
Scalable Large Near-Clique Detection in Large-Scale
Networks via Sampling

Michael Mitzenmacher
Harvard University

michaelm@eecs.harvard.edu

Jakub Pachocki
Carnegie Mellon University

pachocki@cs.cmu.edu

Richard Peng
MIT

rpeng@mit.edu

Charalampos E.
Tsourakakis

Harvard University
babis@seas.harvard.edu

Shen Chen Xu
Carnegie Mellon University

shenchex@cs.cmu.edu

ABSTRACT

Extracting dense subgraphs from large graphs is a key prim-
itive in a variety of graph mining applications, ranging from
mining social networks and the Web graph to bioinformat-
ics [41]. In this paper we focus on a family of poly-time
solvable formulations, known as the k-clique densest sub-
graph problem (k-Clique-DSP) [57]. When k = 2, the
problem becomes the well-known densest subgraph problem
(DSP) [22, 31, 33, 39]. Our main contribution is a sam-
pling scheme that gives densest subgraph sparsifier, yielding
a randomized algorithm that produces high-quality approx-
imations while providing significant speedups and improved
space complexity. We also extend this family of formulations
to bipartite graphs by introducing the (p, q)-biclique densest
subgraph problem ((p,q)-Biclique-DSP), and devise an ex-
act algorithm that can treat both clique and biclique densi-
ties in a unified way.
As an example of performance, our sparsifying algorithm

extracts the 5-clique densest subgraph –which is a large-near
clique on 62 vertices– from a large collaboration network.
Our algorithm achieves 100% accuracy over five runs, while
achieving an average speedup factor of over 10 000. Specifi-
cally, we reduce the running time from ∼2 107 seconds to an
average running time of 0.15 seconds. We also use our meth-
ods to study how the k-clique densest subgraphs change as a
function of time in time-evolving networks for various small
values of k. We observe significant deviations between the
experimental findings on real-world networks and stochas-
tic Kronecker graphs, a random graph model that mimics
real-world networks in certain aspects.
We believe that our work is a significant advance in rou-

tines with rigorous theoretical guarantees for scalable extrac-
tion of large near-cliques from networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783385.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph Algorithms

General Terms

Theory, Experimentation

Keywords

Dense subgraphs; Near-clique extraction; Graph Mining

1. INTRODUCTION
Graph sparsifiers constitute a major concept in algorith-

mic graph theory. A sparsifier of a graph G is a sparse
graph H that is similar to G in some useful way. For in-
stance, Benczúr and Karger introduced the notion of cut
sparsification to accelerate cut algorithms whose running
time depends on the number of edges [15]. Spielman and
Teng strengthened the notion of a cut sparsifier by intro-
ducing the more general notion of a spectral sparsifier [52].
Other graph sparsifiers include vertex sparsifiers [48], flow
sparsifiers [8, 43], distance sparsifiers [53, 54] and triangle
sparsifiers [58].

In this work we are interested in dense subgraph discovery,
a major research topic in graph mining with a large number
of related applications. To motivate dense subgraph discov-
ery in the context of data mining, consider the following real-
world scenario. Suppose we are given an undirected “who-
calls-whom” graph, where vertices correspond to people and
an edge indicates a phone-call exchange. Finding large near-
cliques in this graph is particularly interesting, since they
tend to be unusual and may be considered as a graph feature
that indicates a group of collaborators/accomplices. More
generally, a wide range of graph applications involve the dis-
covery of large near-cliques [41]. In bioinformatics, dense
subgraphs are used for detecting protein complexes in protein-
protein interaction networks [11] and for finding regulatory
motifs in DNA [30]. They are also used for expert team
formation [19, 55], detecting link spam in Web graphs [32],
graph compression [21], reachability and distance query in-
dexing [36], insightful graph decompositions [51] and mining
micro-blogging streams [9].

Contributions. Among the various existing formulations
for dense subgraph discovery, we focus on the k-clique dens-

k=2 k=3

|S| fe err. sp. |S| fe err. sp.

Web-G 117 0.46 0.3 1.9 61.6 0.85 0.5 16.0

CA-As 582 0.09 1.5 2.5 136.4 0.48 0.6 24.4

P-B 301 0.19 4.1 1.6 105 0.52 3.3 42.8

Table 1: Average output sizes |S|, edge densities

fe(S) = e(S)

(|S|
2
)
, error

(

1 − ρk(S)
ρ∗
k

)

× 100% (err.) and

speedups (sp.) obtained from the Google Web-graph
(Web-G), the astrophysics collaboration graph (CA-
As) and the political blogs network (P-B) for k = 2, 3
over 5 runs using our randomized algorithm. For
details see text of Section 1.

est subgraph problem (k-Clique-DSP), which is solvable in
polynomial time for any constant k ≥ 2 [57]. When k = 2,
the problem is also known as the densest subgraph problem
(DSP) [22, 33, 39]. We formally define these problems in
Section 3.1. Our contributions are summarized as follows.

• We extend this family of problems by introducing the
(p, q)-biclique densest subgraph problem ((p,q)-Biclique-
DSP). This novel formulation corresponds to dense sub-
graph discovery in bipartite graphs.

• We present two new simple exact algorithms that sim-
plify prior work [57]. More importantly, they allow us to
treat clique and biclique densities, and potentially other
induced subgraph densities of interest, in a unified way.

• Our main theoretical contribution is the notion of the
densest subgraph sparsifier. Specifically, we propose a
randomized algorithm which yields high-quality approx-
imations for both the k-Clique-DSP and the (p,q)-
Biclique-DSP while providing significant speedups and
improved space complexity.

• We evaluate our method on a large collection of real-
world networks. We observe a strong empirical perfor-
mance of our framework.

• Using our proposed method, we study how densities
evolve in time evolving graphs. As an example of the
utility of our method, we compare our collection of real-
world networks against stochastic Kronecker graphs [44],
a popular random graph model that mimics real-world
networks in certain respects. We show, perhaps surpris-
ingly, that they differ significantly.

Before continuing, we preview our results in Table 1 for
three real-world networks. A detailed description of the
datasets is shown in Table 2. We run a readily available
highly optimized exact maximum flow implementation of
the push-relabel algorithm due to Goldberg and Tarjan [34]
to measure the optimal k-clique densities ρ∗k for k = 2, 3
and the corresponding running times. We also run our ran-
domized algorithm, which combines our sampling scheme
with the same maximum flow implementation. Over five
runs and for each output set S, we measure its size |S|, its
edge density fe(S) = e(S)

(|S|
2
)
, the error it achieves defined as

(

1 − ρk(S)
ρ∗
k

)

× 100%, and the speedups obtained compared

to the exact algorithm. Here, ρk(S), ρ
∗
k are the output and

the optimal k-clique density respectively. Table 1 reports the
resulting averages. We observe that our algorithm achieves

high-quality approximations while speeding up the compu-
tations. The speedups increase as a function of the k-clique
density. We further observe that the subgraphs obtained for
k = 3 tend to be smaller and closer to cliques compared to
the ones obtained for k = 2.

The qualitative results of Table 1 become further pro-
nounced on large-scale inputs. Specifically, exact algorithms
may require more memory than what is available. Also,
we observe that as the value of k increases the output ap-
proaches the clique structure. Similar observations hold for
the case of bipartite graphs as well.

Notation: Let G(V,E) be an undirected graph, |V | =
n, |E| = m. We define fk(v) to be the number of k-cliques
that vertex v participates in, v ∈ V . Let Ck(G) be the set
of k-cliques in graph G and ck(G) = |Ck(G)|, k = 2, . . . , n.
For instance, f2(v) is the degree of vertex v and c2(G) = m.
Notice that

∑

v∈V (G) fk(v) = kck(G). We omit the index
G when it is obvious to which graph we refer to. Similarly,
when G is bipartite –let V = L ∪ R– we define Cp,q(G)
to be the set of bipartite cliques (bicliques) with p, q ver-
tices on the left,right respectively, cp,q(G) = |Cp,q(G)| and
fp,q(v) the number of (p, q)-bicliques that v participates in
for all v ∈ L ∪ R. For any S ⊆ V we define ck(S) (cp,q(S))
to be the number of k-cliques ((p, q)-bicliques) induced by
S. As a ground-truth measure of how close a set S ⊆ V
(L′ ∪ R′, L′ ⊆ L,R′ ⊆ R) lies to a clique (biclique) we use

f2(S) = c2(S)/
(

|S|
2

)

(f1,1(L
′, R′) =

c1,1
|L′||R′|

). Notice that

f2, f1,1 ∈ [0, 1]. We slightly abuse the notation and use the
usual notation fe to denote either f1,1 or f2 depending on
whether the graph is bipartite or not respectively.

Theoretical Preliminaries. In Section 3 we use the fol-
lowing Chernoff bounds [47].

Theorem 1 (Chernoff bounds). Consider a set of mu-
tually independent binary random variables {X1, . . . , Xt}.
Let X =

∑t
i=1 Xi be the sum of these random variables.

Then we have

Pr[X < (1− ǫ)µ] ≤ e−ǫ2µ/2 when E[X] ≥ µ (I)
and
Pr[X > (1 + ǫ)µ] ≤ e−ǫ2µ/3 when E[X] ≤ µ. (II)

2. RELATED WORK
Dense subgraph discovery is a major problem in both al-

gorithmic graph theory and graph mining applications. It
is not a surprise that numerous formulations and algorithms
have been proposed for this problem [41]. These formula-
tions can be categorized (roughly) into five categories: (a)
NP-hard formulations, e.g., [6, 7, 13, 16, 28, 55, 56]. These
formulations are also typically hard to approximate as well
due to connections with the Maximum Clique problem [35].
(b) Heuristics with no theoretical guarantees, e.g., [23, 60].
The survey by Bomze et al. contains a wide collection of
such heuristics [18]. (c) Brute force techniques may be ap-
plicable when the graph size is small [37]. (d) Enumeration
techniques for finding maximal cliques [20, 26, 46, 59]. (e)
Poly-time solvable formulations that may or not succeed in
finding large-near cliques.

In the following we focus on the latter category and specif-
ically on the most notable family of such formulations, the k-
clique densest subgraph problem (k-Clique-DSP) [57]. The

2-clique densest subgraph problem is widely known as the
densest subgraph problem (DSP) and has a long history since
the early 80s [10, 22, 31, 33, 38, 39]. As Bahmani, Kumar
and Vassilvitskii point out “the densest subgraph problem
lies at the core of large scale data mining” [12]. In the dens-
est subgraph problem (DSP) we wish to compute the set
S ⊆ V which maximizes the average degree [33]. A densest
subgraph can be identified in polynomial time by solving a
maximum flow problem [31, 33]. Charikar [22] proved that
the greedy algorithm proposed by Asashiro et al. [10] pro-
duces a 2-approximation of the densest subgraph in linear
time. The same algorithm is also used to find k-cores [14],
maximal connected subgraphs in which all vertices have de-
gree at least k. The directed version of the problem has also
been studied [22, 39]. We notice that there is no size restric-
tion of the output. When restrictions on the size of S are im-
posed, the problem becomes NP-hard [7, 39]. Finally, Bhat-
tacharya et al. studied the densest subgraph problem when
the graph is dynamic, i.e., it changes over time [17]. Using
sampling and a potential function argument, they were able
to achieve a fully-dynamic (4 + ǫ)-approximation algorithm
which uses sublinear space and poly-logarithmic amortized
time per update, where ǫ > 0.
The main issue with the DSP is that many times it fails to

extract large near-cliques, namely sets of vertices which are
“close” to being cliques modulo “few” edges. The two latter
notions will be quantified throughout this work by record-
ing both the size of the output set S and the edge density
f2(S). Notice that recording only f2(S) is meaningless as
a single edge achieves the maximum possible edge density.
Motivated by this issue, Tsourakakis proposed recently the
the k-Clique-DSP as a way to overcome this issue [57]. The
k-Clique-DSP generalized the DSP by maximizing the av-
erage number of induced k-cliques over all possible subsets
of V , k ≥ 2. Specifically, each S ⊆ V induces a non-negative
number of k-cliques ck(S). The k-Clique-DSP aims to

maximize the average number ck(S)
|S|

. It was shown in [57]

that for k = Θ(1) we can solve the k-Clique-DSP in poly-
nomial time. Experimentally it was shown that for k = 3
the output solutions were approaching the desired type of
large near-cliques for several real-world networks. On the
other hand, the network construction proposed by [57] is
not scalable to large-scale graphs, both in terms of space-
and time-complexity.
An attempt was made in the same paper to improve the

space complexity using submodularity optimization. Specifi-
cally, for k = 3 Tsourakakis proposed an algorithm that uses
linear space and runs in O

(

(n5m1.4081 + n6) log(n)
)

time.
This algorithm still does not scale.

3. PROPOSED METHOD

3.1 Problem Definitions
We start by introducing our objectives, formally defining

the k-clique densest subgraph problem [57], and introducing
a variant for bipartite graphs that we call the (p, q)-clique
densest subgraph problem ((p,q)-Biclique-DSP).

Definition 1 (k-clique density). Let G(V,E) be an undi-
rected graph. For any S ⊆ V we define its k-clique density

ρk(S), k ≥ 2 as ρk(S) = ck(S)
s

, where ck(S) is the number
of k-cliques induced by S and s = |S|.

Definition 2 ((p, q)-biclique density). Let G(L ∪R,E)
be an undirected bipartite graph. For any S ⊆ L ∪R we de-
fine its (p, q)-biclique density ρp,q(S), p, q ≥ 1 as ρp,q(S) =
cp,q(S)

s
, where cp,q(S) is the number of (p, q)-bicliques in-

duced by S and s = |S|.

Now we introduce the decision problems for both the k-clique
density and the (p, q)-biclique density.

Problem 1 (Decision). We distinguish two decision prob-
lems, depending on whether the input graph G is bipartite or
not.
(a) Non-bipartite: Given a graph G(V,E), does there exist

S ⊆ V such that ρk(S) ≥ D?
(b) Bipartite: Given a bipartite graph G(L ∪ R,E), does

there exist L′ ⊆ L,R′ ⊆ R such that ρk(L
′, R′) ≥ D?

Similarly, we introduce the optimization problems for both
types of density.

Problem 2 (Optimization). We distinguish two opti-
mization problems, depending on whether the input graph G
is bipartite or not.
(a) Non-bipartite: Given a non-bipartite G(V,E), find a

subset of vertices S∗ such that ρk(S
∗) ≥ ρk(U) for all U ⊆

V . Let ρ∗k
.
= ρk(S

∗) be the optimal k-clique density. We re-
fer to this problem as the k-clique densest subgraph problem
(k-Clique-DSP).
(b) Bipartite: Given a bipartite graph G(L ∪ R,E), find a

subset of vertices L∗∪R∗ such that ρp,q(L
∗, R∗) ≥ ρk(L

′, R′)
for all L′ ∪ R′ ⊆ V . Let ρ∗p,q

.
= ρk(L

∗, R∗) be the optimal
(p, q)-biclique density. We refer to this problem as the (p, q)-
biclique densest subgraph problem ((p,q)-Biclique-DSP).

A basic but important observation we use in this work is
the following: given an efficient algorithm for Problem 1 ,
we can solve Problem 2 using O(log n) iterations for any
k = Θ(1). These iterations correspond to binary searching
on D for the optimal density ρ∗k, ρ

∗
p,q [39, 33, 57].

3.2 Exact Algorithms
The main result of this Section are two exact algorithms

for Problem 1 which both simplify prior work [57] for
the k-Clique-DSP and more importantly can be easily ex-
tended to maximize biclique densities. We present our first
network construction in the context of Problem 1 (a),
which implies an efficient algorithm for the k-Clique-DSP.
Then, we discuss how it is modified to solve Problem 1 (b).
We briefly present a second construction for completeness;
our time- and space-complexity bounds are asymptotically
the same for both algorithms.

Construction A. We construct a bipartite network HD for
a given threshold parameter D with two special vertices,
the source s and the sink t. The left side of the vertices A
corresponds to the vertex set V and the right side of the
vertices B corresponds to the set of (k− 1)-cliques Ck−1 (in
contrast to the set of k-cliques Ck as in [57]). We add four
types of capacitated arcs.

Type I : We add an arc for each v ∈ A from the source s to
v with capacity equal to fk(v).
Type II: We add an arc of capacity 1 from each v ∈ A to each
(k − 1)-clique c ∈ B iff they form a k-clique.
Type III : We add an arc of infinite capacity from each (k−1)-
clique to each its vertices.
Type IV: We add an arc from each vertex v ∈ A to the sink
t of capacity kD.
The infinite capacity arcs of type III may appear “unnatu-

ral” but they are crucial. The intuition behind them is that
we wish to enforce that if a vertex in B corresponding to a
(k − 1)-clique lies on the source side of the cut then so do
its component vertices in A. The next theorem proves that
the above network construction can reveal the existence or
lack thereof of a subgraph whose k-clique density is greater
or equal than D.

Theorem 2. There exists a polynomial time algorithm
which solves the Decision-k-Clique-DSP for any k = Θ(1)
using the above network construction.

Proof. We first construct the network HD as described
above. We then compute the minimum st-cut (S, T), s ∈
S, t ∈ T . Both steps require polynomial time for k = Θ(1).
Notice that the value of the cut is always upper bounded
by kck since S = {s}, T = V (HD)\S is a valid st-cut. Let
A1 = S ∩A,B1 = S ∩B, and A2 = T ∩A,B2 = T ∩B. We
first note that the set of (k−1)-cliques B1 corresponds to the
set of induced (k − 1)-cliques by A1. This is because edges
of type III only allow the inclusion of cliques with all vertices
in A1, and including such cliques can only lower the weight
of the cut. We consider three type of terms that contribute
the value of the min st-cut. Clearly due to arcs of type I

we pay
∑

v∈A2

fk(v). Due to arcs of type IV we pay kD|A1| in
total. Now we consider the arcs that cross the cut due to
the existence of k-cliques. We define c

(j)
k for j = 1, . . . , k to

be the number of k-cliques in G that have exactly j vertices

in A1. Notice that c
(k)
k = ck(A1). We observe that for each

k-clique ∇ with j vertices in A1, j = 1, . . . , k − 1, we pay in
total j units in the min st-cut due to j arcs of type II from
each v in A1 towards the unique (k− 1)-clique with which it
forms ∇. Therefore, the value of the min st-cut is

val =
∑

v∈A2

fk(v) + kD|A1|+
k−1
∑

j=1

jc
(j)
k .

Notice that
∑k

j=1 jc
(j)
k =

∑

v∈A1

fk(v) = kck −
∑

v∈A2

fk(v)

and therefore we can rewrite the value of the min st-cut as
val = kck + kD|A1| − kck(A1). Hence, there exists U ⊆ V
such that ρk(U) > D iff there exists a minimum st-cut with
value less than kck. Furthermore, when a cut is found, A1

suffices as this subset of vertices.

Time- and space-complexity analysis. To bound the
time and space required of our algorithm, we first notice
that the only (k − 1)-cliques that matter are the ones that
participate in a k-clique. Therefore, |B| = O(kck) as each
k-clique gives rise to k distinct (k − 1)-cliques. Therefore,
|V (HD)| = O(n+kck), |E(HD)| = O(n+

∑

v∈V (G)

fk(v)+(k−

1)kck) = O(n+k2ck). This implies that the total space com-
plexity is O(n+ k2ck). The time complexity depends on the

k-clique listing algorithm and the maximum flow routine we
use. For the former we use the Chiba-Nishizeki algorithm
[25]. This algorithm lists Ck in O(kmα(G)k−2), where α(G)
is the arboricity of the graph. The state-of-the-art strongly
polynomial time algorithm is due to Orlin [49] and runs in
O(nm) time for networks with n vertices and m edges. The
best known weakly polynomial algorithm is due to Lee and
Sidford [42] and runs in Õ

(

m
√
n log2 U

)

where the Õ() no-
tation hides logarithmic factors and U is the maximum ca-
pacity. While the latter is faster as a subroutine for our
max-flow instance, we express the run time in terms of Or-
lin’s algorithm to keep expressions simple. The running time
for any k constant is O(mα(G)k−2 + (n+ ck)

2).
In the light of our experimental findings shown in Table 2,

we observe that for small values of k, which is the range
of values we are interested in this work, ck ≫ n and ck ≫
m. Furthermore, the arboricities of real-world networks are
small, which allows us to list small k-cliques efficiently [27].
Therefore, “in practice” the space complexity is O(ck) and
the running time O(c2k).

Bipartite graphs. The algorithmic scheme described above
adapts to the (p, q)-biclique densest subgraph problem ((p,q)-
Biclique-DSP) as well. We list Cp,q the set of (p, q)-bicliques

using the O(α(G)34α(G)n) algorithm due to Eppstein [26].
The arcs of type I have capacities equal to fp,q(v). For arcs
of type II, we add from each vertex v depending on whether
v ∈ L or v ∈ R an arc of capacity 1 to each (p−1, q)-biclique
or (p, q − 1)-biclique with which it forms a (p, q)-biclique.
Arcs of type III, IV are added in a similar way as in the k-
Clique-DSP. Similarly, as in our analysis above, under the
realistic assumption that for small values of p, q it is true
that cp,q ≫ n and cp,q ≫ m = c1,1 the space complexity is
O(cp,q) and the time complexity is O(c2p,q).

Construction B. For our alternative algorithm, we again
construct a bipartite network HD for a given threshold pa-
rameter D with two special vertices, the source s and the
sink t. The left side of the vertices A corresponds to the
vertex set V whereas the right side of the vertices B corre-
sponds to the k-clique ((p, q)-biclique) set Ck (Cp,q). Now
we add three types of capacitated arcs.

Type I: We add an arc from the source s to each vertex
v ∈ A with capacity D.
Type II: We add k (or p+ q) arcs of capacity +∞ from each
v ∈ A to each e ∈ B iff v is a vertex of e.
Type III: We add an arc from each k-clique ((p, q)− biclique)
e ∈ A to the sink t with capacity 1.

Using a similar type of argument as above, we obtain the
following theorem (details omitted). As already mentioned,
our time- and space-complexity bounds remain the same for
this construction.

Theorem 3. Let (S, T) be the min st-cut in HD. If there
exists a set Q ⊆ V such that ρk(Q) > D (ρp,q(Q) > D), then
S\{s} 6= ∅. If for all sets Q ⊆ V the inequality ρk(Q) ≤ D
(ρp,q(Q) ≤ D) holds, then S = {s}.

3.3 Densest Subgraph Sparsifiers
The cost of the exact algorithm scales with ck, which can

be much larger than the size of the graph for moderate val-
ues of k. We address this issue by sampling the graph to
a smaller one. We show that sampling each k-clique or
(p, q)-biclique independently with appropriate probabilities

preserves the maximum densities. In order to present our
results for both density types in a unified way we consider
an r-uniform hypergraph H(VH, EH) whose vertex set VH is
the same as the vertex set V of the input graph G. We ab-
stract the k-Clique-DSP and (p,q)-Biclique-DSP using
as the set of hyperedges EH either the set Ck of k-cliques
(r = k) or the set Cp,q of (p, q)-bipartite cliques (r = p+ q)
respectively.
The next theorem is the main theoretical result of this Sec-

tion. Without loss of generality, we assume that ρ∗k, ρ
∗
p,q =

Ω(log n) as otherwise the hypergraph is already sparse. We
abuse slightly the notation by using ρ(U) to denote the av-
erage hyper-degree of U ⊆ V (H), i.e., the number of hyper-
edges e(U) induced by U divided by |U |.

Theorem 4. Let ǫ > 0 be an accuracy parameter. Sup-
pose we sample each hyperedge e ∈ EH independently with
probability pD = C logn

D
where D ≥ log n is the density

threshold parameter and C = 6
ǫ2

is a constant depending on
ǫ. Then, the following statements hold simultaneously with
high probability: (i) For all U ⊆ V such that ρ(U) ≥ D,
ρ̃(U) ≥ (1− ǫ)C log n for any ǫ > 0. (ii) For all U ⊆ V such
that ρ(U) < (1− 2ǫ)D, ρ̃(U) < (1− ǫ)C log n for any ǫ > 0.

The high-level structure of our proof is analogous to that
of cut-sparsifiers [15]: we bound the failure probability over
each subset U , and combine them via the union bound. Let
ρ̃(U) be the random variable corresponding to average hyper-
degree of U ⊆ V (H). We need to prove that for all subsets
U ⊆ V (H) with average hyper-degree density ρ(U) < (1 −
2ǫ)D the inequality ρ̃(U) < (1 − ǫ)C log n holds with high
probability. The Chernoff bound as stated in Theorem 1
gives a failure probability 1/poly(n). However, the number
subsets U is 2n, which means a straight-forward invocation
requires a much lower failure probability. We remedy this by
showing that the failure probability decreases exponentially
as a function of the size of the set U , so it is indeed much
smaller for most subsets U .

Proof. (i) Let U ⊆ V such that ρ(U) ≥ D. Let e(U) be
the number of induced hyperedges by U . We define XU to be
the random variable which equals the number of hyperedges
induced by U after sampling each hyperedge independently
with probability pD = C logn

D
. By the linearity of expecta-

tion, we obtain that E [XU] = pe(U) ≥ C|U | log n. Hence,
by applying the Chernoff bound (I), we obtain

Pr [XU < (1− ǫ)C|U | log n] ≤ e−ǫ2C|U| logn/2 = n−3|U|.

We define the following bad events. Let B be the event
“∃U ⊆ V : ρ(U) ≥ D, ρ̃(U) < (1 − ǫ)C log n” and Bx “∃U ⊆
V : |U | = x, ρ(U) ≥ D, ρ̃(U) < (1 − ǫ)C log n” for x ∈
{2, . . . , n}. By conditioning on the size of U and applying
the union bound, we obtain

Pr [B] ≤
n
∑

x=2

(

n

x

)

Pr [Bx] ≤
n
∑

x=2

(en

x

)x
n−3x = o(1).

(ii) This statement is proved in a similar way, namely by
using Chernoff bound (II) and substituting (1 + ǫ) in the
above proof with (1−ǫ). Finally, it is easy to verify that both
statements hold simultaneously with high probability.

Sampling Probability p

0 0.2 0.4 0.6 0.8 1

A
v
er
a
g
e
a
cc
u
ra
cy
;
2
(S
)=
;
$ 2

0

0.5

1

S
p
ee
d
u
p
#

0

20

40

Sampling Probability p

0 0.02 0.04 0.06 0.08 0.1

A
v
er
a
g
e
a
cc
u
ra
cy
;
3
(S
)=
;
$ 3

0.8

0.85

0.9

0.95

1

S
p
ee
d
u
p
#

0

50

100

150

200

k=2 k=3

Sampling Probability p # 10
-3

0 1 2 3

A

v
�

ra
g
e
ac

c

u
ra

c
y

;

4

(S
)=
;
$ 4

0.6

0.8

1

S
p
ee
d
u
p
#

0

2000

4000

Sampling Probability p # 10
-4

0.5 1 1.5 2

A

�
�

ra
g
e
a�

�

u
ra

�
�

;

5

(S
)=
;
$ 5

0.7

0.8

0.9

1

S
p
ee
d
u
p
#

104

1

2

3

4

k=4 k=5

Figure 1: Accuracy ρk(S)/ρ
∗
k and speedup as func-

tions of the sampling probability p for the CA-Astro

collaboration network.

Consequences. Combining Theorem 4 with the exact al-
gorithm from Section 3.2 gives a faster routine. If the graph
contains a subgraph of density D, then Theorem 4 shows
that we never get a subgraph whose density is below 1− 2ǫ
for any ǫ > 0, which implies an (1− 2ǫ)-approximation algo-
rithm. In expectation the speedup -assuming Orlin’s algo-
rithm as the max-flow subroutine and the realistic assump-
tions in the previous section- is O(1

p2
D

). The space reduction

is O(1
pD

).

Sampling with negligible overhead. In our implementa-
tion we generate our sample “on the fly”. Specifically, while
we list the set of cliques or bicliques we decide whether we
keep each one independently. We can avoid tossing a coin
for each k-clique or (p, q)-biclique using a method from [40],
which we describe here for completeness. The number of
unselected samples F between any two samples follows a ge-
ometric distribution, Pr [F = f] = (1 − p)f−1p. A value F
from this distribution can be generated by generating a ran-
dom variable U ∼ [0, 1] and setting F ← ⌈ lnU

1−p
⌉. This allows

us to generate the indices of the samples directly, and reduce
the overhead to sublinear.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup
The experiments were performed on a single machine, with

an Intel Xeon CPU at 2.83 GHz, 6144KB cache size, and
50GB of main memory. We find densest subgraphs on the
samples using binary search and maximum flow computa-
tions as described in [57]. The flow computations were done
using HIPR-3.7 [1], a C++ implementation of the push-
relabel algorithm [34]. It is worth mentioning that the HIPR
maximum flow package is a high-performance implementa-
tion of the Goldberg-Tarjan algorithm [34]. Previous work
[24] as well as our experiments strongly suggest that HIPR
in practice is very efficient.

k

2 3 4 5

E
d

g
e

 d
e

n
s
it
y
 f

e

0

0.1

0.2

0.3

0.4

0.5

0.6

k

2 3 4 5

O
u
tp

u
t
s
iz

e
 |
S

|

0

500

1000

1500

k

2 3 4 5

A

�
�

u
ra

�
�

;

k

(S
)=
;
$ k

0.9

0.925

0.95

0.975

1

k

2 3 4 5

S
p
ee
d
u
p
#

4.67

500

1000

1500

2000

2200

Figure 2: Figure plots (a) the edge density fe (b) the output size |S|, (c) the accuracy ρk(S)/ρ
∗
k and (d) the

time speedup versus k = 2, 3, 4, 5 for five instances of our randomized algorithm on the Epinions graph. It is
worth mentioning that the observed accuracy 95.2% for k = 2 is the smallest among all datasets and k values
we experimented with. Notice how the output set gets denser and smaller as the k value grows.

In order to compare performance in a consistent fashion,
when we give performance results on the the density of ver-
tex subsets obtained by the algorithm on sampled graphs,
we measure the density of this vertex subset in the original
graph.
While parametric maximum flow routines lead to more

streamlined and likely more efficient algorithms, the interac-
tion between sampling and single commodity flow routines
was more direct. Furthermore, the high performance of this
optimized routine was sufficient for our experiments. We
anticipate generalizations based on extending to multicore
settings and incorporating parametric flow routines will lead
to further improvements. However, it is worth emphasizing
that the key step towards making our density optimization
framework scalable is the reduction of the network size on
which maximum flows are computed.
We use publicly available datasets from SNAP [2] and [3].

Additionally, we use two bipartite IMDB author-to-movie
graphs from US IMDB-B and Germany IMDB-G-B respec-
tively. We use both bipartite and non-bipartite graphs, as
shown in Table 2. All graphs were made simple by removing
any self-loops and multiple edges; for each graph we record
the number of vertices n and the number of edges m. We
record for non-bipartite graphs the counts of k-cliques for
k = 3, 4, 5 as well as the required time to list them using
C++ code which is publicly available [4]. We notice that
the our run times are better than existing scalable MapRe-
duce implementations [29]. For bipartite graphs we record
c2,2, c3,3 and the respective run times using our own C++
implementation. We note that both the exact and the ran-
domized algorithm require the subgraph listing procedures.
We measure for each graph the run times of the maximum

flow computation with and without sampling on construc-
tion B from Section 3.2. Their ratio yields the speedup for
our randomized algorithm. We note that running the max-
imum flow subroutine can become a significant challenge.
This is because despite the relatively small size of the input
graph, the number of k-cliques ck is typically very large. A
typical file listing the set of all k-cliques for k = 3, 4, 5 may
span several gigabytes, even if the input graph is on the order
of kilo- or mega-bytes. This creates a two-fold challenge for
the exact algorithm, both in terms of its space usage and its
run time. For each approximate solution S ⊆ V we measure

the accuracy ρk(S)
ρ∗
k

. When the exact algorithm cannot run

due to lack of available memory, we report the density and

the run time for the output set S, rather than the accuracy
and the speedup.

In Section 4.4 we study time-evolving networks. We use
the Patents citation graph and the Autonomous Systems (AS)
datasets. The former spans 37 years, specifically from Jan-
uary 1, 1963 to December 30, 1999, The latter contains
733 daily instances which span an interval of 785 days from
November 8 1997 to January 2 2000. Finally, we generate
synthetic graphs using the stochastic Kronecker model [44]
using as our seed the 2×2 matrix [0.9 0.5; 0.5 0.2]. Finally,
the code is publicly available [5].

4.2 Effect of Sampling
As can be seen in Table 3, for the standard (non-bipartite)

graphs, our algorithm’s performance is quite strong. Speedups
are over a factor of 10 for most of our examples when k = 3,
and increase further for larger k. Similarly, the error is small
for k = 2 and 3, and continues to decrease for larger k. Fur-
ther, performance is generally better on larger graphs. Over-
all these results are consistent with our theoretical analysis,
and demonstrate the scalability that can be achieved via
sparsification.

Figure 1 shows the effect of different sampling probabilities
on the accuracy and speedup of our algorithm. For the CA-

Astro graph and k = 2, 3, 4, 5 we plot the average accuracy
and speedup obtained by sampling with different probabil-
ities p. The x-axis shows the smallest possible range of p
around which we obtain concentration. For each value of p,
we run our randomized algorithm five times and report aver-
ages. The results are well concentrated around the respective
averages. We observe that this range decreases quickly as k
increases. We also notice the significant speedup achieved
while enjoying high accuracies: for k ≥ 3, we obtain at least
50-fold speedups with an accuracy more than 95%, and we
even see a 25000 fold speedup for k = 5.

We observed some additional interesting findings worth
reporting. For k = 3 in the CA-Astro graph we found that
while the densities are well-concentrated around the mean
(standard deviation equals 1.96), the output solutions can
look different. For instance we find that the output for four
out of five runs consists of around 140 vertices with fe =
0.4, while for one the output is a subgraph on 76 vertices
with fe = 0.8. Similarly, when k = 4 we obtain for four
out of five runs the same output, namely a subgraph on 62
vertices with fe = 0.96. For one run we obtain a subgraph
on 139 vertices with fe = 0.43. In addition to the beneficial
effects of our randomized algorithm that we have already

Name n m c3 T c4 T c5 T c2,2 T c3,3 T
� Web-Google 875 713 3 852 985 11 385 529 8.5 32 473 410 16.5 81 928 127 36.4 - - - -
⋆ Epinions 75 877 405 739 1 624 481 1.6 5 803 397 4.8 17 417 432 13.4 - - - -
⊙ CA-Astro 18 772 198 050 1 351 441 0.6 9 580 415 3.94 64 997 961 27.2 - - - -
�Pol-blogs 1 222 16 714 101 043 0.05 422 327 0.2 1 377 655 0.7 - - - -
⊙ Email-all 234 352 383 111 383 406 0.4 1 057 470 0.9 2 672 050 1.9 - - - -

� LastFm-B 17 644 92 366 - - - - - - 18 266 703 27.8 - -
⋆ IMDB-B 241 360 530 494 - - - - - - 691 594 3.6 261 330 3.3
⋆ IMDB-G-B 21 258 42 197 - - - - - - 14 919 0.1 2 288 0.1
⊙ Bookmarks-B 71 090 437 593 - - - - - - 431 996 0.82 14 901 0.53

Table 2: Datasets used in our experiments. The number of vertices n and edges m is recorded for each
graph. For each non-biparite graph we show the counts ck and the respective runtimes to list all the k-cliques,
k = 3, 4, 5. For each bipartite graph (name-B) we show the counts ck,k and the respective runtimes for k = 2, 3.
Respective run times are reported in seconds (T).

G k = 2 k = 3 k = 4 k = 5
No Sampl. Sampl. No Sampl. Sampl. No Sampl. Sampl. No Sampl. Sampl.
T ρ∗2 sp err T ρ∗3 sp err T ρ∗4 sp err T ρ∗5 sp. err.

� 33.9 26.8 1.85 0.3 132.8 394.0 15.97 0.5 460.3 4 136.6 111.3 0.3 - - - -
⋆ 2.37 60.2 4.67 4.3 15.76 860.0 28.67 1.3 85.7 6 920.1 414.7 0.2 37 939.6 410.3 2 190 2.5
⊙ 1.19 32.1 2.25 1.5 12.34 546.9 24.35 0.6 155.1 7 351.8 610.1 0.6 2 107.2 77 288.0 14 604 0
� 0.05 27.9 2.60 4.1 0.64 328.8 42.79 3.3 4.39 208 497 345.7 2.3 24.04 10 352.4 2 201 1.3
⊙ 2.49 36.3 1.87 1.6 3.82 359.1 6.7 2.6 13.5 2 268.5 27.9 1.7 52.4 9 432.9 108.4 0.8

Table 3: Results for non-bipartite graphs. For each k = 2, 3, 4, 5 we report (i) for the exact algorithm the run
time T (seconds) and the optimal ρ∗k density, (ii) for our randomized algorithm the speedup (sp) and the error
(

1− ρk(S)
ρ∗
k

)

× 100% (err). For k = 5 the exact algorithm cannot run on the Web-Google graph. Our randomized

algorithm achieves an average 5-clique density of 32 640 and an average runtime of 2.86 seconds.

G (p, q) = (1, 1) (p, q) = (2, 2) (p, q) = (3, 3)
No Sp. Sp. No Sp. Sp. No Sp. Sp.
T ρ∗1,1 sp err T ρ∗2,2 sp err T ρ∗3,3 sp err

� 0.49 31.8 2.74 2.6 536.8 17 217 3 404 1.3 - - - -
⋆ 4.82 6.49 1.45 0.3 11.24 171.5 8.33 1.7 5.20 494.7 8.93 0.9
⋆ 0.26 3.38 1.24 9 0.13 29.2 3.51 2.8 0.03 28.9 1.39 0
⊙ 0.71 4.16 1.49 1.9 4.34 50.3 3.23 1.3 0.28 180.8 3.04 0

Table 4: Results for bipartite graphs reported in a similar way as in Table 3.

discussed in Section 3.3, an additional effect may be the
ability to sample from the set of subgraphs with near-optimal
density. Understanding how our algorithm might be useful
in obtaining diverse sets such subgraphs is an interesting
future research direction.
Table 4 shows our results for bipartite graphs. We witness

again high quality approximations and speedups which be-
come larger as the respective count grows. Notice that for
the LastFm graph there are no results for p = q = 3. This is
because the listing algorithm takes a long time to list K3,3s.
This is the only instance for which we faced this issue. A
possible way to tackle such issues is to first sample the orig-
inal graph [50]. This is an interesting research extension.

4.3 Finding large-near (bi)cliques
In the previous section we saw that our randomized al-

gorithm enjoys at the same time significant speedups and
high accuracy. Furthermore, we observed that the speedups
are an increasing function of k. In previous works, it was
shown that moving from k = 2 to k = 3 yields significant
benefits [57]. The ability to approximate this density for
even higher values of k allows us to study the effect of in-
creasing k in more detail. In Table 5, we list the size and
edge-density of the set returned when we increase k to 5.
Specifically, we observe that for all datasets the edge den-
sity fe and the size of the output set S follow a different
trend: the former increases and approaches 1 whereas the
latter decreases. Table 6 shows the same output properties
for the bipartite graphs. We observe a similar trend here as
well, with the exception of the Bookmarks bipartite graph

G k = 2 k = 3 k = 4 k = 5
fe |S| fe |S| fe |S| fe |S|

� 0.46 117 0.83 63 0.89 58 0.93 53
⋆ 0.12 1 012 0.26 432 0.40 235 0.50 172
⊙ 0.11 18 686 0.80 76 0.96 62 0.96 62
� 0.19 16 714 0.54 102 0.59 92 0.63 84
⊙ 0.13 553 0.38 167 0.48 122 0.53 104

Table 5: Optimal solutions obtained for varying values of k-clique density k = 2, 3, 4, 5 for non-bipartite graphs.
As k increases, we consistently observe higher edge densities and smaller sizes in the optimum subgraphs.

G (p, q) = (1, 1) (p, q) = (2, 2) (p, q) = (3, 3)
fe |S| fe |S| fe |S|

� 0.05 1 256 0.12 493 - -
⋆ 0.001 9 177 0.06 181 0.30 40
⋆ 0.001 6 437 0.41 18 0.43 17
⊙ 0.41 20 0.41 20 0.41 20

Table 6: Optimal solutions obtained for varying values of (p, q)-biclique density p = q = 1, 2, 3 for bipartite graphs.
As the order of the (p, q)-biclique increases, we observe higher edge densities and smaller sizes in the optimum
subgraphs.

where increasing the order of the biclique does not affect the
output.
Finally, Figure 2 shows for the Epinions graph the edge

densities fe, the output sizes |S|, the accuracies and the
speedups over five runs for k = 2, 3, 4, 5. These data shows
that sampling provides accurate, concentrated estimates. Fur-
thermore, it highlights the significant speedups obtained from
sampling and the fact that the output gets closer to a clique
as k grows.

4.4 Density in Time Evolving Graphs
As Leskovec, Kleinberg and Faloutsos showed in their in-

fluential paper [45], the average degree grows as a function
of time in many real-world networks. But what about the
optimal 2-clique and 3-clique densities? In the following we
study how ρ∗2, ρ

∗
3 evolve over time for the Patents and Au-

tonomous Systems (AS) datasets.
We also generate stochastic Kronecker graphs on 2i ver-

tices for i = 8 up to i = 21. We assume that the first
snapshot index in plots Figure 3(e),(f) corresponds to i = 8,
i.e., the number of vertices increases over time. For each in-
dex we generate 10 instances and report averages. We used a
core-periphery type seed matrix as discussed in Section 4.1.

Patents. We observe in Figure 3(a) that both ρ∗2 and ρ∗3
exhibit an increasing trend. This increasing trend becomes
is mild for ρ∗3 up to 1995, but then it takes off. Looking in
Figure 3(b) makes this finding even more interesting as the
number of edges grows faster than the number of triangles.
This suggests that the number of triangles are localized in
some region of the graph. Indeed, by careful inspection we
find why this is happening. We are seeing an outlier - the
company Allergan, Inc. This company tends to cite all their
previous patents with each new patent and creates a dense
subregion in the graph. After removing Allergan from the
graph, ρ∗3 grows in a more regular fashion.

Autonomous Systems (AS) . Again, we observe in Fig-
ure 3(c) that both ρ∗2 and ρ∗3 exhibit an increasing trend,
although it is slight to negligible for ρ∗3. This stability is de-
spite the significant increase in the number of triangles over
time (see Figure 3(d)). After careful inspection, we find that
the 3-densest subset consists consistently of around 35 ver-
tices, starting from 35 vertices on 11 Aug 1997 and ending
with 34 vertices on 2 Jan 2000, with minor fluctuations in
between. We do not currently have a complete explanation
for the observed sudden dropdowns, but we believe they are
probably due to some failure in the system which reports the
network.

Stochastic Kronecker graphs. In these synthetic graphs we
observe that while ρ∗2 grows, when examining ρ∗3 we find a
triangle densest subgraph contains on average about 2 tri-
angles per vertex. The latter contrasts quantitatively what
we observe in both real datasets, although we do note that
for the Patents dataset, ρ∗2 also grows. Understanding this
gap in behaviors is left as an open question.

5. CONCLUSION

Summary. Finding dense subgraphs in terms of their k-
clique density is a key primitive for network graph analysis.
Our primary contribution is showing that sampling provides
an effective methodology for finding subgraphs with approx-
imately maximal k-clique density. As with many other prob-
lems, sampling leads to substantial computational savings,
allowing us to perform computations on larger graphs, as
well as for higher values of k. We also developed two effi-
cient exact algorithms via different reductions to maximum
flow, and defined and examined bipartite variations of the
problem.

Open Problems. Our work leaves several interesting open
questions. One issue is that often we would like to find not
just a single dense subgraph, but a collection of them; gen-
erally, we might want this collection to be diverse, in that

Year

1975 1980 1985 1990 1995 2000

;
k*

1

100

200

300

400

500

600

700

k=2

k=3

Year

1975 1980 1985 1990 1995 2000

C
o

u
n

t

10
6

0

5

10

15
Nodes

Edges

Triangles

(a) (b)

Snapshot index

0 200 400 600 800

;
k*

0

10

20

30

40

50
k=2

k=3

Snapshot index

0 200 400 600 800

C
o

u
n

t

0

5000

10000

15000
Nodes

Edges

Triangles

(c) (d)

Snapshot index

0 5 10 15

;
k*

0

5

10

15
k=2

k=3

Snapshot index

0 5 10 15

C
o

u
n

t

10
6

0

1

2

3

4

5

6
Nodes

Edges

Triangles

(e) (f)

Figure 3: Optimal k-clique densities ρ∗k for k = 2, 3
and number of nodes, edges and triangles versus
time on the (i) Patents dataset (a),(b) (ii) Autonomous

systems dataset (c),(d) and (iii) stochastic Kronecker
graphs (e),(f).

they are entirely or mostly disjoint [13]. Our sampling ap-
proach appears useful for finding diverse collections of dense
subgraphs; can we formalize this somehow?
We have so far only investigated the performance of sam-

pling with exact densest subgraph algorithms. In principle,
it can also be used to speed up heuristic approaches, such as
the peeling algorithm [17, 22]. We plan to study empirically
their interaction in future work. Our analysis of this sam-
pling framework is also conducted for general graphs; it can
likely be improved for specific families of graphs.
Finally, with our new techniques we have initiated a study

of how k-clique densest subgraphs evolve over time, and ob-
served differences between real-world data and a well-known
stochastic model. We plan to test larger collections of real-
word data and stochastic models to understand better both
the behavior of the evolution of real-world dense subgraphs
over time and possible gaps in what the stochastic models
are capturing.

Acknowledgments

Michael Mitzenmacher was supported in part by NSF grants
IIS-0964473, CNS-1228598, and CCF-1320231. Jakub Pa-
chocki and Shen Chen Xu were supported in part by NSF
grant CCF-1065106.

6. REFERENCES
[1] http://www.avglab.com/soft/hipr.tar.

[2] http://snap.stanford.edu/data/index.html.

[3] http://grouplens.org/datasets.

[4] http://research.nii.ac.jp/~uno/codes.htm.

[5] Large Near-Clique Detection.
http://tinyurl.com/o6y33g9.

[6] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive
quasi-clique detection. In LATIN, 2002.

[7] R. Andersen and K. Chellapilla. Finding dense
subgraphs with size bounds. In WAW, 2009.

[8] A. Andoni, A. Gupta, and R. Krauthgamer. Towards
(1+ ε)-approximate flow sparsifiers. In SODA, pages
279–293. SIAM, 2014.

[9] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification. In
VLDB, 5(6), pages 574–585, Feb. 2012.

[10] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama.
Greedily finding a dense subgraph. In Journal of
Algorithms, 34(2), 2000.

[11] G. D. Bader and C. W. Hogue. An automated method
for finding molecular complexes in large protein
interaction networks. In BMC bioinformatics, 2003.

[12] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. In VLDB ,
5(5):454–465, 2012.

[13] O. D. Balalau, F. Bonchi, T. Chan, F. Gullo, and
M. Sozio. Finding subgraphs with maximum total
density and limited overlap. In WSDM, pages 379–388.
ACM, 2015.

[14] V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. In Arxiv,
arXiv.cs/0310049, 2003.

[15] A. A. Benczúr and D. R. Karger. Approximating s-t

minimum cuts in Õ(n2) time. In STOC, pages 47–55,
1996.

[16] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and
A. Vijayaraghavan. Detecting high log-densities: an
o(n1/4) approximation for densest k-subgraph. In
STOC, pages 201–210, 2010.

[17] S. Bhattacharya, M. Henzinger, D. Nanongkai, and
C. E. Tsourakakis. Space-and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In STOC, 2015 (to appear).

[18] I. M. Bomze, M. Budinich, P. M. Pardalos, and
M. Pelillo. The maximum clique problem. In Handbook
of combinatorial optimization, pages 1–74, 1999.

[19] F. Bonchi, F. Gullo, A. Kaltenbrunner, and
Y. Volkovich. Core decomposition of uncertain graphs.
In KDD, pages 1316–1325, 2014.

[20] C. Bron and J. Kerbosch. Algorithm 457: finding all
cliques of an undirected graph. In Communications of
the ACM, 16(9):575–577, 1973.

[21] G. Buehrer and K. Chellapilla. A scalable pattern
mining approach to web graph compression with
communities. In WSDM, pages 95–106, 2008.

[22] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In APPROX,
pages 84–95, 2000.

http://www.avglab.com/soft/hipr.tar
http://snap.stanford.edu/data/index.html
 http://grouplens.org/datasets
http://research.nii.ac.jp/~uno/codes.htm
http://tinyurl.com/o6y33g9

[23] J. Chen, Y. Saad. Dense Subgraph Extraction with
Application to Community Detection. In TKDE, vol.
24, pages 1216–1230, 2012.

[24] B. V. Cherkassky and A. V. Goldberg. On
implementing the push-relabel method for the
maximum flow problem. In Algorithmica, 19(4), pages
390–410, 1997.

[25] N. Chiba and T. Nishizeki. Arboricity and subgraph
listing algorithms. In SIAM Journal on Computing,
14(1), pages 210–223, 1985.

[26] D. Eppstein. Arboricity and bipartite subgraph listing
algorithms. In Information Processing Letters, 51(4),
pages 207–211, 1994.

[27] D. Eppstein, M. Löffler, and D. Strash. Listing all
maximal cliques in sparse graphs in near-optimal time.
In ISAAC, 2010.

[28] U. Feige, G. Kortsarz, and D. Peleg. The dense
k-subgraph problem. In Algorithmica, 29(3), 2001.

[29] I. Finocchi, M. Finocchi, and E. G. Fusco. Counting
small cliques in mapreduce. In ArXiv arXiv:1403.0734,
2014.

[30] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. Motifcut: regulatory motifs finding with
maximum density subgraphs. In Bioinformatics, vol.
22(14), pages 150–157, 2006.

[31] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications.
In Journal of Computing, 18(1), 1989.

[32] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In VLDB,
pages 721–732, 2005.

[33] A. V. Goldberg. Finding a maximum density
subgraph. Tech. report, UC Berkeley, 1984.

[34] A. V. Goldberg and R. E. Tarjan. A new approach to
the maximum-flow problem. In Journal of the ACM
(JACM), 35(4), pages 921–940, 1988.

[35] J. H̊astad. Clique is hard to approximate within n1−ǫ.
In Acta Mathematica, 182(1), 1999.

[36] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In SIGMOD, 2009.

[37] D. S. Johnson and M. A. Trick. Cliques, coloring, and
satisfiability: second DIMACS implementation
challenge American Mathematical Soc., 1996.

[38] R. Kannan and V. Vinay. Analyzing the structure of
large graphs, manuscript, 1999.

[39] S. Khuller and B. Saha. On finding dense subgraphs.
In ICALP, 2009.

[40] D. E. Knuth. Seminumerical algorithms. 2007.

[41] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data, pages 303–336,
Springer, 2010.

[42] Y. T. Lee and A. Sidford. Path finding methods for
linear programming: Solving linear programs in õ
(vrank) iterations and faster algorithms for maximum
flow. In FOCS, pages 424–433, 2014.

[43] F. T. Leighton and A. Moitra. Extensions and limits
to vertex sparsification. In STOC, pages 47–56, 2010.

[44] J. Leskovec, D. Chakrabarti, J. Kleinberg,
C. Faloutsos, and Z. Ghahramani. Kronecker graphs:
An approach to modeling networks. In The Journal of
Machine Learning Research, vol. 11, pages 985–1042,
2010.

[45] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD , pages 177–187, 2005.

[46] K. Makino and T. Uno. New algorithms for
enumerating all maximal cliques. In SWAT pages
260–272, 2004.

[47] M. Mitzenmacher and E. Upfal. Probability and
computing: Randomized algorithms and probabilistic
analysis. Cambridge University Press, 2005.

[48] A. Moitra. Approximation algorithms for
multicommodity-type problems with guarantees
independent of the graph size. In FOCS, pages 3–12,
2009.

[49] J. B. Orlin. A faster strongly polynomial time
algorithm for submodular function minimization. In
Mathematical Programming, vol. 118(2), pages
237–251, 2009.

[50] R. Pagh and C. E. Tsourakakis. Colorful triangle
counting and a mapreduce implementation. In
Information Processing Letters, vol. 112(7), pages
277–281, 2012.

[51] A. E. Sariyuce, C. Seshadhri, A. Pinar, and U. V.
Catalyurek. Finding the hierarchy of dense subgraphs
using nucleus decompositions. In WWW, 2015.

[52] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In STOC, pages 81–90,
2004.

[53] M. Thorup and U. Zwick. Approximate distance
oracles. In Journal of the ACM (JACM), vol. 52(1),
pages 1–24, 2005.

[54] M. Thorup and U. Zwick. Spanners and emulators
with sublinear distance errors. In SODA, pages
802–809, 2006.

[55] C.E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. In KDD, pages 104–112, 2013.

[56] C. E. Tsourakakis. Mathematical and Algorithmic
Analysis of Network and Biological Data. PhD thesis,
Carnegie Mellon University, 2013.

[57] C. E. Tsourakakis. The k-clique densest subgraph
problem. In WWW, pages 1122–1132, 2015.

[58] C. E. Tsourakakis, M. N. Kolountzakis, and G. L.
Miller. Triangle sparsifiers. In J. Graph Algorithms
Appl., 15(6), pages 703–726, 2011.

[59] T. Uno. An efficient algorithm for solving pseudo
clique enumeration problem. In Algorithmica, 56(1),
2010.

[60] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung. On
triangulation-based dense neighborhood graph
discovery. In VLDB, 4(2), pages 58–68, 2010.

	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Problem Definitions
	3.2 Exact Algorithms
	3.3 Densest Subgraph Sparsifiers

	4 Experimental results
	4.1 Experimental Setup
	4.2 Effect of Sampling
	4.3 Finding large-near (bi)cliques
	4.4 Density in Time Evolving Graphs

	5 Conclusion
	6 References

