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Scalable Input-to-State Stability for Performance
Analysis of Large-Scale Networks

Bart Besselink and Steffi Knorn

Abstract—This letter investigates networks of
interconnected systems and introduces the notion of
“scalable input-to-state stability” (sISS). This concept
is based on input-to-state stability (ISS) and can be
interpreted as an extension of the well-known concept of
string stability from simple line graphs to general graphs. It
guarantees that the trajectories of all states are bounded at
all times independently of the network’s size and structure
and can hence be regarded as an important performance
notion. Further, sufficient conditions are derived to guar-
antee sISS of homogeneous networks with well-defined
interconnection structures. In fact, the conditions depend
on local ISS Lyapunov functions but guarantee the global
condition of sISS. Hence, a first step is made towards
developing suitable extensions of string stability to general
networks. Two examples are discussed to illustrate the
theoretical result.

Index Terms—Large-scale systems, network analysis
and control, stability of nonlinear systems, scalability.

I. INTRODUCTION

ENGINEERING systems have become increasingly com-
plex and diverse over the last decades and the emerging

distinguishing feature of such systems is their large-scale
interconnection, resulting from physical interaction or infor-
mation exchange. Examples include formations of unmanned
vehicles, smart grids, sensor networks, and traffic networks.

The complexity caused by the large-scale interconnected
nature of such networks might lead to undesired behaviour
such as instability or the amplification of perturbations as they
propagate through the network. The latter is particularly unde-
sirable as it could lead to cascaded failures or instabilities as
the network size grows. Therefore, the main objective of this
letter is to provide a scalable notion of network performance
that prohibits the growth of perturbations.
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Stability analysis for large-scale interconnected systems has
a long history (see [20], [33]) and also network-specific con-
trol objectives such as synchronisation and consensus have
received a lot of attention, see, e.g., [11], [18], and [22] and the
overview [16]. However, these notions have in common that
they can be regarded as types of stability and convergence and,
despite the long history of robust control [34], only few results
are available on notions of network performance or robustness.
Exceptions are given by [2] and [3] in which spatially invariant
systems are considered. In particular, [2] captures the effect of
external disturbances on large-scale interconnected systems in
a concept known as coherence. Specifically, it is shown how
measures of the rigidity of a formation scale with increasing
network size.

One of the few fields in which network properties beyond
stability-like notions are extensively studied is that of vehi-
cle platooning, where formations of closely-spaced vehicles
are considered (see [1] for a motivation). As the amplifica-
tion of perturbations through such string of vehicles could, for
large groups, lead to collisions, one of the main control objec-
tives is to prohibit this amplification. This desired behaviour
is captured in the notion of string stability. Roughly two for-
mulations of string stability can be considered, which have
in common that they characterise attenuation of perturbations.
First, the early work [12] as well as [21] and [28] give a local
definition in which perturbations from a vehicle to its follower
are attenuated. Second, the approach in [4], [19], and [27] call
for the existence of a bound on relevant error signals that is
independent of the length of the platoon. This can be regarded
as a global definition as it is based on the entire string, which
has the advantage that the notion of string stability is not lim-
ited to unidirectional information flow structures as in the first
approach. Also, the fact that the bound holds for any string
length implies scalability of the platoon, as vehicles can be
added or removed without requiring renewed string stability
analysis.

The above definitions of string stability generally rely on
the characterisation of input-output gains for suitable chosen
inputs and outputs and linear systems are typically considered
in these works. A formal definition on the basis of state trajec-
tories, applicable also for non-linear systems, is given in [32].
Whereas autonomous systems are considered in this letter, an
extension to platoons with disturbances is given in [5]. Similar
definitions involving state trajectories can be found in [17]
(for a first step towards an extension to more general network
topologies, see [15]). These approaches have the advantages
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that the effect of initial conditions and transients can explicitly
be taken into account. For recent overviews of string stability
properties, see [23], [31]. Finally, we stress that string stabil-
ity should be regarded as a notion for network performance
rather than stability. In fact, a vehicle formation can be stable
in the classical sense even though perturbations grow as they
propagate.

Motivated by the need for notions of performance for gen-
eral large-scale interconnected systems and inspired by results
in vehicle platooning, this letter studies scalable performance
notions. It has the following two contributions.

First, we introduce scalable input-to-state stability (sISS)
as a characterisation of the robustness of a large-
scale interconnected system against external disturbances.
Specifically, sISS requires the existence of bounds on state
deviations that are independent of the network size. As such,
this prohibits the amplification of disturbances as they travel
through the network. This notion is inspired by input-to-state
stability (ISS) [29] and extends the related notion of distur-
bance string stability [5] to more general network structures.

Second, we provide a sufficient condition for sISS for a
class of homogeneous networks that is solely based on ISS
properties of the subsystems and the interconnection structure.
As such, this can be regarded as a local test for the global
property of sISS, which is in fact independent of the network
size. The sufficient condition is based on the construction of a
so-called max-separable ISS Lyapunov function for the large-
scale system and it is exactly this max-separable structure that
enables scalable analysis. The usefulness of such structure in
scalable analysis has been recognised before, see [24]. Finally,
we mention that this approach draws inspiration from so-called
general small-gain conditions for networked systems as studied
in [7], [8], and [26].

This letter is organized as follows. The notion of sISS
is introduced in Section II, whereas Section III presents the
main results. Two examples are discussed in Section IV before
conclusions are stated in Section V.

Notation: The field of real numbers is denoted by R and
R+ = [0,∞). On the real vector space Rn, the Euclidian
norm is denoted as | · |. The vector for which all elements
equal 1 is written as 1 ∈ Rn. A function α : R+ → R+ is
said to be of class K if it is continuous, strictly increasing,
and satisfies α(0) = 0. If, in addition, α is unbounded, then
it is of class K∞. Moreover, a function β : R+ ×R+ → R+
is said to be of class KL if, for each fixed s, β(·, s) ∈ K and,
for each fixed r, the function β(r, ·) is strictly decreasing and
lims→∞ β(r, s) = 0. Finally, for a bounded function x : R+ →
Rn, we define ‖x‖∞ = supt∈R+ |x(t)|.

II. SCALABLE INPUT-TO-STATE STABILITY

Consider the spatially invariant large-scale system com-
prised of N subsystems �i of the form

�i : ẋi = f
(
xi, {xi+j}j∈N , di

)
, (1)

with subsystem state xi ∈ Rn, local disturbance di ∈
Rm, and i ∈ IN := {1, 2, . . . , N}. It is assumed that
f (0, {0, . . . , 0}, 0) = 0, f is locally Lipschitz in xi and
{xi+j}j∈N , and continuous in di. In addition to its own state, the

Fig. 1. Example of � in (2) with N = {−2, −1, 1} and N = 6.

dynamics of �i in (1) depend on the states of its neighbours,
as captured through the set of relative neighbours N ⊂ Z

with 0 /∈ N . In particular, the index i + j in characterizing the
neighbours should be understood modulo N (precisely, i + j
should be read as 1 + ((i + j − 1) mod N), where k mod N
denotes the remainder after Euclidean division of k by N).
Thus, as an example, N = {−1, 1} characterises a circular
interconnection structure with bidirectional coupling between
neighbours. Another example is given in Figure 1.

After collecting the states and disturbances as
xT = [ xT

1 · · · xT
N ] and dT = [ dT

1 · · · dT
N ], the

interconnected system � can be written compactly as

� : ẋ = FN(x, d), (2)

where

FN(x, d) =
⎡

⎢
⎣

f
(
x1, {x1+j}j∈N , d1

)

...

f
(
xN, {xN+j}j∈N , dN

)

⎤

⎥
⎦ (3)

with FN(0, 0) = 0. We remark that the system (2) is well-
defined for each N ≥ Nmin with Nmin = 1 + max{|j| | j ∈ N },
which gives the minimal system size for which the absence
of self-loops is guaranteed. In fact, it is easy to show that FN
in (3) is locally Lipschitz in x and continuous in d for any N.
Thus, (2) can be regarded as a family of systems, in which
each system is characterised by its number of subsystems N.
We note that the number of neighbours for a given subsystem
is independent of the network size.

In this letter, we are interested in a scalable performance
notion of � in (2), i.e., a characterisation that is independent
of the size N. This leads to the following definition.

Definition 1: The system (2) is said to be scalable input-to-
state stable (sISS) if there exist functions β ∈ KL and σ ∈ K∞
such that, for any N ∈ N such that N ≥ Nmin, for any initial
condition xi(0) ∈ Rn, i ∈ IN , and any disturbance function
di(·), i ∈ IN , the solution xi(·) satisfies

max
i∈IN

|xi(t)| ≤ β

(
max
i∈IN

|xi(0)|, t

)
+ σ

(
max
i∈IN

‖di‖∞
)

(4)

for all t ≥ 0.
This notion of sISS stability extends the concept of ISS

originally introduced in [29]. The key distinguishing features
are, first, the choice of norm on the state x in terms of the
largest Euclidean norm over all subsystems and, second, the
fact that the condition should hold for all N ≥ Nmin. Exactly
these features enable the interpretation of sISS as a scalable
performance notion of large-scale systems. Namely, the fact



BESSELINK AND KNORN: sISS FOR PERFORMANCE ANALYSIS OF LARGE-SCALE NETWORKS 509

that the bound (4) holds regardless of system size means
that state perturbations do not grow without bound when-
ever subsystems are added or removed. Stated differently, sISS
prohibits the amplification of perturbations as they propagate
through the network.

Remark 1: Even though sISS is defined for large-scale
systems of the form (1), Definition 1 is independent of the
interconnection structure and does not require homogeneity of
the subsystem dynamics. Consequently, sISS could be defined
for more general networks, as long as the network structure is
well-defined and consistent for growing size N.

Remark 2: Taking a different perspective, sISS can be inter-
preted as an extension of the notion of string stability, see [23].
Whereas string stability characterises the attenuation of distur-
bances in a group of vehicles which can typically be regarded
as a cascaded system, Definition 1 considers more general
network structures. A formal definition of string stability
was given in [32] (see also [12] for an early characteriza-
tion) and is extended to include disturbances on all vehicles
in [5]. Definition 1 can in fact be regarded as an extension
of [5, Definition 3]. The work [31] provides an alternative
approach in extending string stability to more general network
topologies.

III. MAIN RESULTS

In this section, a sufficient condition for sISS will be given
in terms of ISS properties of the subsystems �i. To this end,
we assume that (1) is input-to-state stable with respect to the
states of its neighbours {xi+j}j∈N and the external disturbance
di, which is easy to verify in practice.

Assumption 1: There exists a differentiable ISS Lyapunov
function V : Rn → R+ for the subsystems (1), i.e., the
following two conditions hold:

i) There exist ν1, ν2 ∈ K∞ such that, for all xi ∈ Rn,

ν1(|xi|) ≤ V(xi) ≤ ν2(|xi|). (5)

ii) There exist functions α ∈ K∞, γj ∈ K∞, j ∈ N and
μ ∈ K∞, such that

∂V

∂x
(xi)f

(
xi, {xi+j}j∈N , di

)

≤ −α(V(xi)) +
∑

j∈N
γj

(
V(xi+j)

) + μ(|di|) (6)

for all xi ∈ Rn, all xi+j ∈ Rn for j ∈ N , all di ∈ Rm.
We note that, due to the uniformity of the subsystems �i

in (1), the function V in Assumption 1 is independent of i.
Now, the main result of this letter can be stated as follows.
Theorem 1: Consider the large-scale system (2) and let the

subsystems be such that Assumption 1 holds. If there exists a
function ρ ∈ K∞ such that

− α(s) +
∑

j∈N
γj(s) ≤ −ρ(s) (7)

for all s ≥ 0, then (2) is scalable input-to-state stable.
Proof: To prove the result, it will be shown that the max-

separable function VN : RNn → R+ defined as

VN(x) = max{V(x1), . . . , V(xN)} (8)

is an ISS Lyapunov function for � in (2) for any N.

Thereto, take any N ∈ N satisfying N ≥ Nmin and con-
sider (8). As VN is generally not continuously differentiable,
the upper-right Dini derivative of VN in the direction v ∈ Rn

is introduced as

D+VN(x, v) = lim sup
h→0+

VN(x + hv) − VN(x)

h
, (9)

see [25]. Given that V is differentiable according to
Assumption 1, the max-separable structure (8) leads to

D+VN(x, FN(x, d))

= max
j∈J (x)

∂V

∂x
(xj)f

(
xj, {xj+l}l∈N , dj

)
, (10)

where J (x) = {j | V(xj) = VN(x)} denotes the set of indices
for which the maximum in (8) is obtained, see [6].

For a given x ∈ RNn, let k ∈ J (x) be an index (not
necessarily unique) that achieves the maximum in (10). Then,

D+VN(x, FN(x, d))

= max
j∈J (x)

∂V

∂x
(xj)f

(
xj, {xj+l}l∈N , dj

)
,

= ∂V

∂x
(xk)f (xk, {xk+l}l∈N , dk),

≤ −α(V(xk)) +
∑

l∈N
γl(V(xk+l)) + μ(|dk|), (11)

where the inequality (11) follows from ISS of the subsystems
through (6) in Assumption 1 (for i = k). Now, as k ∈ J (x), it
follows from the definition of J (x) that

V(xi) ≤ V(xk) = VN(x) (12)

for all i ∈ IN . Given that γl ∈ K∞, the inequality (12) can be
used to bound the right-hand-side of (11) to obtain

D+VN(x, FN(x, d))

≤ −α(VN(x)) +
∑

l∈N
γl(VN(x)) + μ(|dk|), (13)

where the substitution V(xk) = VN(x) (recall again (12)) is
used in the first term of the right hand side. A similar reasoning
exploiting the fact that μ ∈ K∞ leads to

D+VN(x, FN(x, d))

≤ −α(VN(x)) +
∑

l∈N
γl(VN(x)) + μ

(
max
l∈IN

|dl|
)

, (14)

whereas condition (7) gives

D+VN(x, FN(x, d)) ≤ −ρ(VN(x)) + μ

(
max
l∈IN

|dl|
)

. (15)

At this point, it is remarked that (15) holds for all x ∈ RNn,
all d ∈ RNm, and, most importantly, for any N ≥ Nmax.
Moreover, (15) represents a characterization of ISS in dis-
sipation form, albeit with non-smooth ISS Lyapunov function
VN . In order to employ results on ISS with non-differentiable
ISS Lyapunov functions, we note that (15) gives rise to the
so-called implication form

(1 − ε)ρ(VN(x)) ≥ μ

(
max
l∈IN

|dl|
)

=⇒ D+VN(x, FN(x, d)) ≤ −ερ(VN(x)), (16)
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for any ε ∈ (0, 1). Then, the use of [7, Th. 2.3] (see
also [10], [13] for extensions of ISS to the non-differentiable
case) guarantees the existence of functions β̃ ∈ KL and
σ̃ ∈ K∞ such that

VN(x(t)) ≤ β̃(VN(x(0)), t) + σ̃

(
max
i∈IN

‖di‖∞
)

(17)

for all t ≥ 0. Here, x(·) is the state trajectory of (2) for x(0) ∈
RNn and bounded disturbance function d(·).

In order to obtain a bound of the form (4), it is noted that
the properties of the Lyapunov function V in Assumption 1
(see (5)) imply, for any i ∈ IN ,

|xi(t)| ≤ ν−1
1 (V(xi(t))) ≤ ν−1

1 (VN(x(t))), (18)

where the latter inequality is a result of the definition of VN
in (8). Note that ν−1

1 exists as ν1 ∈ K∞ and recall that ν−1
1 is

itself of class K∞. Similarly, it holds for any i ∈ IN that

V(xi(0)) ≤ ν2(|xi(0)|) ≤ ν2

(
max
i∈IN

|xi(0)|
)

, (19)

where (5) is used again. Since (18) and (19) hold for any
i ∈ IN (including where the respective maxima are obtained),
the use of (18) and (19) in (17) yields

max
i∈IN

|xi(t)|

≤ ν−1
1

(
β̃

(
ν2

(
max
i∈IN

|xi(0)|
)

, t

)
+ σ̃

(
max
i∈IN

‖di‖∞
))

. (20)

Then, the use of the property (e.g., [29])

ν−1
1 (s1 + s2) ≤ ν−1

1 (2s1) + ν−1
1 (2s2), (21)

for ν−1
1 ∈ K∞, leads to a bound of the form (4) with

β(s1, s2) = ν−1
1

(
2β̃(ν2(s1), s2)

)
, σ (s) = ν−1

1 (2σ̃ (s)). (22)

We stress again that N was chosen arbitrarily, such that (20)
holds for any N ∈ N (with N ≥ Nmin). More importantly, the
functions ρ and σ in (15) are independent of N as a result
of the max-separable structure of the Lyapunov function VN
in (8). As a result, also β ∈ KL and σ ∈ K∞ in (22) are
independent of N, such that the bound (4) is uniform for all
N ∈ N and sISS as in Definition 1 is proven.

Theorem 1 provides a characterization of sISS that, first,
depends on properties of the subsystems only, and, sec-
ond, is independent of the network size N. As (7) is easy
to verify, this theorem provides a practically relevant test
for sISS.

Remark 3: The proof of Theorem 1 crucially depends on
the introduction of the ISS Lyapunov function candidate (8),
whose max-separable structure enables the desired scalability
properties (see (18) and (19) for a relation to the signal norms
used in (4)). This approach is inspired by results on ISS for
networks originally developed in [7], [8], and [26]. However,
whereas these works consider ISS for a given network of fixed
size, Theorem 1 guarantees an ISS property of a family of
systems with arbitrary network size, see Definition 1. We
note that input-to-state stability of a network of fixed size
(even if the ISS property holds regardless of size) does not
imply sISS as uniformity of the gain functions is required

in (4), see Example 1. Nonetheless, for a fixed network size,
the condition (7) reflects the results in [26, Sec. 3.4].

The results in Theorem 1 can directly be exploited in the
scope of cascaded systems. To this end, consider

ẋ1 = f (x1, 0, d1),

ẋi = f (xi, xi−1, di), i ∈ IN \ {1}, (23)

where xi ∈ Rn and di ∈ Rm for i ∈ IN as before. Also, f
is assumed to be locally Lipschitz in the first two arguments,
continuous in the third argument, and satisfies f (0, 0, 0) = 0.
The cascaded system (23) can be regarded as a system �

as in (2) with N = {−1}, with the exception that the first
subsystem has no incoming links.

Nonetheless, the following result is immediate.
Corollary 1: Consider the large-scale cascaded system (23)

and let the subsystems be such that Assumption 1 holds for
N = {−1}. If there exists a function ρ ∈ K∞ such that

− α(s) + γ−1(s) ≤ −ρ(s) (24)

for all s ≥ 0, then (23) is scalable input-to-state stable.
Proof: This is a direct result of Theorem 1 after observing

that (6) also holds for subsystem 1 in (23) despite the absence
of the incoming link from xN .

Corollary 1 highlights the interpretation of sISS as a robust-
ness property in which effects of neighbouring systems are
taken to be adversarial (we note that such perspective also
forms the basis for small-gain conditions as in, e.g., [14]).
Namely, the removal of any interconnection in the large-scale
system (2) does not affect the result of Theorem 1, enabling
the scalable analysis of (classes of) heterogeneous networks.
In a similar way, homogeneity of subsystem dynamics is not
required as long as the same estimates (6) hold.

Remark 4: The relevance of Corollary 1 is in the scope
of scalable stability properties for vehicle platoons usu-
ally referred to as string stability. Namely, such systems
are generally modelled using a unidirectional and non-
cyclic interconnection topology reflecting the case in which
a vehicle only exploits information of its predecessor,
e.g., [19], [27], and [30]. In the scope of vehicle platoons,
disturbance propagation in cascaded systems of the form (23)
along the lines of this letter is studied in [5].

IV. EXAMPLES

In this section, we present two simple examples to illustrate
the results from the previous section. The first example illus-
trates Definition 1 by presenting a linear system that is ISS
for each fixed N ∈ N, but is not sISS. The second example is
a non-linear system that has the sISS property.

Example 1: Consider the subsystems

żi = −2zi + zi+1 + zi−1 + wi, (25)

with state zi ∈ R, disturbance wi ∈ R, and i ∈ IN . After
defining z = [ z1 . . . zN ]T and w = [ w1 . . . wN ]T,
the large-scale system comprising the subsystems (25) can
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compactly be written as ż = −LNz + w, where the matrix

LN =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

2 −1 0 · · · 0 −1
−1 2 −1 0

0 −1 2
. . .

...
...

. . .
. . .

. . . 0

0
. . . 2 −1

−1 0 · · · 0 −1 2

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

(26)

has a circulant structure as the indices in (25) are interpreted
modulo N. In this example, we are interested in the deviations
from the average state and disturbance defined as

xi = zi − 1
N1

Tz, di = wi − 1
N1Tw, (27)

respectively. It is easily shown that this satisfies the dynamics

ẋ = −LNx + d, (28)

with x = [ x1 . . . xN ]T and d = [ d1 . . . dN ]T. We
remark however that 1Td(t) = 0 for all t ≥ 0 and that, as
1Tx(0) = 0 by definition, trajectories of (28) satisfy 1Tx(t) =
0 for all t ≥ 0. This not only follows from (27), but is also
apparent from (28) as ker1T is an LN-invariant subspace. In
fact, the restriction of LN to ker1T is asymptotically stable,
from which it is immediate that (28) is input-to-state stable.
Using the equivalence of norms

max
i∈IN

|xi| ≤ |x| ≤ √
N max

i∈IN

|xi|, (29)

there thus exist functions βN ∈ KL and σN ∈ K∞ such that

max
i∈IN

|xi(t)| ≤ βN

(
max
i∈IN

|xi(0)|, t

)
+ σN

(
max
i∈IN

‖di‖∞
)

. (30)

From the above, we conclude that (28) (restricted to ker1T)
is ISS for each fixed N. In the remainder of this example, it
will be shown that (28) is not sISS as in Definition 1.

To this end, observe that the smallest eigenvalue of the
restriction of LN to ker1T (this is the second-smallest eigen-
value of LN as LN1 = 0) is given by

λ = 2 − 2 cos

(
2π

N

)
(31)

with multiplicity 2, as follows from the theory of circu-
lant matrices, see [9]. A corresponding eigenvalue v =
[ v1 . . . vN ]T has components

vi = 1 − cos

(
2π(i − 1)

N

)
, i ∈ IN, (32)

and is scaled such that maxi∈IN |vi| = v1 = 1.
Now, we will construct a lower bound on σN in (30) by

considering trajectories of (28) for the constant disturbance
d(t) = rv, t ≥ 0, for some fixed r > 0. It readily follows
from (32) that 1Td(t) = 0 for all t ≥ 0 as required and
that maxi∈IN ‖di‖∞ = r. Choosing x(0) = 0, the resulting
trajectory of (28) satisfies

x(t) =
∫ t

0
e−LN (t−s)rv ds =

∫ t

0
rve−λ(t−s) ds, (33)

where the latter equality follows from the fact that v is an
eigenvalue of LN . Consequently, limt→∞ x(t) = rλ−1v. Thus,

Fig. 2. Simulation results for the example system (36) with N = 10:
state trajectories for randomly chosen initial conditions xi (0) ∈ [ − 2, 2]
and di (t) = sin (t + φi ) with randomly chosen phase φi .

for any ε > 0, there exists T > 0 such that

max
i∈IN

|xi(t)| ≥ |x1(t)| ≥ r(1 − ε)

λ
. (34)

for all t > T . Here, the latter inequality follows from the
property v1 = 1, see (32). By recalling maxi∈IN ‖di‖∞ = r
and comparing (34) to (30), it follows that the gain function
σN necessarily satisfies

σN(r) ≥ r(1 − ε)

λ
= r(1 − ε)

2 − 2 cos
(

2π
N

) , (35)

where (31) is used to obtain the equality. For a given r and
ε, it is clear that (35) grows without bound as N grows.
Hence, there does not exist a gain function σ ∈ K∞ such
that σN(r) ≤ σ(r), r ≥ 0 for all N ∈ N. Consequently, the
dynamics describing the deviations from the average in (28)
is not scalable input-to-state stable.

Remark 5: The reasoning of Example 1 relies on LN in (26)
being circulant and can be easily extended to more general cir-
culant matrices capturing relative measurements. Then, it can
be concluded that such spatially invariant systems are not sISS,
i.e., the performance measure capturing the deviation from
the average scales unfavourably as the network size grows.
Indeed, it is known that the system (28) suffers from a lack of
coherence, as is shown in [2]. Nonetheless, we stress that the
alternative performance measure of coherence differs signifi-
cantly from sISS as stochastic disturbances and the H2 system
norm are studied in the former. Moreover, the notion of sISS is
applicable to non-linear systems, whereas [2] considers linear
systems.

Example 2: Consider the non-linear subsystems

ẋi = −xi − x3
i + xix

2
i−1 + di (36)

with state xi ∈ R, disturbance di ∈ R, and i ∈ IN . Note
that (36) is of the form (1) with N = {−1}. To show that the
system is scalable input-to-state stable as in Definition 1, we
first show that Assumption 1 holds by choosing the function
V(xi) = x2

i . Namely, a direct computation shows that

∂V

∂x
(xi)f

(
xi, {xi+j}j∈N , di

)

= −2x2
i − 2x4

i + 2x2
i x2

i−1 + 2xidi, (37)

= −x2
i − x4

i + x2
i−1 + d2

i

− (x2
i − x2

i−1)
2 − (xi − di)

2, (38)
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Fig. 3. Simulation results for the example system (36): maximum state
perturbation maxi∈IN

‖xi‖∞ in steady-state for disturbances di (t) =
sin (t + φi ) with randomly chosen phase φi .

where the result (38) is readily verified by completing the
squares. Then, it follows that (36) satisfies (6) with

α(s) = s2 + s, γ−1(s) = s2, μ(s) = s2, (39)

such that it can be verified that (7) holds with ρ(s) = s.
Consequently, by Theorem 1, the system (36) is sISS.

Figure 2 shows a simulation of (36). It can be observed
that all states remain bounded despite the influence of the
disturbance and the effect of the initial conditions die away.

The same simulation is then repeated for systems with
network size ranging from N = 10 to N = 200. Figure 3 illus-
trates that the maximum state perturbations remain bounded
independent of network size, i.e., the system is sISS.

V. CONCLUSION

The notion of scalable input-to-state stability (sISS) is intro-
duced as a performance notion for large-scale networks. It
guarantees the boundedness of state trajectories independent
of the network size, prohibiting the amplification of pertur-
bations as they propagate through the network. A sufficient
condition for sISS is given on the basis of ISS properties of the
subsystems, providing a local and easily verifiable condition
for the global performance notion of sISS.

We view these results as the first steps towards scalable
performance notions for arbitrary large-scale networks and
future work will aim at generalisations to allow for hetero-
geneous dynamics or more general interconnection structures.
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