased query processing costs (e.g.,
performing a join on an atom can require multiple indepen-
dent index look-ups). We next present an indexing scheme
designed with an eye towards strengthened data locality.

3. A THREE-WAY TRIPLE TREE INDEX-
ING SCHEME

Towards stronger data locality, we propose indexing the
key-space A(G), regardless of the particular roles the atoms
of A(G) play in the triples of G. For a key k, the pay-
load is all triples of G in which atom k occurs. In par-
ticular, the payload for k consists of three “buckets”: one
for all pairs (p, o) where (k, p, o) ∈ G, one for all pairs
(s, o) where (s, k, o) ∈ G, and one for all pairs (s, p) where
(s, p, k) ∈ G. In other words, there is one bucket apiece
for all those triples where k occurs as a subject, for all
those triples where k occurs as a predicate, and for all those
triples where k appears as an object. For example, on
the graph of Figure 1, the payload for doc1 would consist
of an object bucket 〈(Yamada, authored)〉, a subject bucket
〈(4/5, rating), (PDF, type)〉, and a predicate bucket 〈〉.



To facilitate query processing (e.g., for merge joins), we
keep the pairs in each of the buckets sorted. By default, the
subject bucket is sorted in OP order, the predicate bucket in
SO order, and the object bucket in SP order. These choices
are based on the assumption that subjects are more selective
than objects, and objects are more selective than predicates.
Of course, selectivities will be dependent on the character-
istics of G, and sort orders can be chosen as necessary (or,
even both sort orders can be materialized if warranted).

We note two features of TripleT. First, the keys in TripleT
are 1/3 the length of those in MAP and 1/2 those in Hex-
Tree. Consequently, there is a higher branching factor in
the TripleT B+tree. Furthermore, the key-space indexed by
TripleT, A(G), itself is potentially much smaller that those
indexed in the MAP and HexTree schemes. Taken together,
these reductions lead to shallower indexes and hence lower
lookup costs, relative to MAP and HexTree.

Second, TripleT requires just one index, leading to stronger
data locality and non-trivial reduction in storage costs rel-
ative to MAP and HexTree, while efficiently supporting all
BGP join types. For example, a subject-object join induced
by the co-occurrence of an atom k can be evaluated by a
single look-up on k followed by a merge-join between the
subject and object buckets of k’s payload. A join induced
by the co-occurrence of a variable is implemented as multi-
ple look-ups followed by sort merge joins, just as with MAP
and HexTree.

Example 2. Consider the BGP
P1 = (Herzog, authored, ?d1) ∧ (Herzog, performed, ?d2).
To compute P1(G) using TripleT requires a single lookup
of Herzog followed by a lookup in the resulting payload’s
subject bucket for authored#?d1 and performed#?d2. The
crossproduct of all matches is then formed.

Next, consider the BGP P2 = (McShea, performed, ?d1) ∧
(?d1, createdOn, ?d2). To compute P2(G) with TripleT re-
quires: (1) a lookup of performed; followed by (2) a lookup
of McShea#?d1 in the predicate bucket of the resulting pay-
load; (3) a lookup of createdOn; followed by (4) the retrieval
of the predicate bucket of the resulting payload; and finally
(5) a direct merge join of the results of (2) and (4) on ?d1.

In general, we have the TripleT join algorithm for two
SAPs S1 and S2 presented in Algorithm 3.1. Note that we
(1) abuse our notation, and let A(S) denote the set of atoms
occurring in SAP S and, (2) set aside the degenerate case
which occurs when either of the SAPs is atom-free, which
necessitates an (index) nested loops join.

TripleT exhibits the same advantages as MAP and Hex-
Tree, as compared to earlier RDF storage and indexing pro-
posals, e.g., robustness in the face of dynamic data (e.g.,
schema independence); concise handling of multivalued re-
sources; avoidance of nulls; and, all pairwise joins are fast
merge-joins (see the detailed discussion of these advantages
in [1, 15]). Furthermore, the additional benefits of simplic-
ity, reduced size, and strengthened data locality distinguish
the TripleT proposal from the state of the art.

4. EMPIRICAL STUDY
We implemented MAP, HexTree, and TripleT using 8K

blocks and 32-bit references, in virtual memory, using Python
2.5.2. All experiments were executed on a pair of 2.66 GHz
dual-core Intel Xeon processors with 16 GB RAM running
Mac OS X 10.4.11.

Each experiment was performed using (1) synthetic data,

Input: • a basic graph pattern P = S1 ∧ S2

• IG, the TripleT index on graph G

Output: P (G), the evaluation of P on G

begin
if A(S1) ∩ A(S2) 6= ∅ then

• choose an arbitrary a ∈ A(S1) ∩ A(S2)
• lookup a in IG

• compute S1(G) 1 S2(G) on retrieved payload
using sort merge, and return result

else
• choose arbitrary a1 ∈ A(S1) and a2 ∈ A(S2)
• lookup a1 and a2 in IG

• evaluate S1(G) and S2(G) on retrieved
payloads, respectively
• compute S1(G) 1 S2(G) using sort merge,
and return result

end
Algorithm 3.1: TripleT join algorithm for SAPs S1, S2

(2) the DBPedia data set;1 and (3) the Uniprot data set.2

DBPedia is an extraction of the well-known Wikipedia on-
line encyclopedia. Uniprot is a comprehensive collection of
protein sequence and annotation data. For (1), we built two
synthetic data sets (the results presented below are the aver-
ages over these two sets). In the first set, we randomly gen-

erated n triples over n1/3 unique atoms, for n = 1, 000, 000,
to n = 6, 000, 000, in increments of one million, where rep-
etitions of atoms were allowed within triples. In the second
set, we randomly generated n triples over ceiling(n1/3) + 2
unique atoms, for n = 1, 000, 000, to n = 6, 000, 000, in in-
crements of one million, where repetitions of atoms within
triples were disallowed. For (2) and (3), we took an arbi-
trary sample of 10,000,000 triples from each data collection.
After cleaning, we kept 6,000,000 triples in each collection.

Comparing index size. In increments of 1 million triples,
from 1 to 6 million triples, we built the three index types.
The plots of the resulting index sizes, in 8K blocks, are
shown in Figures 2(a)-2(c).

TripleT was up to 259 times smaller, with a typical two
orders of magnitude savings in storage cost. This cost re-
duction is due to (1) TripleT uses just one B+tree, whereas
MAP and HexTree both require three B+trees, and (2) the
key size in TripleT is 1/3 that of MAP and 1/2 that of Hex-
Tree, leading to significantly higher branching factor of the
B+tree (and hence shallower trees).

Comparing query performance. We measured the
I/O cost for evaluating BGP join patterns between two SAPs.
Since a join is induced by virtue of the SAPs sharing ei-
ther an atom, a variable, or both, we considered four sub-
scenarios, covering the basic ways in which SAPs may be
joined: (1) computing the join of two variable-free SAPs
having one atom in common, e.g., (a, b, c)∧(a, d, e); (2) com-
puting the join of two SAPs having one atom in common,
one SAP having a single variable and the other variable-
free, e.g., (a, b, ?v) ∧ (a, c, d); (3) computing the join of two
SAPs having no atoms in common, each having a single
variable, which they share, e.g., (a, b, ?v) ∧ (?v, c, d); (4)
computing the join of two SAPs having one atom in com-

1
http://wiki.dbpedia.org

2
http://dev.isb-sib.ch/projects/uniprot-rdf



(a) Index size: Synthetic (b) Index size: DBPedia (c) Index size: Uniprot

(d) Query evaluation: Synthetic (e) Query evaluation: DBPedia (f) Query evaluation: Uniprot

Figure 2: Index size in 8K blocks (top), and average I/O cost of query evaluation (bottom).

mon, each having one variable, which they also share, e.g.,
(a, b, ?v) ∧ (a, c, ?v). These scenarios cover the whole range
of basic BGP join types, and were chosen to give the indexes
a complete work out.

For each data set, for each size (1-6 million), we gener-
ated ten random BGPs of each of these four scenarios, and
measured their evaluation cost using MAP, HexTree, and
TripleT. The average I/O costs are given in Figures 2(d)-
2(f). We observe from these experiments that TripleT al-
ways out-performed MAP and HexTree, with down to only
17.6% of their I/O costs for query processing. This perfor-
mance improvement is due to (1) the smaller keyspace and
size of TripleT, and (2) reduced lookup costs for some basic
types of BGPs, due to stronger data locality.

5. DISCUSSION
As demonstrated on both synthetic and real data sets,

TripleT is multiple orders of magnitude smaller than MAP
and HexTree, and exhibits significantly reduced I/O costs for
join processing across the full range of RDF join patterns.
Both of these improvements are due in large part to the
improved data locality of the TripleT indexing scheme, as
discussed above.

We have focused in this work on scalable indexing, specif-
ically to support efficient join processing. Based on the re-
sults of this study, there are several complementary direc-
tions for further research on TripleT: (1) Recently a full-
scale benchmark suite for RDF data management research
has been developed [13]. Further analysis of TripleT on such
benchmarks may suggest useful refinements or extensions of
the data structure. (2) As a role-free approach to index-
ing the relationships of data in an RDF graph, it might
be profitable to store additional information in the TripleT
payload structure. For example, we are currently investi-
gating payload structures to efficiently support keyword and

path queries [4] with TripleT. (3) Finally, we are currently
investigating heuristics, statistics, and algorithms for BGP
join-order optimization (e.g., [10, 14]), especially tailored for
TripleT.
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