
Scalable Learning for Object Detection with GPU Hardware

Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y. Ng

Abstract— We consider the problem of robotic object detec-
tion of such objects as mugs, cups, and staplers in indoor envi-
ronments. While object detection has made significant progress
in recent years, many current approaches involve extremely
complex algorithms, and are prohibitively slow when applied to
large scale robotic settings. In this paper, we describe an object
detection system that is designed to scale gracefully to large
data sets and leverages upward trends in computational power
(as exemplified by Graphics Processing Unit (GPU) technology)
and memory. We show that our GPU-based detector is up to
90 times faster than a well-optimized software version and can
be easily trained on millions of examples. Using inexpensive
off-the-shelf hardware, it can recognize multiple object types
reliably in just a few seconds per frame.

I. INTRODUCTION

Achieving high accuracy in object detection tasks for a

moderate number of objects is a major challenge in robotic

perception. Our interest in object detection stems from our

experience with practical applications on the Stanford AI

Robot (STAIR), such as taking inventory of a few types of

objects in an office environment [1]. While object detection

using cameras and other sensors is well studied, it remains

notoriously difficult to perform reliably in practice and

often involves carefully crafted but fragile models applied

to features that are computationally expensive. There are

many trade-offs to be made between computational speed and

accuracy–yet we want both for a truly deployable system. In

this paper, we describe an approach to object detection that

achieves speed through the use of highly parallel, scalable

algorithms, and achieves accuracy by leveraging large data

sets.

Ideally, Moore’s Law [2] would mitigate the computational

expenses of robot perception on a yearly basis. Unfortu-

nately, single-CPU clock speeds appear to be stagnating.

Thus, we cannot rely on clock speed alone to achieve high

speed in object detection tasks. Moore’s Law continues to

hold, but with increased computational power coming in the

form of highly parallel architectures. These include multi-

core CPUs and, most spectacularly, inexpensive Graphics

Processing Units (GPUs) with literally hundreds of cores and

enormous amounts of memory on a single card. In addition

to growth in computational power we also have high growth

of network bandwidth and non-volatile storage capacity that

make it feasible to store and transfer extraordinary amounts

of data. In order to develop a system that runs faster as newer

Adam Coates, Quoc Le and Andrew Y. Ng are with
the Computer Science Department at Stanford University.
{acoates,quocle,ang}@cs.stanford.edu

Paul Baumstarck is with the Electrical Engineering Department at Stan-
ford University. pbaumstarck@stanford.edu

hardware becomes available, we must choose algorithms that

leverage this exponential growth in resources. We believe that

the most successful methods in object detection (or computer

vision in general, perhaps) may well turn out to be those that

scale most easily with these trends, as they will be able to

tackle larger and larger problems where other approaches

will be impractical.1

We not only desire speed but also accuracy from our

detector. A key hurdle to developing an accurate detector

is the following: training examples are few while oppor-

tunities for mistakes in the real world are many. Cluttered

background imagery, for example, provides endless varieties

of shapes and shades that can easily be mistaken for a target

object if that particular background pattern has not been seen

before. Our previous system has often suffered from high

false positive rates due to this phenomenon. One solution, of

course, is to train on very large numbers of negative examples

to reduce the probability of seeing a background pattern that

has never been seen before. For this approach to work in

practice we must build a system that naturally scales to large

data sets. The choice of algorithms in this paper is motivated

chiefly by their ability to learn from extremely large training

sets.

There has also been significant interest in using large

data sets in other domains. In image retrieval [4], [5], [6],

many systems perform surprisingly well using relatively

unsophisticated algorithms. Similar observations have been

made for natural language applications [7]. This suggests that

we can, in fact, use relatively simple classification algorithms

in our detector. Hence, learning from large amounts of data

serves the dual purposes of improving classification accuracy

while also allowing us to use simpler algorithms.

In summary, our approach to object detection is motivated

by the following: (i) Algorithms that scale well with the

exponential growth in (parallel) processing power will be

able tackle complex problems more effectively (and will

improve with time), and (ii) learning from large training sets

offers us the opportunity to use simpler algorithms that are

more easily implemented, scale better, and simultaneously

achieve higher accuracy.

In Section II, we begin by describing the observations and

prior work that motivate our design choices. In Section III

we then present our object detection approach and describe

how our classifiers are trained. Section IV describes our

high-speed implementation of the feature computations and

1The graphics community, for instance, realized some time ago that
“brute-force image-space” methods like the Z-buffer were more scalable and
effective than the asymptotically efficient hierarchical methods that predated
them [3].

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4287

detection algorithm for test time evaluation using graphics

hardware. In Section V we conclude with experimental

results that demonstrate the accuracy and speed of our system

on realistic scenes.

II. DESIGN MOTIVATION

The object detection system we present is designed, fore-

most, for scalability with computing resources and train-

ing set sizes. Specifically, we will leverage the power of

GPUs and many-core CPUs to accelerate the computational

elements of our system (especially to reduce testing time),

and we will utilize large numbers of training examples to

achieve good test performance. Our focus on these features

is motivated by several prior successes in the computer vision

literature.

One well-known result is the work of Viola and Jones [8].

Their use of fast Haar-like features, coupled with a “cas-

cading” set of classifiers for culling out negative examples,

demonstrated state-of-the-art performance in face detection

at full-motion frame rates. The Haar features chosen in their

work are extremely fast and, by virtue of their speed, can be

computed in great variety. Surprisingly, however, the Haar

features have not seen as much success in detecting arbitrary

objects. While fast, the Haar features have limited expres-

siveness and, it seems, are particularly suited to detecting

certain facial features, while failing when applied to more

general-purpose detection. In our work, we will use features

that, in a sense, are natural generalizations of Haar features.

We use features inspired by the work of Torralba et al. [9],

and described in [1]. These features are based on dictionaries

of image “patches” extracted from positive examples of the

target object. They are more expressive than Haar features

and at the same time more specialized to the target object

class. Moreover, we will see that they are particularly suited

to implementation on GPUs.

Harnessing the growth in the computational power of

graphics chips has already been explored by computer vision

researchers, particularly for computing image features. For

instance, the venerable Canny Edge Detector has been imple-

mented on GPUs using the nVidia CUDA SDK [10], as well

as Lowe’s SIFT descriptor [11].2 In our work we implement

the patch-based features in [9] using GPU hardware, achiev-

ing a substantial performance gain. These features are ideally

suited to GPU implementation and, thus, turn out to be

extremely fast. Indeed, we believe that scalability and speed

will allow these features to perform as well as more complex

ones, since we can compute them in greater numbers and

variety.

The second key feature of our object detection strategy is

the reliance on large data sets. Though object detection in full

generality remains unsolved, the benefit of large training sets

has already been demonstrated. For instance, the contestants

in the PASCAL Visual Object Classes Challenge [12] are

asked, in one competition, to locate very generic object

2The CUDA SDK allows programmers to run generic C/C++-style code
in parallel directly on the GPU cores. We will use the same SDK in our
own implementation in Section IV.

classes such as “chairs” or “cars” in a variety of scenes using

a fixed training set. The difficulty of this task is considerable,

and contestants typically achieve average precision of less

than 60%. With small training sets, algorithms for these

tasks must rely heavily on prior knowledge provided in the

form of hand-coded features and carefully tuned parameters.

This also suggests that the results will be brittle since the

classifiers must rely on assumptions formed from very little

data.

Rather than focusing on improved features and algorithms,

we instead focus on learning from large datasets, and use

off-the-shelf features and algorithms. Some recent work also

lends credence to the hypothesis that learning from large

amounts of data may allow better generalization and higher

accuracy than algorithmic ingenuity alone. The effectiveness

of large training sets for image retrieval, for instance, has

been observed by several researchers. Though this domain

is concerned with somewhat different desiderata than object

detection, results using large data sets are promising. In

the work of Nister and Stewenius [6], they observe that

the use of large data sets allows them to ignore geometric

information that had previously been necessary to achieve

good performance. Similar interest in large training sets has

been shown in object recognition research for training sets

with hundreds of thousands of examples [13]. In our work,

we will develop a system that scales to tens of millions of

examples.

III. DETECTOR LEARNING

We now describe our object detection approach and its

implementation for our robot. Specifically, we will detail:

(i) briefly, the form of the images input to our system, (ii)

the implementation of our patch-based features, and (iii) our

boosting-based classifier used for detection.

A. Problem Setup

Consistent with our motivation to learn from large quan-

tities of data, we also want to learn from rich data whenever

it is available. Our robot platform is equipped with a typical

640x480 resolution camera that acquires 8-bit gray-scale

intensity images. In addition, however, it also uses the “active

stereo” system described in [1] to acquire depth images of the

scene. Prior work in object detection has demonstrated that

depth data, in addition to 2D imagery, improves recognition

performance [14], [1]. We also compute the (smoothed)

gradient of the gray-scale image intensity and store its

magnitude as a new 640x480 image channel. In this image,

edges appear as bright pixels and regions of uniform color

appear dark. Figure 1 shows a typical 3-channel input to our

detection system.

Given an input image, our object detection system builds

on the standard “sliding window” approach [15], [16], [17].

We will construct a binary classifier that, for each sub-

window of an image, determines whether the target object

is contained (tightly) within the window. Given such a

classifier, we then evaluate it independently on a series of

windows of varying sizes spaced at uniform intervals over

4288

(a) (b) (c)

Fig. 1. A typical set of channels from an image captured by our robot’s sensors: (a) gray-scale intensity, (b) intensity gradient, (c) depth.

Fig. 2. Examples of patches extracted from a labeled coffee mug. The red
rectangles with each patch represent the approximate spatial location of the
patch relative to the object center.

the image to detect objects at all locations and scales. While

this approach is somewhat brute-force, it is also simple and

easy to parallelize on the GPU (as we will do in Section IV),

and is also well-suited to our choices of features.

B. Features

Our classification algorithm will operate on a set of

features computed from each 3-channel image. We use the

patch-based features of [9]. First, a dictionary is constructed

from small image fragments. An image fragment g is

randomly extracted from image channels in hand-labeled

instances of the target object. Each patch is annotated with

a rectangle R specifying its approximate location relative to

the object center, and the index c of the image channel from

which it was extracted. Specifically, a patch is defined as a

triple 〈g,R, c〉. Figure 2 shows some examples of patches

extracted from examples of coffee mugs along with their

associated rectangles.

Given an input image, a patch feature value is computed

by first computing the (normalized) cross-correlation of the

dictionary patch with the corresponding image channel, and

then taking the maximum response over the patch rectangle.

More formally, the patch response for a patch 〈g,R, c〉 is

max
i,j∈R

(Ic ⊗ g)i,j (1)

where ⊗ denotes normalized cross-correlation, and Ic is

channel c of the input image I.

We have chosen these features because they are general-

purpose yet sufficiently specialized that we expect them

to work well with a wide range of objects. Since the

feature definitions are acquired from data, we can create new

features from new data whenever the necessity arises. Thus,

as computational resources become greater and training set

sizes increase, we can also expand our patch dictionary to

more accurately capture the object class structure.

Importantly, these features can also be computed ef-

ficiently on GPUs and mesh naturally with the sliding-

window approach to object detection. Once we’ve computed

the normalized cross-correlation response for the entire test

image, the max in Equation (1) can be computed for each

sub-window independently in parallel. Both the normalized

cross-correlation (convolution) and the maximization can be

implemented efficiently on GPU hardware.

C. Classifier

Our classification algorithm is also motivated by the same

considerations as our features: we use an algorithm that

scales well (both in training and testing) when presented with

increasing quantities of data, and can cleanly take advantage

of the processing power of GPUs at test time, when speed

is the most important.

In our work, we use Gentle-Boost [18] with decision trees.

Our choice is motivated by a number of observations, not

the least of which is that previous work has demonstrated

the effectiveness of this particular combination of algorithms

in practice [8], [1], [9]. The Gentle-Boost algorithm works

by training a set of “weak” classifiers (or “weak-learners”)

so that the sum of the weak-classifier outputs is a bet-

ter predictor than the weak-classifiers themselves. Boosting

algorithms, including Gentle-Boost, use this capability to

generate ensembles of classifiers that are capable of repre-

senting extremely complex decision functions. By increasing

the number of weak-learners trained by the Gentle-Boost

algorithm, we can increase the complexity of the decision

function. Thus, when learning from a large data set with

complex structure the complexity of our classifier can easily

be expanded to meet the challenge.

4289

Our system uses decision trees as weak-learners. This is

motivated partly by their compact structure, but also by their

(very) sparse dependence on the elements of the feature

vector, which has the benefit of reducing the number of

features used by the final classifier that is run at test time.

It is also possible to train the decision trees in a distributed

fashion, which will allow us to train rapidly on very large

training sets.

D. Classifier Training

To train our boosted decision trees, we chose to pursue a

distributed, parallel approach. There are two main benefits

of distributed training: (i) the use of multi-core systems to

process the training data repeatedly in parallel to reduce

training time and (ii) the ability to leverage the abundance of

RAM on multiple machines to hold massive training sets in

main memory (thus avoiding expensive disk and network

transfers). The Gentle-Boost algorithm is inexpensive by

itself and can easily be run on a standard desktop PC

for enormous data sets.3 Thus, the only step that must be

distributed is the training of the weak-learners (decision trees,

in our case), which we now describe.

Our decision trees are trained similarly to the well-known

CART algorithm [19] to minimize the squared error in label

predictions (using Gini coefficients as the split criterion). To

make our training algorithm distributed, however, we cannot

simply compute the Gini coefficient from the entire data

set on a single machine. Instead, we use an approximation

that has seen success in the data-mining community: we

accumulate the feature values for each training example into

a histogram, which serves as a sufficient statistic for that

feature [20]. Each histogram has 256 buckets (we use fixed

bounds, since our features are all normalized to the range

[-1,+1]) and thus they are easy to store or transmit, and

we only need two histograms per feature (for each machine

participating in the training).

In more detail, during training, each worker machine is

assigned a subset of the training data and loads those training

examples into local memory. Each training example x(i)

is associated with a weight w(i) provided by the Gentle-

Boost algorithm. The worker then accumulates a weighted

histogram for each feature. Thus, bucket B of the histogram

for feature j on worker k is computed as:

Hk
j [B] =

∑

i:x
(i)
j

∈B

w(i).

This is done separately for the positively and negatively

labeled training examples, resulting in two histograms for

each feature. The resulting histograms for each worker are

sent to a master machine where they are summed together

to yield two histograms for each feature:

Hj [B] =
∑

k

Hk
j [B].

3The only significant computation that is necessary is the update of the
weights after each round. This cost scales only linearly with the data set
size and is, by a constant factor, quite small.

(Again, one histogram for positive and another for negative

examples. Note that these histograms are the same as would

be computed on a single machine operating on the entire

training set.) The resulting histograms allow us to compute

the Gini coefficients for the distribution of feature values and,

thus, choose the best split for the node. It is easy to generalize

this procedure to training full trees. The only approximation

in this procedure is the quantization of the histograms—the

algorithm is otherwise identical to running boosting on a

single machine and will compute an (approximately) optimal

solution.

We have available to us a 32 processor-core cluster (8

machines), with 2GB of RAM available per core (8GB per

machine). Each training example is stored on our distributed

file system with the features values quantized to 8-bit inte-

gers.4 Thus, using the procedure above, we can accommodate

over 60GB of training data or, assuming a 1000-dimensional

feature vector, more than 60 million training examples. In ad-

dition, we have achieved over 25-fold speedups over single-

machine training by running on 32 cores simultaneously.5

IV. REAL-TIME TESTING

To achieve real-time detection rates we implemented the

major test-time components of our system using nVidia’s

CUDA GPU development library. The computational ad-

vantages of GPUs over CPUs are formidable, and seem

unlikely to dissipate. Unlike CPUs, which devote a large

number of transistors to large, deep cache systems, GPU

architectures have large numbers of computational units with

small, shallow caches. GPU pipelines are also optimized for

parallel operations using vector processing units, which are

naturally suited to computing a single function in parallel

over several pieces of data at once. Thus, while GPUs and

CPUs may have similar numbers of transistors (with that

number growing according to Moore’s Law), GPUs allocate

these transistors in a way that trades generality for increased

computational throughput [21].

In order to achieve high performance using GPUs, we must

use algorithms that appeal to the strengths of these architec-

tures while avoiding their shortcomings. We must maximize

parallelism (since GPUs are optimized for such operations),

data locality (since the GPU caches are small), and, it turns

out, minimize memory transfers to and from the device. In

general, GPUs are best suited to “data parallel” operations

where a single piece of code is executed many times in

parallel across multiple pieces of data. The main components

of our object detection system share this characteristic: Con-

volutions can be viewed as many pixel-wise multiplications

executed on overlapping sub-windows, and our classifier can

be run in parallel over independent sub-windows of the test

image. We now discuss the implementation of our feature

computations and classifiers on the GPU in more detail.

4The loss of precision in storing our features this way is irrelevant since
the histograms used during training have only 256 bins.

5At the time our experiments were performed, we did not have a GPU-
equipped computing cluster, and thus CPU-based training on the cluster was
faster than using a single machine with a GPU.

4290

The main computational cost of our detection algorithm

is performing the correlations of the test image with the 2D

image fragments from the patch dictionary, as described in

Section III-B. The patches come in sizes of 4-by-4 pixels up

to 16-by-16 pixels. Each patch is correlated with the entire

scene, yielding a response image containing (normalized)

cross-correlation values for every possible position of the

patch in the scene. This “embarrassingly parallel” operation

is naturally implemented through the CUDA library. Both the

patch and a small portion of the test image can be loaded

into the cache of the GPU processors. Once in the cache, the

correlation operation can be performed very quickly (using

brute-force multiplication and summation) due to the highly

data-parallel nature of the computation. After computing

the normalized cross-correlation values, it is similarly easy

to compute the necessary maximization of Equation 1 in

parallel for every window on which the classifier will be

evaluated.

Implementing the feature computations alone leads to a

noticeable speed up. Unfortunately, this also reveals a critical

bottleneck: memory bandwidth. Our source images are 640

by 480 pixels and hence occupy 1.2MB of memory when

converted to single-precision floating-point. Meanwhile, a

typical CUDA-capable GPU has host-to-device memory

bandwidth of roughly a few megabytes per millisecond. Thus

the cost of simply copying a full response image back to the

host after performing a correlation on the device can severely

discount the raw GPU speedup, since we must copy a full

response image (itself over 1MB in size) for each feature.

In order to achieve higher speeds, naive implementation of

expensive computations on the GPU is not enough: one must

also minimize the transfer of data back and forth from the

host to the device.

One solution to the memory bandwidth problem is to

avoid transferring the response images and features back to

the CPU by simply evaluating the decision trees natively

on the GPU. This solution is a natural one since we can

evaluate the classifier over each sliding window in parallel,

as well as evaluate each decision tree of our boosted classifier

in parallel for each window. The only necessary memory

transfer back from the GPU is then the classifier result for

each window instead of an entire feature vector, directly

translating to an immense bandwidth savings. Thus the

choice of a light-weight and parallelizable classifier that can

be stored and evaluated easily on the GPU is key to our

object detector implementation. This modification yielded a

2x to 3x speedup over simply performing the correlations on

the GPU.

In total, offloading our entire detector computation to

the GPU has reduced the testing time of our classifiers

dramatically. Our software reference implementation (which

uses the well-optimized OpenCV library to perform the patch

convolutions) requires roughly 5 minutes on a 2.66GHz Xeon

workstation to generate all detections for a single object

class on a single image. In sharp contrast, our CUDA-

based implementation executing on an nVidia 8800GTX can

be executed comfortably in under 10 seconds. As seen in

8800 GTX 9800 GTX
0

20

40

60

80

100

120

GPU

S
p

e
e

d
u

p
 o

v
e

r
C

P
U

Mug

Cup

Banana

Stapler

Average

Fig. 3. The factor speedup of our GPU detector implementation relative
to our software reference implementation for two nVidia GPUs (from
succeeding product families).

Figure 3, this yielded a relative speed boost of nearly 40

times relative to our (software) reference implementation.

To demonstrate the value of leveraging GPU hardware, we

also show the relative speed boost using a newer nVidia

9800GTX. This GPU is only a single generation beyond the

8800GTX (being released approximately 6 months apart), yet

we already see that our detector’s running time now improves

over the software implementation by more than 90 times on

average.

The primary explanation for the large speedup is that our

dictionary patches are relatively small, allowing the GPU

implementation to operate almost entirely on cache memory.

In hindsight, the key benefit of the GPU implementation is

not simply that GPUs have greater computational throughput

(which, at present, is roughly 10x greater overall than high-

end CPUs [21]). Instead, we find that because the GPU

exposes control of the cache directly to the user, it admits

highly optimized implementations of our feature computa-

tions that would be much more difficult to implement on

CPUs. We believe that focusing on cache-friendly algorithms

is thus an important direction for future research, since

this is critical for high-speed operation on both GPU and

CPU architectures. Indeed, our experience with memory

bandwidth limitations on the GPU highlights this conclusion:

algorithms that minimize memory access will accelerate

profoundly with improvements in processing power.

V. EXPERIMENTS

We demonstrate our entire detection system on imagery of

office scenes collected by our robot. As described previously,

these images include intensity, gradient, and depth data.

4291

TABLE I
DICTIONARY SIZES AND RUN TIME FOR SINGLE IMAGE

Object Dict. Size GPU Time CPU Time

Mug 590 2.96 s 286 s
Cup 540 3.13 s 320 s
Stapler 472 3.90 s 372 s
Banana 827 4.16 s 302 s

Fig. 4. A typical scene where all objects have been detected and classified
correctly by our classifier (best viewed in color).

Our approach is demonstrated with four different objects:

coffee mugs, disposable paper coffee cups, office staplers,

and bananas. The first two of these objects have many similar

features, making them easy to confuse with one another,

while the other two objects are elongated and appear different

from various orientations.

For training we acquired 150 images (including depth

data) of office scenes consisting of the objects we want to

identify. Each image typically contains between one and four

instances of an object, each of which is labeled by hand

using a bounding rectangle. For each object, this yields a

training set consisting of several hundred positive examples.

We also train on a background negative set consisting of

positive examples from all other object classes as well as a

large fraction of all of the examples considered by the sliding

window algorithm that do not overlap positively labeled ob-

jects. This procedure yields between 5000 and 7000 negative

examples for each training image, yielding nearly a million

negative training examples for each classifier.

Our decision trees are trained as described in Section III-

C. Training for a single object class takes approximately 2

hours for 200 rounds of boosting (using 32 cores on our

computing cluster).

We extract 1200 random patches from each set of positives

to build a dictionary for the corresponding objects. After

training, the dictionary is pruned to retain only features

actually used by the decision tree algorithm. Table I reports

our average detection times for each object per image along

with the final dictionary sizes (GPU time is measured on the

9800 GTX).

Fig. 5. A scene where some objects are missed.

TABLE II
OBJECT DETECTION ACCURACY

Object Count Hit False Pos. Precision Recall

Mug 67 63 1 0.984 0.940
Cup 43 41 0 1 0.953
Stapler 55 30 0 1 0.54
Banana 21 5 0 1 0.23

To test the accuracy of our detector, we ran it on 20 unseen

images from newly imaged office scenes containing instances

of the 4 object classes. Examples of two typical scenes are

shown in Figure 4 and Figure 5. In Figure 4, our detector

correctly identifies all 9 target objects in the scene. Figure 5,

however, shows a case where the detector does not do as

well. Since our classifiers have been trained to be extremely

conservative as a result of the large negative training set,

some objects are ignored (incorrectly) as background clutter.

Table II shows our results for all of the objects using a

classification threshold that was fixed a priori to probability

0.5. Notice that the most difficult objects are those that

exhibit large amounts of variation over different views. This

is because the fixed feature patches used by our detectors are

not naturally suited to this scenario. In principle, this could

be solved by training separate classifiers for each view of

the object. Nonetheless, in cases where views of the object

do not differ too much (like mugs and cups) the classifier

performs extremely well.

VI. CONCLUSION

In this paper, we have demonstrated that we can perform

reliable object detection in well under 5 seconds using

consumer-grade graphics hardware with a straight-forward

learning algorithm that is easy to implement and train. More

importantly, however, we have presented a system that is

scalable at every point of its execution. From distributed

training to the fully GPU-based detection algorithm itself,

every step of the pipeline benefits substantially from the

predictable upward trends in computing power and data set

sizes.

4292

VII. ACKNOWLEDGMENTS

The authors thank Olga Russakovsky for helpful discus-

sions. Adam Coates is supported by a Stanford Graduate

Fellowship. Support from the Office of Naval Research under

MURI N000140710747 is gratefully acknowledged.

REFERENCES

[1] M. Quigley, S. Batra, S. Gould, E. Klingbeil, Q. V. Le, A. Wellman,
and A. Y. Ng, “High-accuracy 3d sensing for mobile manipulation:
Improving object detection and door opening,” in IEEE International

Conference on Robotics and Automation, 2009.

[2] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, April 1965.

[3] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A character-
ization of ten hidden-surface algorithms,” Computing Surveys, vol. 6,
no. 1, March 1974.

[4] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in CVPR 2008, June 2008.

[5] A. Torralba, R. Fergus, and W. Freeman, “80 million tiny images:
a large dataset for non-parametric object and scene recognition,” in
PAMI, 2007.

[6] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in CVPR, 2006, pp. 2161–2168.

[7] M. Banko and E. Brill, “Scaling to very very large corpora for natural
language disambiguation,” in 39th Annual Meeting on Association for

Computational Linguistics, 2001.

[8] P. Viola and M. Jones, “Robust real-time object detection,” IJCV, 2001.

[9] A. Torralba, K. Murphy, and W. Freeman, “Sharing visual features for
multiclass and multiview object detection,” PAMI, 2007.

[10] Y. Luo and R. Duraiswami, “Canny edge detection on nvidia cuda,”
Computer Vision and Pattern Recognition Workshops, pp. 1–8, June
2008.

[11] S. Heymann, K. Mller, A. Smolic, B. Frhlich, and T. Wiegand, “Sift
implementation and optimization for general-purpose gpu,” in 15th

International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision, 2007.
[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2008 (VOC2008) Results,” http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.

[13] Y. Lecun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in CVPR,
2004.

[14] S. Gould, P. Baumstarck, M. Quigley, A. Y. Ng, and D. Koller,
“Integrating visual and range data for robotic object detection,” in
ECCV Workshop on Multi-camera and Multi-modal Sensor Fusion

Algorithms and Applications (M2SFA2), 2008.
[15] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in CVPR, 2005.
[16] H. A. Rowley, S. Baluja, and T. Kanade, “Human face detection in

visual scenes,” in Advances in Neural Information Processing Systems,
1995.

[17] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” IEEE Trans. Pattern Analysis

and Machine Intelligence, 2008.
[18] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

a statistical view of boosting,” Dept. of Statistics, Stanford University,
Tech. Rep., 1998.

[19] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.
[20] K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: A decision tree

classifier for large datasets,” in 4th Intl. Conf. on Knowledge Discovery

and Data Mining, 1998.
[21] nVidia CUDA Programming Guide, NVIDIA Corporation, 2701 San

Tomas Expressway, Santa Clara, CA 95050. [Online]. Available:
http://developer.download.nvidia.com/

4293

