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Figure 1: A locally injective, energy minimizing parameterization of a mesh with over 25 million triangles computed with our algorithm in 80
minutes. The algorithm starts from a highly distorted locally injective initialization and in only 40 iterations, each requiring to solve a sparse
linear system, it converges to a highly isometric map that is guaranteed to be free of inverted elements.

Abstract

We present a scalable approach for the optimization of flip-
preventing energies in the general context of simplicial mappings,
and specifically for mesh parameterization. Our iterative minimiza-
tion is based on the observation that many distortion energies can
be optimized indirectly by minimizing a simpler proxy energy and
compensating for the difference with a reweighting scheme. Our
algorithm is simple to implement and scales to datasets with millions
of faces. We demonstrate our approach for the computation of maps
that minimize a conformal or isometric distortion energy, both in
two and three dimensions. In addition to mesh parameterization, we
show that our algorithm can be applied to mesh deformation and
mesh quality improvement.

1 Introduction

Mappings are an essential tool in computer graphics and geometry
processing. One of the most basic uses, and the main focus of this
paper, is mesh parameterization. Many practical applications such
as texture mapping, remeshing, shape correspondence and attribute
transfer rely on the computation of a low-distortion parameteriza-
tion. The problem has been extensively studied, and a plethora of
algorithms have been devised. Linear methods were proposed first,
providing efficient ways to compute parameterizations, but only able
to ensure injectivity of the map when the mesh boundary is fixed a
priori, which induces a high distortion. As more powerful processors
became available, nonlinear optimization became tractable, allowing
to compute free boundary, injective or bijective maps of a very high
quality. Still, current nonlinear approaches typically require long
computation times and do not scale well to large datasets, such as
detailed scanned surfaces.

In this paper, we propose a simple algorithm that combines the ben-
efits of the two approaches: it minimizes state-of-the-art nonlinear
energies and processes meshes with millions of triangles within min-
utes. In particular, we focus on minimizing flip preventing energies
that infinitely penalize element inversion. On medium-sized meshes,
our algorithm is two orders of magnitude faster than competing
methods, while being able to minimize many different energies with
minimal code changes.

The key idea of our method is to replace the nonlinear energy with
a much simpler proxy energy that is easy to minimize with a lo-
cal/global approach. The difference between the proxy and the
original energy is then accounted for in a reweighting scheme that
converges to a stationary point of the original energy. Our algorithm
scales well to large datasets even using a single core, and it can take
advantage of advancements in parallel solution of linear systems,
scaling almost linearly as more cores are used. While we are unable
to provide a strict bound on the convergence rate, we experimen-
tally found that the number of iterations required by our method is
related to the geometric surface complexity and is not affected by
the tessellation density; since each iteration only requires solving a
sparse linear system, massive datasets can be parameterized quickly
(Figure 1).

2 Previous work

Mappings are one the most researched subjects in computer graphics,
and specifically the problem of generating locally injective 2D and
3D mappings has garnered a lot of attention in the past decades. In
this section, we mention only the most closely related work on the
topic of large scale mesh parameterization and we refer to [Floater
and Hormann 2005; Sheffer et al. 2006] for an in-depth survey on
mesh parameterization techniques.

Linear methods. Linear methods compute a mesh parameteri-
zation by solving a linear system, where each mesh vertex is rep-
resented as a weighted average of its neighbors. They have been
proposed to parameterize topological disk patches [Tutte 1963] or
topological spheres [Aigerman and Lipman 2015]. For topologi-
cal disks, linear methods can be guaranteed to produce bijective
parameterizations if the patch boundary is fixed to a convex shape
and the weights are positive [Floater 2003]. Free-boundary methods
exist that minimize a measure of conformal distortion [Desbrun
et al. 2002; Lévy et al. 2002; Zayer et al. 2007; Ben-Chen et al.
2008; Mullen et al. 2008], but they are not guaranteed to produce a
bijective map.

Nonlinear methods. Many nonlinear deformation energies have
been proposed in the literature for both conformal and isometric



distortion; they are typically minimized using standard optimization
methods, such as Newton [Sheffer and de Sturler 2001; Chao et al.
2010], quasi-Newton [Smith and Schaefer 2015] and second-order
cone programming [Aigerman et al. 2014]. To simplify implementa-
tion and reduce memory usage, several works [Labsik et al. 2000;
Hormann and Greiner 2000; Schreiner et al. 2004] opt for a block
descent optimization, where in each iteration only a single vertex is
free to move. Similarly, [Levi and Zorin 2014; Fu et al. 2015] opti-
mize an independent subset of vertices in parallel. These methods do
not scale to large datasets since the number of iterations they need
grows quickly with the size of the mesh. In contrast, we observe
that the number of iterations required by our method is related to the
geometric complexity and not the dataset size: even datasets with
millions of elements can be parameterized within a few iterations.

The local/global minimization of isometric distortion [Sorkine and
Alexa 2007; Liu et al. 2008] iteratively alternates between a local
step and a global step. In the local step, each element is individually
perfectly mapped (without any distortion), and in the global step,
a linear system is solved to stitch all elements back together. This
process recovers from bad initialization very quickly, but it is slow to
converge to a local minimum when it is close to it. The decoupling
of a local condition from a global “stitching” has been successfully
used in other parameterization algorithms [Weber et al. 2012] and
to enforce complex constraints [Bouaziz et al. 2012; Poranne et al.
2013]. Our method uses the local/global paradigm and enriches it
with a reweighting scheme to efficiently minimize flip preventing
energies.

Non-flipping invariant. A recent series of works [Schüller et al.
2013; Fu et al. 2015; Smith and Schaefer 2015] have proposed
parameterization energies with a term that goes to infinity when
an element inverts. These flip preventing energies are minimized
starting from a flipless initialization (e.g., [Tutte 1963]) using line
search to ensure that they never leave the feasible region. This
approach is guaranteed to create a locally injective map given a
feasible starting point, but the energies are numerically difficult to
optimize, leading to high running times. Our algorithm is specifically
designed to optimize these energies and it quickly recovers from the
highly distorted starting point.

Bounding, projections and stiffening. Another approach to the
creation of locally injective maps is based on directly bounding the
distortion. Similar to the above, first, a parameterization algorithm
is used to generate an initial locally injective map. The energy of the
map is then optimized while adhering to a specified distortion bound
[Lipman 2012; Kovalsky et al. 2014; Chen and Weber 2015]. A
similar, more recent approach projects any map, possibly with flips,
to the closest map that has no flips [Aigerman and Lipman 2013;
Kovalsky et al. 2015]. The major problem with these approaches
is that the elements in the solution they generate have suboptimal
distortion. In fact, their distortion tends to be the highest possible
without violating the bound (Figure 2). Additionally, a valid solution
is not guaranteed to be found using the projection approach, and
it often takes thousands of iterations to look for one [Myles et al.
2014].

Another strategy is the so-called stiffening, where the idea is to try
and coerce inverted elements to reorient correctly. Examples include
[Irving et al. 2004], where an added force acts on inverted elements
in a simulation, and [Martin et al. 2011], where a volume term is
added to the energy of each triangle. Another method related to
ours is found in [Bommes et al. 2009]: there, the inverted elements
are reweighted in the original parameterization energy, as opposed
to minimizing the original energy in the space of locally injective
maps.

[Lipman 2012] AMIPS [Fu et al.] AMIPS (Ours)

Figure 2: The bounded ARAP energy (left, result taken from [Fu
et al. 2015]) pushes the triangles to the distortion bound, while a
direct minimization of the AMIPS energy [Fu et al. 2015] evenly
distributes the distortion over the surface (middle). Our approach
can also optimize the AMIPS energy (right), further reducing the
energy to a local minimum. This model has 43K faces and required
less than 20 iterations to converge. Bottom row: the distortion
magnitude is visualized by the saturation of the red color.

Large scale. Computing locally injective maps with a large num-
ber of elements is a challenging numerical problem that has been
tackled in surprisingly few research papers in graphics. Apart from
linear methods that scale well to large problems since they only
involve the solution of a linear system, the only other works we are
aware of are ABF++ [Sheffer et al. 2005] and [Kovalsky et al. 2015].
The former uses a multiresolution hierarchy to make the problem
tractable at the expense of a higher distortion compared to the origi-
nal ABF; it can optimize only for angle preservation. Kovalsky et
al. [2015] proposes a projection method, and is thus not minimizing
map distortion (Figure 2), making it impractical for some graphics
applications. Our method is the first algorithm that can robustly and
efficiently compute locally injective maps that contain millions of
elements and minimize a conformal or isometric distortion measure.

Other applications. In addition to parameterization, our algo-
rithm can be used to deform 3D objects and scale to massive 3D
datasets. We can adapt our method to minimize mesh improvement
energies, as suggested in [Lipman 2012; Aigerman and Lipman
2013; Fu et al. 2015]. “Seamless” rigid and conformal parameteriza-
tions (i.e., parameterizations whose gradients match across seams,
see [Myles and Zorin 2012; Myles et al. 2014; Diamanti et al. 2015])
are also supported, although we cannot enforce the integer transla-
tions that are necessary for remeshing applications [Bommes et al.
2012].

3 Algorithm

Denote the input triangle or tetrahedral mesh by M = (V, F ), where
V is the set of vertices and F is the set of elements. A common
way to define a distortion energy of a mapping is via a function of
the Jacobians of the parameterization, measuring a distance of each
Jacobian to its closest rotation. We denote the Jacobian of element
f ∈ F by Jf . Then the energy we wish to minimize is

min
x

∑

f∈F

Af D(Jf (x)), (1)

where D(·) is the distortion measure, x ∈ R|V |×d contains the
mapping coordinates of the vertices (d = 2, 3) and Af is the area



(or volume) of element f . A popular choice is the As-Rigid-As-
Possible (ARAP) measure [Liu et al. 2008], which is defined by

D(Jf (x)) = ‖Jf (x)−R(Jf (x))‖2F (2)

where R(Jf (x)) is the closest rotation to Jf (x), and ‖·‖F denotes
the Frobenius norm. Note that the Jacobians are linear functions of
x.

Local/Global optimization. Liu et al. [2008] proposed to mini-
mize the ARAP energy using a local/global algorithm, an iterative
process that alternates between two steps. The local step finds
at each iteration k the closest rotation to each Jacobian, that is
R

k
f := R(Jk−1

f (x)) = UV
⊤, where J

k−1
f (x) = USV

⊤ is the

signed SVD of Jk−1
f (x). The global step solves (1) with the dis-

tortion D defined as in (2), assuming the rotations are fixed to R
k
f ,

namely,

x
k+1 = argmin

x

∑

f∈F

Af‖Jf (x)−R
k
f‖2F . (3)

This is a simple quadratic energy, which can be minimized by solving
a linear system (see [Liu et al. 2008]).

Flip preventing energies. The ARAP energy above does not suf-
ficiently penalize inverted elements, hence flips can occur frequently
[Civit-Flores and Susin 2014; Martinez Esturo et al. 2014]. However,
the local/global algorithm, which has been designed to minimize
that energy, has the interesting property of making very large steps
when it is far from the solution (e.g., when the parametrization is
initialized with Tutte’s parameterization, see Figure 4). A natural
question would be: can we adapt this algorithm to other distortion
energies? Given the shortcomings of ARAP, one would be interested
in quickly minimizing flip preventing energies. One such example
is the symmetric Dirichlet energy [Schreiner et al. 2004; Smith and

Schaefer 2015], defined by ‖Jf (x)‖2F + ‖J−1
f (x)‖2F , and other

examples we experimented with are summarized in Table. 1. In the
following we show how to adapt the local/global algorithm to these
energy.

Stiffening and reweighting. A simple approach is to enhance the
global step with weights that make the quadratic energy resemble
the one we wish to minimize. This idea is closely related to the
stiffening often used in global parametrization [Bommes et al. 2009],
where (3) is modified to include scalar per-face weights wf , i.e.,

x
k+1 = argmin

x

∑

f∈F

Af w
k
f‖Jf (x)−R

k
f‖2F . (4)

Intuitively, the idea is to put more weight in the energy on elements
with higher distortion, in the hope that they will take precedence over
other triangles, and in the next iteration their distortion will diminish.
The challenge is to iteratively update the weights to guarantee the
the algorithm minimizes the desired energy. One possible approach
would be to use the update rule of Iteratively Reweighted Least
Squares [Pighin and Lewis 2007; Yoshizawa et al. 2004], where the
weights are updated to locally match the proxy and target energy:

wk+1
f =

D(Jk
f (x))

‖Jk
f (x)−Rk

f‖2F
. (5)

However, our experiments show that this update rule is not sufficient
to guarantee convergence, and in fact often fails to find a descent
direction .

ARAP
Symmetric

Dirichlet

Figure 3: The ARAP energy (left) introduces 6K inverted triangles in
the parametrization (highlighted in magenta) which result in highly
distorted regions around the neck and the wing of the Gargoyle.
Our algorithm avoids the problem by minimizing a flip preventing
symmetric Dirichlet energy (right). This model has 99K faces and
took 20 iterations and 3 seconds to optimize.

Matrix weights. We propose a slightly different algorithm: rather
than reweighting the energy to match the value of the distortion
measure, we reweight it so that its gradients match. This is a simple
modification, which is guaranteed to find a descent direction, as
we show in the next section. However, matching gradients is not
possible with just a scalar weight, due to the lack of degrees of
freedom, but we can achieve it using a d× d matrix of weights Wk

f ,
and by transforming (4) into

min
x

∑

f∈F

Af

∥

∥

∥W
k
f (Jf (x)−R

k
f )
∥

∥

∥

2

F
. (6)

This equation can be rewritten in matrix form and linearly solved, as
detailed in Appendix A.

We wish to find W
k
f such that the gradient of each term in (6) is

equal to the gradient of D(Jf (x)) , that is, Wk
f are the solutions to

∇Jf

∥

∥

∥W
k
f (Jf −R

k
f )
∥

∥

∥

2

F
= ∇JfD(Jf ), when Jf = J

k
f . (7)

For brevity, we neglect the indices and simply write (7) as

∇J ‖W(J−R)‖2F = ∇JD(J). Assuming J−R is invertible, we
can manipulate this equation and find that W must satisfy,

W
⊤
W +WW

⊤= ∇JD(J)(J−R)−1. (8)

If (J−R)−1 does not exist, we can take the limit of the right-hand
side above or a pseudo-inverse instead. The choice does not have
an impact on the algorithm, and we defer this discussion to the next
section. Since the left-hand side is semi-positive definite, a solution
to (8) exists if and only if the right hand-side is semi-positive definite.
In that case, we take the solution

W =

(

1

2
∇JD(J)(J−R)−1

)1/2

, (9)

where the square root is a matrix principal root. We discuss the
existence of the root in Section 4.

Line search. Flip preventing energies are undefined when the
mapping contains an inverted element. A crucial part of our algo-
rithm is to make sure that flips are never introduced in any step. We
achieve that by using a simple backtracking line search (see [No-
cedal and Wright 2006], Section 3.1). Specifically, assume x

k is the
current iterate, and d

k is the search direction such that xk+d
k is the

solution to (6). Then our next iterate is xk+1 = x
k + αdk, where
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Figure 4: Minimization of the symmetric Dirichlet energy on the Octopus model. Note how quickly the boundary of the UV map recovers from
the distorted starting point. This model has 299K faces and took 20 iteration and 5.6 seconds to optimize.

we wish to find α such that xk+1 is inversion free. Our strategy is
to start with α = min {1, αmax}, where αmax is the maximal step
size before inversion, computed using the technique from [Smith
and Schaefer 2015](Section 3.3); then we divide α by 2 until we
find a solution for which the original energy (1) is lower.

The requirement in (7) essentially ensures that each step will reduce
the energy. Since we require (7) to hold, the same is true for the
gradients w.r.t. x, that is,

∇x

∥

∥

∥W
k
f (J

k
f (x)−R

k)
∥

∥

∥

2

F
= ∇xD(Jk

f (x)). (10)

Hence, it also holds that for the sum over the elements,

∇x

∑

f∈F

∥

∥

∥W
k
f (Jf (x)−R

k)
∥

∥

∥

2

F
= ∇x

∑

f∈F

D(Jk
f (x)). (11)

The energy in (6) is convex, and so the solution to (6) results in a
descent direction (i.e. the dot product between that direction and the
gradient is negative). Since the gradients match, this is also a descent
direction for the original energy in (1). Therefore, our algorithm
is guaranteed to reduce the energy at each iteration, just like the
original ARAP method [Sorkine and Alexa 2007; Liu et al. 2008].

We observed that convergence in our case is similar to ARAP, that
is, the algorithm progresses very rapidly at the beginning but then
becomes much slower close to a minimum (see Fig. 7 for comparison
with other methods). In Fig. 13 we show an extreme case where
our method can be complemented by Newton’s method to speed up
convergence in the final iterations.

Reweighted local/global algorithm. Enriching the local/global
algorithm with the matrix reweighting scheme and line search leads
to an algorithm that is simple to implement, easily parallelizable,
scales to datasets with millions of elements, supports many distortion
energies and can be used to compute 2D or 3D locally injective maps.
Algorithm 1 provides an overview of the method.

4 Distortion energies

In the previous section we describe the algorithm for isometric distor-
tions in general terms. In this section, we proceed with the treatment
of specific isometric distortion measures, as well as generalizing to
other types of distortions. Additionally, we fill the gap that remains
from the previous section, that is, ensuring that Eq. (8) is indeed
valid. We start with the latter, as it naturally leads to the derivation
of the relevant formulas.

SVD viewpoint. A common property of many useful distortion
measures is that they are rotation invariant:

Definition 4.1. A distortion measure D(J) is rotation invariant if

D(J) = D(UJV
⊤)

for any rotation matrices U and V.

Algorithm 1: Reweighted local/global

Input:
A mesh M with a set of vertices V and elements F

Output:

A set of mapping coordinates x ∈ R|V |×d minimizing (1)

Initialization:
x
0 = Tutte(V, F )

Optimization:
while has not converged do

Compute closest rotation R
k
f for each Jacobian J

k
f .

Update the weights Wk
f for each face using (9) or (14).

Solve (6) to generate a descent direction d
k.

Find αmax, as in [Smith and Schaefer 2015](Section 3.3).
Perform backtracking line search with step size
α = min {1, αmax} .

x
k+1 = x

k + αd
k

Return:
Mapping coordinates x = x

k

From now on, we assume that D(J) is rotation invariant. All
rotation invariant distortion measures can be written solely in terms
of the singular values of J, as shown in the following lemma.

Lemma 4.2. Let J = USV
⊤ be the Singular Value Decomposition

of J. Then,

D(J) = D(S), (12)

∇JD(J) = U∇SD(S)V⊤. (13)

Proof. See Appedix B.1.

For example, the ARAP distortion measure, which is rotation invari-
ant, can be written as

‖J−R‖2F = ‖S− I‖2F =

d
∑

i=1

(σi − 1)2,

where σi are the singular values of J.

Using Lemma 4.2, we can write (9) in SVD form,

W = U

(

1

2
∇SD(S)(S− I)−1

)1/2

U
⊤= USWU

⊤. (14)

Since the matrix expression inside the square root is diagonal, it is
trivial to take the root. From (14) we can clearly see that

∇SD(S)(S− I) � 0 (15)

must hold, and in the following we show that this is always true for
isometric distortion measures.
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Figure 5: Minimization of the symmetric Dirichlet energy on the Buddha model. Despite the massive size of the dataset 470K faces), our
algorithm produces an optimized locally injective parametrization in 14 seconds.

Isometric energies. We applied our algorithm to a variety of iso-
metric distortion measures. In our context, a true isometric distortion
measure is one that is rotationally invariant, minimal only for ro-
tations, and is separable in terms of the singular values. The last
condition means that

D(S) = D(σ1, . . . , σd) =
∑

i

fi(σi). (16)

This condition makes it is easy to show that Eq. (15) holds. We show
it below for a specific case, and prove it in more general terms later.

In this work we experimented with the Hencky (true) strain
∥

∥log J⊤J
∥

∥

2

F
[Paillé et al. 2013] , a symmetric version of the Dirich-

let energy ‖J‖2F + ‖J−1‖2F [Schreiner et al. 2004; Smith and
Schaefer 2015], and an exponential symmetric Dirichlet energy

exp(s(‖J‖2F + ‖J−1‖2F )), the latter inspired by [Fu et al. 2015].
All of these satisfy the condition for a true isometric distortion.

We demonstrate the solution to (14) using the symmetric Dirichlet
energy. The same steps can be used for any of the above isometric
distortion measures, which we report in Table 1. The Symmetric
Dirichlet energy in terms of the singular values is

D(J) = ‖J‖2F + ‖J−1‖2F =

d
∑

i=1

(σ2
i + σ−2

i ).

Hence, (∇SD(S))i = 2(σi − σ−3
i ), where we introduce the nota-

tion (S)i to refer to the i’th diagonal entry of S. Thus,

(SW)i =

√

σi − σ−3
i

σi − 1
(17)

when σi 6= 1, and (SW)i = 4, which is the limit, otherwise. The
expression under the root is always nonnegative, so we can always
find weights to match the gradients.

General distortion measures. Up to this point, we only consid-
ered the case of isometric distortion measures. Essentially, the only
difference between the isometric case and the general case is in the
local step in (6), that is, the choice of Rk

f . While in the isometric
case the choice is clear, namely the closest rotation, the general case
is more ambiguous, since it depends on the energy. This issue has
been treated for a certain range of distortion measures in [Liu et al.
2008]. In this section we describe an approach for fixing the local
step for conformal and more general distortion measures.

Because we no longer take the local step to be the closest rotation, it
is appropriate to give it a new letter, L. Since we still assume that

the distortion measure is rotation invariant, we should always choose
L to have the same singular vectors as J.

The modification of the local step changes the formula for W in Eq.
(14), replacing the identity with the matrix SL, and the requirement
(15) becomes

∇SD(S)(S− SL) � 0. (18)

The condition on the local step is now clear: The sign of each
element of S−SL must match the sign of each element of ∇SD(S).
The computation in the local step can be easily adapted on a case-
by-case basis.

General construction. We discuss a general construction for
a wide range of distortion measures. Recall the definition of a
separably convex function:

Definition 4.3. A function f(x1, ..., xn) is separably
(strictly) convex, if for each i the single variable function
f(x1,..,xi−1,xi+1,.,xn)(xi), which is constructed by freezing all of
the other variables, is (strictly) convex.

In the case where D(S) is separably strictly convex, we propose
to set SL such that each entry of SL minimizes the corresponding
entry of D(S), assuming the other singular values are fixed. In other
words, we set each (SL)i to be the solution of

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0 (19)

We show in Appendix B.2 that this choice always satisfies Eq. (18).
The reasoning behind this choice is to always push each singular
value towards its closest minimum. It is also a direct generalization

Symmetric Dirichlet Hencky strain Exponential Dirichlet

Figure 6: Minimizing isometric distortions for the Bear model. Our
approach is general and supports many distortion energies such as
Symmetric Dirichlet (left), Hencky strain (middle) and Exponential
Dirichlet (right). This model has 296K faces and required an average
of 9 seconds to optimize.



of the isometric case shown above, as the choice of the closest
rotation exactly satisfies (19).

As an example, we derive the expressions for the AMIPS energy
E⋆

iso from [Fu et al. 2015] in Table 1. This energy is defined using
the distortion measure

D
⋆
iso(J) = exp (s ·Diso(J))

where

Diso(J) =
1

2

[(

tr(J⊤J)

det(J)

)

+
1

2
(det(J) + det(J−1))

]

.

A parameterization result with this energy can be found in Fig. 2.

10.5

4

17

23.5

30

125 250 375 500

12.5 25 37.5 50

10.5

4

17

23.5

30

Ours L-BFGS

Newton

Time (Seconds)

Iterations

Figure 7: Our iterations are slower than those of L-BFGS (since
we have to solve a sparse linear system), but they overall progress
much faster (top). Our iterations are also making considerably
more progress than Newton iterations when we are far from the
minimum (bottom). This model has 386K faces, and in both cases
we minimize the symmetric Dirichlet energy. See Figure 13 for
another comparison with Newton’s method.

Conformal distortions. The approach above is not necessarily
optimal in terms of convergence speed, and in some cases may
even be counterintuitive. Indeed, for conformal distortions, it may
produce a local step that is not a similarity. As an example for a
different approach targeted at conformal distortion, we consider a
specific conformal distortion measure proposed in [Fu et al. 2015].
This measure is defined for dimension d by:

D(J) =
tr(J⊤J)

det(J)2/d
. (20)

Again, in this case we replace the closest rotation in the local step
by a similarity matrix, L = σ̄UV⊤, where σ̄ is a scalar.

For the 2D case, we show in Appendix B.3 that by setting σ̄ to be
any value such that σ1 > σ̄ > σ2, condition (18) is satisfied. Specif-
ically, we choose the geometric average σ̄ =

√
σ1σ2. An example

can be seen in Fig. 8. The 3D case is a bit more involved; We show

in Appendix B.3 that we can choose σ̄ = ((σ2
1 + σ3

3)/2)
1/2. We

also minimize the exponent of this conformal energy, which shares
the same local step for 3D in Fig. 11. We summarize all derivations
for the local step in Appendix B.3.

Initialization Iteration 10 Iteration 20

Figure 8: Minimization of a conformal energy using our method.
Note that visually the difference between 10 and 20 iterations is
already quite small, and after 20 becomes negligible.

5 Results

We ran all our experiments on a 12-core Xeon clocked at 2.7 GHz,
using the PARDISO solver [Schenk et al. 2007] for the linear sys-
tem solve. The sparsity pattern of the linear system in every itera-
tion never changes, allowing us to reuse the symbolic factorization
between iterations. We provide a reference implementation for
parametrization using the symmetric Dirichlet energy in supplemen-
tal material (see also GitHub repository in [Rabinovich 2016]).

Our method requires a feasible, i.e., inversion free starting point:
for 2D, in all examples, unless stated otherwise, we use Tutte’s
parametrization with cotangent weights; if they produce a flipped
element, we resort to uniform weights. For the mesh improvement
and deformation examples in 3D, the rest pose is used as the starting
point. We report the running times in all figures. To make them
comparable between parametrization and deformation applications,
we exclude the time required to construct the starting point, which
is required only for the former.

To avoid prescribing boundary conditions (necessary since the ener-
gies are rotation invariant) we regularize the linear system from (6)

by adding a proximal term λ
∥

∥x− x
k
∥

∥

2
with λ = 10−4.

5.1 Single-patch 2D parametrization

Single-patch 2D parametrization is ubiquitously used in modeling
software to generate UV maps given a predefined set of cuts. Our ap-
proach improves over existing algorithms providing superior quality
and higher efficiency, in addition to supporting extremely detailed
models with millions of elements. We show the quality of our results
on several meshes with different energies throughout the paper. We
highlight that our method is not tied to a specific parametrization
energy, and can minimize all rotation invariant energies, provided
that the local step satisfies (18).

Scalability. The efficiency of our method stems from the simplic-
ity of its implementation (it relies on solving a linear system at every
iteration) and due to the experimental observation that the number
of iterations is related with the geometric complexity of the model,
instead of depending on the tessellation density. We show experi-
mental evidence supporting this claim in Figure 9, where we plot the



Name D(J) D(σ) (∇SD(S))i (SL)i

Symmetric Dirichlet ‖J‖2F + ‖J−1‖2F
∑n

i=1(σ
2
i + σ−2

i ) 2(σi − σ−3
i ) 1

Exponential
Symmetric

Dirichlet exp(s · (‖J‖2F + ‖J−1‖2F )) exp(s ·∑n
i=1(σ

2
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∥

∥log J⊤J
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∥
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+
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)
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√
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i
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2
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2
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i+2−2σ2
i )
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5
3

√

σ2
1
+σ2

3

2

Table 1: Energies we used in this paper, expressed also in terms of the singular values, with their derivatives and our choice for the local step.

energy on a progressive input mesh (Lucy) sampled between 0.6 and
6 million faces. Note that the majority of the competing methods
become impractically slow for models larger than 100K vertices. An
exception is [Kovalsky et al. 2015], which is targeted at a specific
definition of conformal distortion. However, this method can only
find the closest feasible mesh to a given initial guess (without mini-
mizing a distortion energy) and it often fails to find a solution in our
experiments.
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100

75

50

25

0

The running time of our algorithm
is dominated by the linear sys-
tem solve. The PARDISO solver
has good scaling properties and
can parallelize the computation
on multiple cores, although the
complexity is still super-linear, as
shown in the inset, where we plot a data point for each result shown
in the paper.

“Seamless” constraints. In Figure 10, we show an example of
a “seamless” parametrization computed with our algorithm. The
seams of the parametrization are hidden by adding soft constraints
that force the gradients of the parametrization to match on the seams,
up to a fixed permutation. We experimentally observed that the
constraints are nevertheless satisfied (up to numerical precision) and
we leave a more detailed investigation as future work.

5.2 3D deformation

Volumetric deformation energies can be minimized with our method,
benefiting in a similar way as 2D parametrization. In Figure 11, we
demonstrate an example of a cube deformation with two different
discretization resolutions (48K and 250K tetrahedra) and two differ-
ent distortion energies (exponential Dirichlet and exponential of the
conformal AMIP). The running time of our algorithm is 0.5 and 8
seconds per iteration, respectively, and we used 10 iterations.

5.3 Mesh improvement

Recently, several authors started to use mappings in order to improve
the quality of meshes. We compare out algorithm for mesh improve-
ment in 3D against the methods of [Aigerman and Lipman 2013; Fu
et al. 2015]. In Figure 12, we used the exponential Dirichlet energy,
which is inspired by the exponential AMIPS energy proposed in [Fu
et al. 2015]. As can be seen in Table 2, our approach outperforms the
competing methods in all but one case. In all cases, we performed
10 iterations, which on average took 3 seconds.
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Figure 9: We compare the behavior of our algorithm on progres-
sively simplified versions of the Lucy model, at different mesh com-
plexities. Note that all scales exhibit similar behavior, and although
the initializations are very different (seen in the image for 0.6M and
6M triangle meshes), the end result is visually similar. Additionally,
we observe that the convergence speed does not depend on the com-
plexity of the mesh, being similar for all resolutions. For example,
in the 6M version, the energy reduction is faster than both the more
detailed and coarser versions. This is likely due to a less distorted
initialization, which is greatly affected by the specific connectivity
(and not geometry) of the mesh.

6 Limitations and future work

We presented a general approach to quickly minimize many prac-
tical types of distortion energies. The most obvious limitation of
our approach is inherited from the local/global method originally
used to minimize the ARAP energy: our algorithm converges slowly
near a local minimum. This problem stems from the slow propa-
gation of the rotations in the local step, making small rotation over
a large part of the parameterization hard to recover from. We ex-
emplify this problem in a stress test similar to [Smith and Schaefer
2015] (see Figure 13). The challenge in this test is to recover from
Tutte’s embedding of Hilbert curve shaped into a developable sur-
face. The embedding is bijective, but highly distorted. We tested



Initialization Paremeterization Seam constraints

Figure 10: An example of seamless global parameterization com-
puted with our method. Starting from Tutte’s embedding (left), we
minimize the symmetric Dirichlet energy first, and then activate
seamless soft constraints to make the parametrization’s derivatives
match on the seams, up to permutation.

Source Conformal Isometric

Figure 11: Our method can be used to deform tetrahedral meshes,
minimizing a conformal energy (middle) or the exponential Symmet-
ric Dirichlet isometric energy (right). The cubes have 48K (top) and
350K (bottom) tetrahedra, and our algorithm took 5 and 80 seconds,
respectively. We picked 4 edges of the cube (shown as cylinders) and
manipulated them. The right image in each pair shows the interior
of the deformed cube.

both our algorithm and Newton’s method on this example and found
complementary behavior: both algorithms first untangle the disc
initialization into a long “strip”, and then proceed with curling it
into the final position. Both algorithms take thousands of iterations
to complete both stages. However, ours quickly handles the recov-
ery from the distorted initialization but is slow to converge, while
Newton’s method exhibits the opposite behavior. By combining the
two algorithms, we reconstruct the Hilbert curve in fewer than 200
iterations.

The stress test leads to another limitation, which is the requirement
for an inversion free initialization. While Tutte’s embedding is
guaranteed to work in 2D, we are not aware of a method to compute
an inversion free tetrahedral mesh in 3D (even with a fixed convex
boundary), restricting our method’s applicability in 3D.

A final limitation is that our algorithm only supports rotation invari-
ant distortion energies.

Name Init. Dihed. BD AMIPS Our Method

Duck (10,163) (16,148) (19.6,161.5) (19, 138.16)

Elephant (8,167) (16,148) (13.7,161.3) (20.2,141.2)

Elephant2 (15,157) (18,147) (19,150) ( 23.1,142.3)

Hand (9,162) (16,148) (18,156) (21.1, 143.3)

Max (21,151) (14,153) (27.2,137.3) (29,141.5)

Rocker (10,163) (16,148) (21.6,148.7) (22.8,139.4)

Skull (0.8,178) (14,153) (21.1,147.6) (17.4,157.8)

Dragon (31,140) (28,139) (27.8,139.37) (31.8, 137.6)

Table 2: Comparison of mesh improvement achieved by running
[Aigerman and Lipman 2013] (BD) and [Fu et al. 2015] (AMIPS).
In each entry in the table we show the minimal and maximal dihe-
dral angle, where the second column show the initial values. As
can be seen, in all cases except for the Skull dataset, our method
outperforms the competing methods.

Source Improvement

Figure 12: An example of 3D mesh improvement computed with
our method minimizing the Exponential Dirichlet energy. The ele-
phant has 33.5K tetrahedra and the rocker arm 35.5K: our entire
optimization took 3 and 3.2 seconds, respectively.

We believe that the key idea of our algorithm is general, and other
finite element problems could benefit from it, and we leave this as
an exciting future work.
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A Solving Eq. (6)

In order to solve (6), we write it in matrix form, and in terms of the
coordinates x. Then (6) is transformed into

min
x

‖Ax− b‖2 (21)

where the structure of A and b in the 2D case is as follows. Assum-
ing a set of orthogonal frames per element are prescribed, we let
Dx, Dy be the FE gradient matrices of the mesh w.r.t. the frames.
Additionally, we define four diagonal matrices, Wij for i, j = 1, 2,
where the diagonal of Wij holds the (i, j) entries of all of the
weights Wf . In other words, Wij = diag({Wf (i, j)}f ). Simi-

larly, we define Rij to be the column vector holding the (i, j) entries
of all of the Rf

A =







W11 W12 0 0
W21 W22 0 0
0 0 W11 W12

0 0 W21 W22













Dx 0
0 Dy

Dx 0
0 Dy






, b =







R11

R21

R12

R22







(22)

This can be readily solved by any least square minimization algo-
rithm.

B Section 3 proofs

B.1 Lemma 3.1

Lemma 3.1 Let J = USV
⊤ be the Singular Value Decomposition

of J. Then,

D(J) = D(S) (23)

∇JD(J) = U∇SD(S)V⊤
(24)

Proof. (23) is immediate from definition (4.1). As for (24), we
use the formula for the derivative of the singular values (see [Giles
2008])

∇JD(S) = U∇SD(S)V⊤
(25)

B.2 Local step, general construction: proof of Eq. (19)

For a rotation invariant D(J) that is separably strictly convex in
singular values, Eq. (18) can be satisfied by setting (SL)i such that:

∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) = 0 (26)

In particular, in the case of a true isometric distortion measures, (18)
is satisfied by setting the local step as the closest rotation L = UV

⊤.

This can be seen from the fact that every partial function of D(σ) is
strictly convex onR>0, and therefore has a single minimum, (SL)i.
Hence, for every σi < (SL)i,

∂
∂σi

D(σ1,...,σi−1,σi+1,...,σd)(σi) <

0, and for every σi > (SL)i,
∂

∂σi
D(σ1,...,σi−1,σi+1,...,σd)(σi) > 0.

This is also true for (S− SL)i and so Eq. (19) is satisfied.

https://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings
https://github.com/MichaelRabinovich/Scalable-Locally-Injective-Mappings


B.3 Conformal Energy Local Step Derivation

Let D(J) = tr(J⊤J)

det(J)2/d
. D(J) is rotation invariant and can be written

as D(σ) =
∑d

i=1 σ2
i

σ1...σd
. By differentiating the distortion measure w.r.t.

the singular values in the 2D case, we find that

(∇SD(S))1 =
1

σ2
− σ2

σ2
1

,

and similarly, (∇SD(S))2 = 1
σ1

− σ1

σ2
2

. Assuiming J is not a

similarity already, then, since σ1 > σ2 > 0, the first entry is
negative, while the second is positive. By choosing σ1 > (SL)i >
(σ2), this holds true for (S− SL)i and so Eq. (18) is satisfied.

For the 3D case,

(∇SD(S))i =
−2σi+1σi+2(σ

2
i+1 + σ2

i+2 − 2σ2
i )

(3σiσi+1σi+2)5/3
,

where the index i cycles from 1 to 3 (i.e., σ4 = σ1). This is zero only

for σi =

√

σ2
i+1

+σ2
i+2

2
, and so (∇SD(S))1 < 0, (∇SD(S))3 > 0.

We note that σ̄ =

√

σ2
1
+σ2

3

2
satisfies σ3 < σ̄ < σ1. Therefore, by

choosing SL = σ̄UV
⊤, we get (S − SL)1 < 0, (S − SL)3 > 0,

and by construction, same as the proof for (19), we get that the sign
of (S− SL)2 is equal to the sign of (∇SD(S))2.


