AHOO'

Motivations: Data is everywhere

fllckr @ = ﬁ&‘nw

L] Tt J—
yelp-}t

>18 images, 4Ch vdao/minute

AOL »

* Query stroam

« Editarial data is very
: Ty
expensivel Do notuzel |

«Essentially infinite amount of data

«Labeling is prohibitively

'F.ven for supervised problems unlabeled data abounds
structure for purposes

'Solunons are often customized to problem

Challenges

*Millions to billions of instances
ich structure of data (ontology, categories, tags)
*Model description typically larger than memory of a workstation
+Usually clustering or topic models do not solve the problem
“Temporal structure of data
+Side information for variables
*10k-100k clusters for hierarchical model
*1M-100M words
«Communication is an issue for large state space

Scalable Inference In Latent Variable Models

Map-Reduce is not the solution

[virpiy emeart weekare] disk besac intar prazaes

commnicen e

s T
“omes

zer
i

Iibansant \ Dan, 200

+Good if only a small number of MapReduce iterations needed
“Need to request machines at each iteration (time consuming)
«State lost in between maps

+Communication only via file /0

00d fit for many latent vi
iterative in nature and relies on a shared state

Latent Dirichlet Allocation

0D

clustering

o B prior |
o
DD

B instanco

Three Basic inference problem:

Glabal

stream local
dota from disk
asynchronous
synchronization

Global State Synchronization

1 copy per machine
* Na locks between machines to access z
* Synchrovizaiion mechonism for global J nesded

+ In LDA this is the local zopy of the {tapic,word) caunts

o T @@ et

O oM pilal

*Start with common state
=Child stores old and new state
«Parent keeps global state
«Transmit differences asynchronously
- Inverse element for difference
- Abelian group for commutativity
(sum, log-sum, cyclic group, exponential families)

Key distribution and Fault Tolerance

*Dedicated server for variables

« Select server via consistent hashing

«Storage is O(1/k) per machine

« Communication is O(1) per machine

*Fast snapshots O(1/k) per machine
(stop sync and dump state per vertex)

Amr Ahmed , Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, Alexander Smola

Yahoo! Research & CMU

Results

+8 Million documents, 1000 topics, {100,200,400} machines, LDA

* Red (symmetric latency bound message passing)

« Blue (asynchronous bandwidth bound message passing & message
scheduling)

+10x faster synchronization time and 10x faster snapshots
«Scheduling improves 10% already on 150 machines

“schedule message pairs

“Communicate with r random machines simultaneously
«Use Luby-Rackoff PRPG for load balancing

“Efficiency guarantee:

L

=1

are sufficient

Architecture: LDA

+ For 1000 Herations do {independently per computer]
« For each Hread/care do
* For each document do
* For each word in the document do
+ Resample topic for the word
* Updeta local (documant, topic) table
* Generate computer local [word, topic|] message
+ In porallel update local {ward, apic) table
* In parallel update global (word, fopic) toble

joint state table

mur(gzge
Barcelona
seafood

millage

* Distributed (key,value) storage via ICE

. asynchronous sync
- single word at a time to avoid deadlocks
- no need to have joint dictionary
- uses disk, network, cpu simultaneously

Ty




