
Scalable Logic Synthesis using a Simple Circuit Structure

Alan Mishchenko    Robert Brayton 
EECS Department, University of California, Berkeley, CA 94720 

{alanmi, brayton}@eecs.berkeley.edu 
 

Abstract 
This paper proposes an alternate approach to logic synthesis using 

rewriting and peephole optimization but from a modern perspective. 
We use a simple logic structure (AIGs) as the basis for all the 
algorithms, and rely on efficient techniques, such as precomputation, 
reconvergence analysis, cut enumeration, Boolean matching, 
exhaustive simulation of small logic cones, and local resource-aware 
decision procedures based on Boolean satisfiability. The result is a 
logic synthesis flow that is orders of magnitude faster than 
traditional ones and more scalable, being applicable to large 
industrial netlists with millions of gates.   

1 Introduction 
Historically, logic synthesis approaches can be divided into two 

categories, local rule-based transformations (or rewriting) and 
technology independent/dependent algorithms.  

 
Rewriting. This was used by some of the first logic synthesis 
methods [11]. In these, optimization was applied to a netlist 
composed of the gate types to be used in the final implementation. 
Then, so-called peephole optimization was applied, where the 
structure of a set of gates in a small window was recognized and 
associated with a set of transformations that could improve area or 
delay. The decision to “fire” a local transformation and the order of 
firing was controlled by a set of rules. The combinations of such 
methods became known as rule-based logic synthesis.  

Some problems with this approach were: 
• when new gates were added to the database, new rules were 

needed to control where and when such gates were to be used, 
• as the rule-base grew, new rules interacted and interfered with 

the old rules, and managing the rule base became problematic,  
• the rule base was specific to the set of gates being used, and  
• the system became slow as the rule-base grew. 
 

Algorithmic. Rule-based rewriting gave way to technology 
independent optimization [6][7] followed by technology dependent 
mapping [14]. The underlying notion was that there were a set of 
operations relatively good for a netlist, regardless of the final set of 
gates that would be used for the implementation. This allowed the 
synthesis problem to be decomposed into separate steps, both of 
which became amenable to deeper mathematical analysis, leading to 
an algorithmic treatment of sub-problems and improved 
understanding.  

This required an abstract measure of goodness to guide the 
technology independent transformations. The number of literals in 
the factored forms became the standard metric for area, and many 
optimization algorithms were developed which were guided by 
improving this metric. For example, the operation “eliminate” 
collapses a node into its fanouts if the worth of a node computed 
using this metric did not exceed a specified threshold. “Kerneling” 

selected divisors similarly. Node optimization minimized the logic 
function of a node represented in SOP form, which then was factored 
to obtain a literal count. Even though a minimum SOP and a factor 
are not unique, the heuristic used was that a good factorization of a 
minimum SOP was close enough to the best factorization possible for 
the node function. Thus, if the metric improved, the result was 
accepted and the current node function was replaced. Similar metrics 
were developed for delay. At the same time, algorithmic technology-
mapping methods were developed and were steadily improved, 
becoming more sophisticated and complex.  

Scalability required that logic synthesis algorithms be extended, or 
replaced by more scalable ones. However, this resulted in several 
disadvantages. The new algorithms 
• increased the barrier to understanding, 
• made implementation more difficult,  
• required more complex code structures,  
• made code maintenance more difficult, and  
• were rarely made public, since much of these developments 

were done within commercial CAD tools becoming valuable 
assets of the industrial companies. 

 
Alternative Approach. The contribution of this paper is an alternate 
approach to logic synthesis that is simple, fast, and scalable. We keep 
the separation between the technology independent and dependent 
aspects. Local AIG-based transformations, such as rewriting [2][20], 
resubstitution, and redundancy removal, are developed in a 
simplified form. Speed and scalability are achieved as follows: 
• The network is always represented using a simple structure, an 

And-Inverter Graph (AIG), and all transformations work on this 
uniform representation. The metrics used for area and delay, the 
total number of AND nodes and depth of the graph, are easy to 
compute and have a direct impact on technology mapping 
(which uses the AIG as the subject graph). 

• Instead of graph isomorphic and SOP-based optimization, 
Boolean functions of an AIG node are computed as functions of 
its various fanin cut variables. Cut computations use a recent 
development that can efficiently enumerate all cuts up to 12 
inputs [9]. A quality/runtime tradeoff is controlled by selecting 
cuts of appropriate size.  

• Boolean functions of cuts are represented by truth tables, which 
are used to hash into a database where new rewriting structures 
are found. Due to the high speed of bit-parallel manipulation, 
sub-problems arising in local optimization can be solved 
quickly by exhaustive simulation. This scales well for up to 
about 16 inputs and often works better than BDDs or SAT. 

Since these types of local optimizations are fast, they can be 
repeated many times. For example, performing 10 rewriting passes 
over a typical network is still an order of magnitude faster than 
running traditional (but resource aware) synthesis in MVSIS, and 
several orders of magnitude faster than script.alegraic in SIS. In 
addition, the cumulative effect of these multiple optimization passes 
is often superior in quality. 



The paper is organized as follows. Section 2 surveys Boolean 
networks, AIGs, windowing, and reconvergence-driven cut 
computation. Section 3 presents the algorithms, for local rewriting, 
resubstitution, and redundancy removal, which have been adapted for 
AIGs and made efficient by rigorous enforcement of resource limits. 
Section 4 reports experimental results of the new logic synthesis flow 
compared with traditional approaches. Section 5 concludes and lists 
directions for future work. 

2 Background  

2.1 Boolean networks  
Definition. A Boolean function is a mapping from n-dimensional 

(n ≥ 0) Boolean space into a 1-dimensional one: {0,1}n → {0,1}.  
Definition. A Boolean network is a directed acyclic graph (DAG) 

with nodes represented by Boolean functions. The sources of the 
graph are the primary inputs (PIs) of the network; the sinks are the 
primary outputs (POs). 

Definition. The output of a node may be an input to other nodes 
called its fanouts. The inputs of a node are called its fanins. If there is 
a path from node a to b, then a is in the transitive fanin of b and b in 
the transitive fanout of a. The transitive fanin of b, TFI(b), includes 
node b and the nodes in its transitive fanin, including the PIs. The 
transitive fanout of b, TFO(b), includes node b and the nodes in its 
transitive fanout, including the POs. An edge connects two nodes 
that are in the fanin/fanout relationship. The fanin/fanout of an edge 
is the fanin/fanout node of the connected pair of nodes.  

Definition. A maximum fanout free cone (MFFC) of node n is a 
subset of TFI(n), such that every path from a node in the subset to 
the POs passes through n. Informally, the MFFC of a node contains 
the node and all the logic used exclusively by the node. When a node 
is removed (substituted), the logic in its MFFC can also be removed. 

Definition. A cut C of node n is a set of nodes of the network, 
called leaves, such that each path from a PI to n passes through at 
least one leaf. Node n is called root of cut C. The cut size is the 
number of its leaves. A trivial cut of the node is the cut composed of 
the node itself. A cut is K-feasible if the number of nodes in the cut 
does not exceed K. A cut is said to be dominated if there is another 
cut of the same node, which is contained, set-theoretically, in the 
given cut. The volume of a cut is the total number of nodes 
encountered on all paths between node n and the cut leaves. 

Definition. The local function of an AIG node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in n and expressed in terms 
of the leaves, x, which form a cut of n. The global function of an AIG 
node is its function in terms of the PIs of the network. 

Definition. Exhaustive simulation is a practical way of checking 
equivalence of Boolean function of a node. Exhaustive simulation is 
performed using bitwise simulation of the cone with 2k different 
input patterns, where k is the number of leaves (in practice k does not 
exceed 16). Another way of looking at exhaustive simulation is that 
it computes the truth-table of the root node in terms of the 
elementary truth-tables set at the leaves of some cut of this node. 

2.2 And-Interver Graphs 
And-Interver Graph (AIG) is a Boolean network composed of two-

input ANDs and inverters. AIGs were used in a variety of 
applications since the early 60’s [12] as a convenient representation 
for combinational logic of an arbitrary Boolean network. To derive 
an AIG, the SOPs of the nodes in the network are factored [6], the 
AND gates and OR gates of the factored forms are converted into 

two-input ANDs and inverters using DeMorgan’s rule, and these 
nodes are added to the AIG manager.  

Structural hashing of netlists composed of arbitrary gates was 
proposed and used in early CAD tools [11] to detect and merge 
isomorphic circuit structures. For AIGs, structural hashing is 
performed by one hash-table lookup when AND nodes are added to 
the AIG manager. It ensures that, for each pair of nodes, there is only 
one AND node having them as fanins (up to permutation).  

Additionally, the AIG derived from a logic network is often 
balanced to reduce the number of AIG levels, by applying the 
associative transform, a(bc) = (ab)c. Both structural hashing and 
balancing are performed in one topological sweep from the PIs and 
have linear complexity in the number of AIG nodes. 

The size (area) of the AIG is the number of its nodes. The depth 
(delay) of the AIG is the number of nodes on the longest path from 
the PIs to the POs. The goal of optimization by local transformations 
is to reduce both area and delay of an AIG, although in this paper we 
focus on the area optimization. Delay-oriented synthesis additionally 
makes the transformations aware of the AIG depth. 

Software implementation of an AIG package is similar to that of an 
efficient BDD package [4]. Inverters are represented as flipped 
pointers to the AIG nodes. The AIG nodes have reference counters, 
which show the number of fanouts of each node. Reference counting 
leads to fast counting of nodes in an MFFC and efficient add/remove 
operations for individual nodes and their MFFCs.  

Both BDD and AIG packages support the unique table to ensure 
that there is only one node with the given fanins. Due to the 
uniqueness of the Shannon expansion with respect to a variable, this 
leads to the canonical BDD structure for a given variable order. For 
AIGs, the AND-decomposition is not unique, so the use of a unique 
table guarantees only structural canonicity within one logic level 
(described above as structural hashing).  

Maintaining an analogy with Reduced Ordered BDDs led to the 
development of the FRAIG package [18], which uses a balanced 
combination of simulation and SAT [16] to enforce functional 
canonicity of AIG nodes on-the-fly, as they are added to the package. 
The FRAIG package has found extensive use in logic synthesis, 
technology mapping [8], and equivalence checking [22] in ABC [1]. 

It should be noted that, although AIGs are used as the main 
representation in this paper and in ABC, other types of simple circuit 
structures would also work: NAND graphs, OR-INV graphs, AND-
XOR-INV graphs, Reduced Boolean Circuits [3], etc. All these 
representations have similar size for practical circuits and have the 
same expressive power as AIGs, provided that AIGs allow for 
efficient detection of embedded XOR-subgraphs, which require 
specialized handling in some procedures. Therefore, our choice of 
AIGs is somewhat arbitrary and is motivated by its straight-forward 
interpretation and convenient implementation. 

The material on windowing and reconvergence-driven cut 
computation in the following two subsections assumes a general 
Boolean network, but the synthesis algorithms in Section 3 are 
optimized assuming an AIG. 

2.3 Windowing  
Windowing is a method of limiting the scope of logic synthesis to 

work only on a small portion of a Boolean network. This method is 
indispensable for scalability when working with large Boolean 
networks arising in industrial applications. 

The material in this section is adapted from [17], where windowing 
is used to compute don’t-cares. A full presentation of the original 
algorithm is included because the windowing algorithms in this paper 
are based on it and extend it in a number of ways. 



Definition. Two non-overlapping subsets of nodes, the leaf set and 
the root set, are in a leaf/root relation if every path from the PIs to 
any node in the root set passes through some node in the leaf set.  

Definition. Given two subsets in the leaf/root relationship, its 
window is the subset of nodes of the network containing the root set 
together with all nodes on paths between the leaf set and the root set. 
The nodes in the leaf set are not included in the window. 

Definition. A path connecting a pair of nodes is distance-k if it 
spans exactly k edges between the pair. Two nodes are distance-k 
from each other if the shortest path between them is distance-k. 

The pseudo-code in Figure 2.3.1 and the example in Figure 2.3.2 
describe the flow of a window construction algorithm. Procedure 
Window takes a node and two integers defining the number of logic 
levels on the fanin/fanout sides of the node to be included in the 
window. It returns the leaf set and the root set of the window.  

        ((nnooddeesseett,,  nnooddeesseett))  WWiinnddooww((  nnooddee  NN,,  iinntt  nnFFaanniinnss,,  iinntt  nnFFaannoouuttss  ))  
        {{  
                  nnooddeesseett    II11    ==  CCoolllleeccttNNooddeessTTFFII((  {{NN}},,  nnFFaanniinnss  ));;  
                  nnooddeesseett    OO11  ==  CCoolllleeccttNNooddeessTTFFOO((  {{NN}},,  nnFFaannoouuttss  ));;  
                  nnooddeesseett    II22    ==  CCoolllleeccttNNooddeessTTFFII((  OO11,,  nnFFaanniinnss  ++  nnFFaannoouuttss  ));;  
                  nnooddeesseett    OO22  ==  CCoolllleeccttNNooddeessTTFFOO((  II11,,  nnFFaanniinnss  ++  nnFFaannoouuttss));;  
                  nnooddeesseett  SS  ==  II22    ∩∩  OO22;;  
                  nnooddeesseett  LL  ==  CCoolllleeccttLLeeaavveess((  SS  ));;  
                  nnooddeesseett  RR  ==  CCoolllleeccttRRoooottss((  SS  ));;  
                  rreettuurrnn  ((LL,,  RR));;  
        }}  

Figure 2.3.1. Computation of a window for a node. 
The procedure CollectNodesTFI takes a set S of nodes and an 

integer m ≥ 0, and returns a set of nodes on the fanin side that are 
distance-m or less from the nodes in S. An efficient implementation 
of this procedure for small m (for most applications, m ≤ 10) iterates 
through the nodes that are distance-k (0 ≤ k ≤ m) from the given set. 
The distance-0 nodes are the original nodes. The distance-(k+1) 
nodes are found by collecting the fanins of the distance-k nodes not 
visited before. The procedure CollectNodesTFO is similar. 

Procedures CollectLeaves and CollectRoots take the set of the 
window’s internal nodes and determine the leaves and roots of this 
window. The leaves are the nodes that do not belong to the given set 
but are fanins of at least one of the nodes in the set. The roots are the 
nodes that belong to the given set and are also fanins of at least one 
node not in the set. Note that some of the roots thus computed are not 
in the TFO cone of the original node, for which the window is being 
computed, and therefore can be dropped without violating the 
definition of the window and undermining the usefulness of the 
window for logic synthesis operations dealing with the node.  

 

 
Figure 2.3.2. Example of the 1 × 1 window of node N. 

We refer to the window constructed for a node by including n TFI 
logic levels and m TFO logic levels as an n × m window.  

Example. Figure 2.3.2 shows a 1 × 1 window for node N in a 
network. The nodes labeled I1, O1, S, L, and R are in correspondence 
with the pseudo-code in Figure 2.3.1. The window’s roots (top) and 
leaves (bottom) are shaded. Note that the nodes labeled by P do not 
belong to TFI and TFO of N, but represent reconvergent paths in the 
vicinity of N. The left-most root and right-most root are not in the 
TFO of N and can be dropped, as explained above.  

2.4 Reconvergence-driven cut computation  
Definition. Reconvergence occurs when the paths starting at the 

output of a node meet again before reaching the POs. Reconvergence 
is inevitable due to logic sharing in multi-level logic networks, but 
excessive reconvergence is often redundant.  

Some applications, such as resubstitution or computation of a 
subset of satisfiability don’t-cares of a node, require only one K-
feasible cut of the node, of size between 5 and 20 inputs, depending 
on the computational effort allowed. Such a cut can be computed 
using procedure CollectNodesTFI presented in the previous section 
on windowing. For example, this procedure can be called for a node, 
resulting in a cut composed of the leaves of the TFI cone extending 
several logic levels down from the node.  

However, a problem with this is that it is hard to predict how many 
logic levels to traverse to get a cut of the desired size. A second 
problem is that the cut computed this way may not lead to a good 
optimization because it includes few nodes or non-reconvergent 
(tree-like) logic structures. A small volume may lead to only a few 
nodes being available as resubstitution candidates. A tree-like 
structure does not lead to any don’t-cares in the local space of the 
node. In both cases, the time spent computing the cut and attempting 
optimization using this cut would be wasted. 

        nnooddeesseett  RReeccoonnvveerrggeenncceeDDrriivveennCCuutt((  nnooddee  NN,,  iinntt  CCuuttSSiizzeeLLiimmiitt  ))  
        {{  
                  nnooddeesseett  LLeeaavveess  ==  {{  NN  }};;  
                  nnooddeesseett  VViissiitteedd  ==  {{  NN  }};;  
                  CCoonnssttrruuccttCCuutt__rreecc((  LLeeaavveess,,  VViissiitteedd,,  CCuuttSSiizzeeLLiimmiitt  ));;  
                  rreettuurrnn  LLeeaavveess;;  
        }}  
      CCoonnssttrruuccttCCuutt__rreecc((  nnooddeesseett  LLeeaavveess,,  nnooddeesseett  VViissiitteedd,,  iinntt  CCuuttSSiizzeeLLiimmiitt  ))  
      {{  
                  iiff  ((  LLeeaavveess  ccoonnttaaiinn  oonnllyy  PPII  nnooddeess  ))  
                            rreettuurrnn;;  
                  MM  ==  nnoonn--PPII  nnooddee  iinn  LLeeaavveess  wwiitthh  tthhee  mmiinniimmuumm  LLeeaaffCCoosstt;;  
                  iiff  ((  ||LLeeaavveess||  ++  LLeeaaffCCoosstt((  MM,,  VViissiitteedd  ))  >>  CCuuttSSiizzeeLLiimmiitt  ))  
                              rreettuurrnn;;  
                  LLeeaavveess  ==  LLeeaavveess    ∪∪  ffaanniinnss((MM))  \\    MM;;  
                  VViissiitteedd  ==  VViissiitteedd  ∪∪  ffaanniinnss((MM));;  
                  CCoonnssttrruuccttCCuutt__rreecc((  LLeeaavveess,,  VViissiitteedd,,  CCuuttSSiizzeeLLiimmiitt  ));;  
      }}  
      iinntt  LLeeaaffCCoosstt((  nnooddee  MM,,  nnooddeesseett  VViissiitteedd  ))  
      {{  
                    iinntt  CCoosstt  ==  --11;;  
                    ffoorr  eeaacchh  ffaanniinn  FF  ooff  nnooddee  MM  
                                  iiff  FF  ddooeess  nnoott  bbeellooww  ttoo  VViissiitteedd  
                                              CCoosstt  ==  CCoosstt  ++  11;;  
                    rreettuurrnn  CCoosstt;;  
      }}      

Figure 2.4.1. Reconvergence-driven cut computation. 
In this section, we present a simple and efficient cut computation 

algorithm, which computes a cut close to a given size (if such cut 
exists) while heuristically maximizing the cut volume and the 
number of reconvergent paths subsumed in the cut. This algorithm 

N 

O1 O1 

S 

S 

S 

S 

I1 

 

I1 

 I1 

 

R S 
R 

S 

S 

S S 

S S 

S 

P 

P 

P 

P 

R R 

L L L L L 



has been used recently in several applications, including technology-
dependent resynthesis [19] and refactoring [20]. It will be used for 
resubstitution in Section 3.2. 

Procedure ReconvergenceDrivenCut in Figure 2.4.1 computes one 
good-quality cut of a given size for node N. The procedure uses two 
sets of nodes to store the leaves and the visited nodes, and initializes 
both with {N}. Next, the recursive procedure ConstructCut_rec is 
called. On termination, the computed cut is in the leaf set. 

Procedure ConstructCut_rec expands the cut by incrementally 
adding one node. If the cut is composed of only PIs, the procedure 
quits. Else, it selects a non-PI node M that minimizes the cost, equal 
to the number of nodes that will be added to the leaves if M is used to 
expand the cut. This cost is computed using procedure LeafCost. The 
cost can be -1 if the node and both of its fanins are currently in the 
cut. Otherwise, the cost is 0 or more. If the least expansion of the cut 
makes it exceed the cut-size limit, the procedure quits. Otherwise, it 
updates the leaves and the visited nodes and calls itself recursively. 

The above procedure works by greedily minimizing the number of 
the cut leaves in each iteration. In doing so, it tends to subsume into 
the cut those nodes that contribute to the volume but not to the cut 
size. It also prefers nodes with the costs -1 and 0, which are the cut 
leaves with reconvergent paths inside the cut. 

3 Logic synthesis algorithms for AIGs 
In this section, we describe several algorithms for efficient AIG-

based logic synthesis. The first algorithm (rewriting) was developed 
specifically for AIGs. Other algorithms (resubstitution and 
redundancy removal) are adapted for AIGs from traditional 
synthesis. Using AIGs simplifies these algorithms, improves their 
speed and scalability, and makes them easier to implement. 

3.1 Rewriting 
Rewriting is a fast greedy algorithm for minimizing the AIG size 

by iteratively selecting AIG subgraphs rooted at a node and replacing 
them with smaller pre-computed subgraphs, while preserving the 
functionality of the root node. Below we outline the rewriting 
algorithm [20] developed by extending [2] in the following ways: 
• Using 4-input cuts instead of two-level subgraphs. 
• Restricting rewriting to preserve the number of logic levels. 
• Developing several variations of AIG rewriting that (a) look at 

larger subgraphs and (b) attempt to reduce the AIG depth. 
• Experimental tune-up for logic synthesis applications. 
For the purposes of AIG rewriting, all 4-feasible cuts of the nodes 

are found using the fast cut enumeration procedure [24][21]. For 
each cut, the Boolean function is computed and its NPN-class is 
determined by hash-table lookup. Fast manipulation of 4-variable 
functions is achieved by representing them using truth tables stored 
as 16-bit bit-strings. Altogether there are 222 NPN equivalence 
classes of 4-variable functions [23], of which only about 100 appear 
more than once as functions of 4-feasible cuts in the available 
benchmarks, and only about 40 of these have been found 
experimentally to lead to improvements in rewriting. The unifying 
characteristic of the useful NPN-classes of functions is that they are 
decomposable using simple disjoint-support decomposition [2]. 

All non-redundant AIG subgraphs of the representative functions 
of the useful equivalence classes are pre-computed in advance as a 
shared DAG with approximately 2,000 nodes and hashed by the truth 
table. This DAG is compiled into the program as an integer array, 
which noticeably reduced the setup time of the rewriting package. 

 

      RReewwrriittiinngg((  nneettwwoorrkk  AAIIGG,,  hhaasshh  ttaabbllee  PPrreeccoommppuutteeddSSttrruuccttuurreess,,  bbooooll  UUsseeZZeerrooCCoosstt  ))  
      {{  
                    ffoorr  eeaacchh  nnooddee  NN  iinn  tthhee  AAIIGG  iinn  tthhee  ttooppoollooggiiccaall  oorrddeerr  {{  
                              ffoorr  eeaacchh  44--iinnppuutt  ccuutt  CC  ooff  nnooddee  NN  ccoommppuutteedd  uussiinngg  ccuutt  eennuummeerraattiioonn  {{  
                                        FF  ==  BBoooolleeaann  ffuunnccttiioonn  ooff  NN  iinn  tteerrmmss  ooff  tthhee  lleeaavveess  ooff  CC  
                                        PPoossssiibblleeSSttrruuccttuurreess  ==  HHaasshhTTaabblleeLLooookkuupp((  PPrreeccoommppuutteeddSSttrruuccttuurreess,,  FF  ));;  
                                        ////  ffiinndd  tthhee  bbeesstt  llooggiicc  ssttrruuccttuurree  ffoorr  rreewwrriittiinngg  
                                        BBeessttSS  ==  NNUULLLL;;  BBeessttGGaaiinn  ==  --11;;  
                                        ffoorr  eeaacchh  ssttrruuccttuurree  SS  iinn  PPoossssiibblleeSSttrruuccttuurreess  {{  
                                                NNooddeessSSaavveedd  ==  DDeerreeffeerreenncceeNNooddee((  AAIIGG,,  NN  ));;  
                                                NNooddeessAAddddeedd  ==  RReeffeerreenncceeNNooddee((  AAIIGG,,  SS  ));;  
                                                GGaaiinn  ==  NNooddeessSSaavveedd  ––  NNooddeessAAddddeedd;;  
                                                DDeerreeffeerreennccee((  AAIIGG,,  SS  ));;  
                                                RReeffeerreennccee((  AAIIGG,,  NN  ));;  
                                                iiff  ((  GGaaiinn  >>  00  ||||  ((GGaaiinn  ==  00  &&&&  UUsseeZZeerrooCCoosstt))  ))  
                                                          iiff  ((    BBeessttSS  ==  NNUULLLL  ||||    BBeessttGGaaiinn  <<  GGaaiinn  ))    
                                                                      BBeessttSS  ==  SS;;  BBeessttGGaaiinn  ==  GGaaiinn;;  
                                      }}    
                                      ////  uussee  tthhee  bbeesstt  llooggiicc  ssttrruuccttuurree  ttoo  uuppddaattee  tthhee  nneettlliisstt  
                                      iiff  ((  BBeessttSS  !!==  NNUULLLL  ))  {{  
                                                NNooddeessSSaavveedd  ==  DDeerreeffeerreenncceeNNooddee((  AAIIGG,,  NN  ));;  
                                                NNooddeessAAddddeedd  ==  RReeffeerreenncceeNNooddee((  AAIIGG,,  SS  ));;  
                                                aasssseerrtt((  BBeessttGGaaiinn  ==  NNooddeessSSaavveedd  ––  NNooddeessAAddddeedd  ));;  
                                      }}    
                            }}  
                  }}    
      }}  

Figure 3.1.1. 4-input rewriting algorithm. 
 

 
Figure 3.1.2. Different AIG structures for function F = abc. 

 

 
Figure 3.1.3. Two cases of AIG rewriting of a node. 

 
Figure 3.1.1 shows the pseudo-code of the AIG rewriting 

procedure. The nodes are visited in the topological order. For each 4-
input cut of a node, all pre-computed subgraphs are considered. 
Logic sharing between the new subgraphs and nodes already in the 
network is detected using an AIG with reference counters. For this, 
the old subgraph is de-referenced and the number of nodes, whose 
reference counts became 0, is returned. This is the number of nodes 
saved by not having the old subgraph in the network. Then, a new 
subgraph is added to the network while counting the number of new 
nodes and the nodes whose reference count changes from 0 to a 

a 

Subgraph 1 Subgraph 3 Subgraph 2 

Subgraph 1 Subgraph 2 

Subgraph 1 Subgraph 2 

c b c a 

b a 

c a b 

a b a c b 

a 

c 

b 

a 

c a b a c a b a c 

⇒ 

⇒ 



positive value. This is the increase in the number of nodes due to 
having the new subgraph in the network. The difference between the 
former and the latter numbers is the gain in the number of nodes if 
the replacement is done. The new node is de-referenced and the old 
node is referenced to return the AIG to its original state. 

After trying all available subgraphs, the one that leads to the 
largest improvement at a node is used. If there is no improvement 
and “zero-cost replacement” is enabled, a new subgraph that does not 
increase the number of nodes is used. 

Example. Figure 3.1.2 shows three AIGs for F = abc that are pre-
computed and stored. Figure 3.1.3 shows two instances of AIG 
rewriting. The upper part of the figure shows the situation when 
Subgraph 1 is detected and replaced by Subgraph 2. The lower part 
of the figure shows two nodes AND(a, b) and AND(a, c) that are 
already present in the network. In this case, Subgraph 2 can be 
replaced by Subgraph 1. In both cases, one node is reduced. 

For further details on AIG rewriting and experimental comparison 
with the traditional logic synthesis, refer to [20].  

3.2 Resubstitution 
Resubstitution expresses the function of a node using other nodes 

(called divisors) already present in the network. The transformation 
is accepted if the new implementation of the node is in some sense 
better than its current implementation using the immediate fanins. 

In the case of an AIG, the best outcome of resubstitution is when 
the whole MFFC of the node can be freed and the node’s function 
can be expressed using a node that is currently outside of the node’s 
MFFC. This outcome is called a 0-resubstitution because no new 
nodes are added to the AIG while the MFFC is removed. Similarly, if 
there is no 0-resubstitution, a 1-resubstitution exists if the function of 
the node can be expressed using two already present nodes and 
exactly one additional node. 

This approach generalizes to k-resubstitution, which adds exactly k 
new nodes to the AIG and reduces the AIG size if the node’s MFFC 
has at least k+1 nodes. This approach is conceptually similar to 
technology-dependent resynthesis based on resubstitution [15][19]. 
The difference is, in the case of AIGs, a technology-independent 
metric (the AIG size) is used, and for scalability and speed, the cuts 
with no more than 12-16 leaves are used. For such relatively small 
cuts, resubstitution can be performed without BDDs and SAT, using 
explicitly computed truth tables and exhaustive simulation. 

    RReessuubbssttiittuuttiioonn((  nneettwwoorrkk  AAIIGG,,  iinntt  CCuuttSSiizzeeLLiimmiitt,,  iinntt  DDiivviissoorrLLiimmiitt,,  bbooooll  UUsseeZZeerrooCCoosstt  ))  
    {{  
                    ffoorr  eeaacchh  nnooddee  nn  iinn  tthhee  AAIIGG  iinn  tthhee  ttooppoollooggiiccaall  oorrddeerr  {{  
                                iinntt  MMffffccSSiizzee  ==  ||  MMFFFFCC((  nn  ))||;;    aasssseerrtt((  MMffffccSSiizzee  ≥≥  11  ));;  
                                nnooddeesseett  CC  ==  RReeccoonnvveerrggeenncceeDDrriivveennCCuutt((  nn,,  CCuuttSSiizzeeLLiimmiitt  ));;  
                                nnooddeesseett  DD  ==  CCoolllleeccttNNooddeessTTFFOOCChhaannggeedd((  CC,,  LLeevveell((nn)),,  DDiivviissoorrLLiimmiitt  ));;  
                                CCoommppuutteeFFuunnccttiioonnss((  DD,,  nn  ));;  
                                nnooddeesseett  RR  ==  TTrryy00RReessuubbssttiittuuttiioonn((  nn,,  DD  ));;  
                                iiff  ((  RR  ====  NNUULLLL  &&&&  ((MMffffccSSiizzee  >>  11  ||||  ((MMffffccSSiizzee  ====  11  &&&&  UUsseeZZeerrooCCoosstt))))  ))  
                                              RR  ==  TTrryy11RReessuubbssttiittuuttiioonn((  nn,,  DD  ));;  
                                iiff  ((  RR  ====  NNUULLLL  &&&&  ((MMffffccSSiizzee  >>  22  ||||  ((MMffffccSSiizzee  ====  22  &&&&  UUsseeZZeerrooCCoosstt))))  ))  
                                              RR  ==  TTrryy22RReessuubbssttiittuuttiioonn((  nn,,  DD  ));;  
                                iiff  ((  RR  ====  NNUULLLL  &&&&  ((MMffffccSSiizzee  >>  33  ||||  ((MMffffccSSiizzee  ====  33  &&&&  UUsseeZZeerrooCCoosstt))))  ))  
                                              RR  ==  TTrryy33RReessuubbssttiittuuttiioonn((  nn,,  DD  ));;  
                                IIff  ((  RR  !!==  NNUULLLL  ))  
                                              UUppddaatteeNNeettwwoorrkk((  AAIIGG,,  nn,,  RR  ));;  
                    }}                                              
      }}      

Figure 3.2.1. AIG resubstitution algorithm. 
Figure 3.2.1 shows the pseudo-code of the resubstitution algorithm. 

For each node processed, the size of MFFC (containing at least the 
node itself) and a reconvergence-driven cut are computed as shown 

in Section 2.4. Next, a limited TFO computation is found given the 
cut, the level of node n, and an upper bound on the number of 
divisors. This computation differs from CCoolllleeccttNNooddeessTTFFOO  in Section 
2.3 as follows: (a) instead of collecting the nodes that are no more 
than k levels from the starting set, the nodes are collected whose 
levels do not exceed the level of node n, (b) the leaves of the cut are 
collected but the nodes in the MFFC are skipped because they will be 
removed, and (c) there is a limit on the total number of nodes 
collected (DivisorLimit). Next, the Boolean functions of the collected 
nodes in the terms of the cut leaves are computed using exhaustive 
simulation. 

Several resubstitutions of the node are attempted, each trying to 
add more nodes to the AIG. First, procedure Try0Resubstitution 
checks whether the Boolean function of node n is a constant or equal 
(up to complementation) to that of a divisor. If there is no such 0-
resubstitution, Try1Resubstitution is tries to find two divisors that, 
when ANDed in some polarities, are equal (up to complementation) 
to the function of node n. Note that 1-resubsitution can only lead to 
improvement in the AIG size if the size of MFFC is more than one. 
Similar observations hold for the higher-order resubstitutions. 

Our resource-aware implementation limits the set of divisors, D, 
because the complexity of k-resubstitution is O(|D|k+1). We use k = 
{0, 1, 2, 3}. For this reason, the limit on the number of divisors 
computed in CollectNodesTFOChanged in Figure 3.2.1 is 150. 
Despite the high polynomial complexity of the resubstitution test, the 
total runtime is often dominated by collecting the devisors.  

 
Figure 3.2.2. Example of AIG resubstitution. 

Example. In the AIG shown in Figure 3.2.2 (left), node g has 
MFFC of size 2 composed of nodes g and p. One node can be saved 
if node g is replaced by the complement of node f, which does not 
belong to the original AIG but can be added on top of the already 
present nodes n and m, as shown in Figure 3.2.2 (right). Indeed, g = 
a(b + c + d), f  = n + m = a(b + c) + ad = a(b + c + d). This 
resubstitution is an example of the algebraic distributive transform. 

3.3 Redundancy removal 
Redundancy removal (RR) greedily removes network edges that do 

not contribute to the functionality of the network POs. RR is closely 
related to don’t-care-based optimization of general Boolean 
networks, which simplifies the local functions of the nodes using 
flexibilities caused by the surrounding network. More than a decade 
of research resulted in several scalable computations for computing 
at a node, a subset of compatible observability don’t-cares (CODCs) 
[25] or a subset of complete don’t-cares using windowing [17]. 

These computations could be adapted to work on AIGs, but a 
don’t-care at an input of a two-input AND node only can have no 
effect, or cause it to be replaced by a constant, an inverter, or a 
buffer. Thus any improvement achieved using don’t-cares can be 
seen as due to a redundancy in the network when one or more fanin 
edges are redundant. Therefore, don’t-care-based two-level 
minimization performed in [25][17] using ESPRESSO is not needed 

c d b 

f 

n m 

a b c d 

g 

n m p 

a 



for AIGs. This motivates the following efficient RR procedure based 
on structural analysis, simulation, and Boolean satisfiability. 

First, the network is simulated to detect as many non-redundant 
edges as possible. The remaining edges are potentially redundant and 
are checked as shown in Figure 3.3.1. The procedure 
RedundancyRemoval iterates over candidate edges, creating a 
window for each edge. The window computation differs from the 
more general one presented in Section 2. During the computation of 
the TFO of the window leaves using procedure CollectNodesTFO, 
the target edge E is not traversed. As a result, the resulting TFO 
contains only the nodes reachable from the leaves through the paths 
bypassing E. If there is a path going from the fanout of E to a PO that 
does not pass through a node in the TFO, the redundancy of E cannot 
be proved using a window of the given size. Otherwise, it is possible 
that the information flow through E to the POs is blocked by 
reconvergent paths and E can be proved redundant. Procedure 
CollectSubsetReachableFrom finds the roots of the TFO reachable 
from the fanout of E. The TFI cone of these roots (TFI2) is collected. 
The intersection of TFI2 and TFO gives the desired window. The 
combinational miter [5] is constructed, as shown in Figure 3.3.2.  

RReedduunnddaannccyyRReemmoovvaall((  nneettwwoorrkk  AAIIGG,,  iinntt  WWiinnddoowwSSiizzee,,  iinntt  TTiimmeeoouutt  ))  
{{  
          eeddggeesseett  EE  ==  ccaannddiiddaattee  AAIIGG  eeddggeess  nnoott  ddiisspprroovveedd  bbyy  rraannddoomm  ssiimmuullaattiioonn;;  
          ffoorr  eeaacchh  ccaannddiiddaattee  eeddggee  iinn  EE  {{  
                      WW  ==  CCrreeaatteeWWiinnddoowwFFoorrRRRR((  EE,,  WWiinnddoowwSSiizzee,,  WWiinnddoowwSSiizzee  ));;  
                      iiff  ((  ccoonnttaaiinniinngg  wwiinnddoowwss  WW  ooff  tthhiiss  ssiizzee  ddooeess  nnoott  eexxiisstt  ))  
                                ccoonnttiinnuuee;;  
                      nneettwwoorrkk  MMiitteerr  ==  CCoonnssttrruuccttMMiitteerr((  WW,,  EE  ));;  
                      iiff  ((  RRaannddoommSSiimmuullaattiioonn((  MMiitteerr  ))  ))    ////  eeddggee  iiss  nnoott  ddiisspprroovveedd  bbyy  ssiimmuullaattiioonn  
                                iiff  ((  CChheecckkRRRRuussiinnggSSaatt((  MMiitteerr,,  TTiimmeeoouutt  ))  ))    ////  pprroovveedd  rreedduunnddaanntt  bbyy  SSAATT  
                                            UUppddaatteeNNeettwwoorrkk((  AAIIGG,,  EE  ));;  
          }}  
}}        

((nnooddeesseett,,  nnooddeesseett))  CCrreeaatteeWWiinnddoowwFFoorrRRRR((  eeddggee  EE,,  iinntt  nnFFaanniinnss,,  iinntt  nnFFaannoouuttss  ))  
{{  
          nnooddeesseett  TTFFII  ==  CCoolllleeccttNNooddeessTTFFII((  {{FFaanniinn((EE))}},,  nnFFaanniinnss  ));;  
          nnooddeesseett  TTFFOO  ==  CCoolllleeccttNNooddeessTTFFOO((  CCoolllleeccttLLeeaavveess((TTFFII)),,  nnFFaanniinnss  ++  nnFFaannoouuttss,,  EE  ));;  
          iiff  ((  tthheerree  iiss  aa  ppaatthh  ffrroomm  FFaannoouutt((EE))  ttoo  aa  PPOO  nnoott  ppaassssiinngg  tthhrroouugghh  aa  nnooddee  iinn  TTFFOO  ))    
                        rreettuurrnn  wwiinnddooww  ooff  tthhiiss  ssiizzee  ddooeess  nnoott  eexxiisstt;;  
          nnooddeesseett  RRoooottss  ==  CCoolllleeccttSSuubbsseettRReeaacchhaabblleeFFrroomm((  CCoolllleeccttRRoooottss((TTFFOO)),,  FFaannoouutt((EE))  ));;  
          nnooddeesseett  TTFFII22  ==  CCoolllleeccttNNooddeessTTFFII((  RRoooottss,,  nnFFaanniinnss  ++  nnFFaannoouuttss  ));;  
          nnooddeesseett  SS  ==  TTFFII22    ∩∩  TTFFOO;;  
          nnooddeesseett  LL  ==  CCoolllleeccttLLeeaavveess((  SS  ));;  
          nnooddeesseett  RR  ==  CCoolllleeccttRRoooottss((  SS  ));;  
          rreettuurrnn  ((LL,,  RR));;  
}}        

Figure 3.3.1. Redundancy removal for AIGs. 
Random simulation is now applied to the miter for early detection 

of non-redundancy. Although this was performed at the beginning to 
filter out obvious non-redundant edges, additional simulation detects 
candidate redundant edges that became non-redundant through the 
intervening removal of some redundancies. If the edge remains a 
candidate, the miter is solved by SAT [22]. If the miter is unsat, the 
edge is redundant because the outputs of the original and modified 
windows are equal for all assignments to the leaves of the window. 
In this case, the redundant edge is removed from the AIG.  

Example. In Figure 3.3.3, the AIG edge g → f is redundant because 
the function of h, the only fanout of f, does not change when the 
g → f is dropped (when g is replaced by constant 0). Indeed, f  = ab 

+ bcde , h = f bc = (ab + bcde )bc = abc. After the change, h = 

f bc = (ab+0)bc = abc. Edge g → f can be proved redundant by 
considering a window with roots {h} and leaves {a, b, c, d, e}. 

 
Figure 3.3.2. A miter used for RR. 

 
Figure 3.3.3. Example of redundancy removal in AIGs. 

An interesting aspect of RR in AIGs is that a fanin edge can be 
redundant with respect to one of the fanout edges. For example, 
consider a copy of a node for each fanout. A fanin edge may be 
redundant in one of the copies. Removing the redundancy in this 
copy is equivalent to replacing the associated fanout in the original 
circuit. Although the node count remains unchanged, RR with 
respect to a fanout removes false logic sharing leading to shorter 
delays and improved stuck-at testability. 

4 Experimental Results  
The presented algorithms were implemented in a public-domain 

logic synthesis and verification system ABC [1]. This section 
compares AIG rewriting with and without resubstitution for area-
only AIG optimization, and reductions achieved by redundancy 
removal1. The subset of IWLS 2005 benchmarks [13] is selected for 
these experiments based on circuit size (to demonstrate scalability), 
and not on the improvements by the proposed algorithms. All results 
are verified using the equivalence checker in ABC [22]. 

Table 1 lists the benchmark names and the numbers of AIG nodes 
after an initial structural hashing (column strash), and then after 
using several scripts described in Figure 4.1:  
• three iterations of rewriting (column 3×rw),  
• three iterations of resubstitution (column 3×rs),  
• three iterations of rewriting interleaved with resubstitution 

(column 3×rws),  
• an area-minimization script compress2 (column com2), and  
• a script derived from compress2 by interleaving rewriting and 

resubstitution (column com2rs).  

                                                           
1 For a comparison of AIG rewriting and traditional logic synthesis see [20]. 

a b c d e 

f 

h 

g 

i 

fi(x) fi’(x) 

x x 

C(x) 

E E 
c 

Original window Window with edge E 
fed by constant C 



 
3×rw: st; rw -l; rwz -l; rwz -l 
3×rs: st; rs -K 6 -N 2 -l; rs -K 9 -N 2 -l; rs -K 12 -N 2 -l  
3×rws: st; rw -l; rs -K 6 -N 2 -l; rwz -l; rs -K 9 -N 2 -l; rwz -l; rs -K 12 -N 2 -l  
compress2: b -l; rw -l; rf -l; b -l; rw -l; rwz -l; b -l; rfz -l; rwz -l; b –l 
compress2rs: b -l; rs -K 6 -l; rw -l; rs -K 6 -N 2 -l; rf -l; rs -K 8 -l; b -l; rs -K 8 -N 2 -l; 

rw -l; rs -K 10 -l; rwz -l; rs -K 10 -N 2 -l; b -l; rs -K 12 -l; rfz -l; rs -K 12 -N 2 -l; 
rwz -l; b -l 

Semicolons separate individual commands in the scripts: 
st is structural hashing 
b is algebraic tree-balancing 
rw is rewriting 
rwz is rewriting with zero-cost replacement 
rf is refactoring 
rfz is refactoring with zero-cost replacement 
rs is resubstitution 
-K <num> is the limit on the number of cut inputs (default is 6) 
-N <num> is the limit on the number of new nodes that can be added while 

performing resubstitution at each node (default is 1)  
-l turns on the area-minimization mode (minimizing the number of AIG nodes while 

disregarding the number of AIG levels). 
Figure 4.1. Description of various rewriting scripts.  

Table 1 shows that, for area minimization, resubstitution alone 
cannot compete with rewriting (columns 3×rw and 3×rs). However, 
interleaving resubstitution with rewriting, leads to a 2-3% average 
improvement in the number of AIG nodes, compared to iterating 
rewriting (columns 3×rw and 3×rws). Also, using resubstitution as 
part of an area-minization script (com2 versus com2rs) leads to  an 
additional 2% improvement.  

Table 1. The number of AIG nodes with and w/o resubstitution. 
design strash 3×rw 3×rs 3×rws com2 com2rs

aes_core 21213 19814 20432 19413 19735 19326
des_perf 78299 69870 70577 66931 69196 65671
ethernet 19729 14415 18175 14153 13020 12784
pci_bridge32 22784 18062 22202 17899 17817 17701
usb_funct 15873 13779 14579 13299 13059 12540
vga_lcd 126711 91152 118926 90977 90844 90713
wb_conmax 47853  43847  45248  41666  40407 39645  
average ratio 1.21 1.00 1.13 0.97 0.96 0.94

Table 2. The runtime (in seconds) with and w/o resubstitution. 
design strash 3×rw 3×rs 3×rws com2 com2rs

aes_core 0.34 1.82 13.64 15.23 4.96 25.70
des_perf 1.00 16.31 34.19 47.16 31.89 73.42
ethernet 0.18 1.13 4.25 4.23 1.97 5.87
pci_bridge32 0.22 1.36 4.89 5.26 2.59 7.90
usb_funct 0.14 0.96 2.39 2.66 1.87 4.91
vga_lcd 1.71 20.50 120.75 92.98 31.00 131.53
wb_conmax 0.37 5.30 12.91 15.78 8.47 25.42
average ratio 0.12 1.00 4.00 4.16 1.92 6.56

 
It should be noted that although a 3% average reduction in area 

may not seem substantial, in practice, further reduction in the AIG 
size after the 10 passes of AIG rewriting, is hard to achieve. For 
example, even when a relatively expensive don’t-care-based 
optimization is applied [17] and the resulting netlist is converted 
back into an AIG, the reduction is rarely more than 3%. 

Table 2 shows runtimes measured on a 1.6GHz IBM ThinkPad 
with 1Gb RAM. It is clear that the current implementation of 
resubstitution is as scalable as AIG rewriting although several times 
slower. In most cases, the runtime of resubstitution was dominated 
by the computation of candidate Boolean divisors at each node, 
which uses backward reachability from the cut leaves (procedure 

CollectNodesTFOChanged in Figure 3.2.1). On the other hand, the 
truth table computation using exhaustive simulation is relatively fast 
even for cuts with more than 10 inputs. Similarly, divisor checking, 
which is quadratic (cubic) in the number of divisors for resubstitution 
with 1 (2) additional nodes is less time-consuming because of the 
restriction on the number of divisors allowed.  

Table 3. Results of applying redundancy removal. 
design strash rr44 time, s com2 rr44 time, s

aes_core 21213 20821 39.93 19735 19708 17.69
des_perf 78299 77300 84.08 69196 69097 67.86
ethernet 19729 18729 24.38 13020 12997 4.68
pci_bridge32 22784 21620 20.63 17817 17806 14.78
usb_funct 15873 15596 9.21 13059 13025 5.63
vga_lcd 126711 121508 295.47 90844 90837 75.68
wb_conmax 47853  47409 29.60 40407 40228 25.62
average ratio 1.00 0.971  1.00 0.998

 
Table 3 shows early results of applying redundancy removal for all 

edges in the network using 4 x 4 windows. In the first section, RR 
(column rr44) was applied to the networks after structural hashing 
(column strash). In the second section, Script compress2 (column 
com2) was applied before RR (column rr44). The runtimes of RR 
shown in columns time of Table 3 are preliminary because the 
current implementation is not optimized for runtime. In particular, 
we have not yet implemented early detection of non-redundant edges 
using random simulation and did not fine-tune the window 
computation for nodes with many fanouts.  

It is surprising that RR cannot substantially reduce the networks 
after script compress2. This may speak for the efficiency of 10 
passes of AIG rewriting. To verify that RR detects all redundancies 
we performed the following experiment for smaller benchmarks. We 
iterated RR until saturation followed by simplification using 
complete don’t-cares [17] (with resubstitution disabled). Typically 
don’t-care-based optimization could not further reduce the AIG size 
after RR had saturated, meaning that the current window-based 
implementation of RR indeed removes most of the redundancies.  

5 Conclusions and Future Work 
This paper presents several local transformations for combinational 

logic synthesis based on pre-computation of AIG subgraphs, 
reconvergence analysis, efficient bottom-up cut enumeration, 
Boolean matching, exhaustive simulation of logic cones of up to 16 
inputs, and local resource-aware runs of Boolean satisfiability.  

A distinctive feature of this work is that it uses AIGs exclusively 
during all synthesis steps as a simple multi-level logic representation. 
This allows local transformations to be applied at high speed and in a 
scalable manner. The cumulative gain of several rounds of local 
transformations compares in quality to the logic synthesis done in 
MVSIS and SIS, but is one or two orders of magnitude faster as well 
as applicable to larger examples [20]. 

The new AIG-based techniques have the potential for replacing 
traditional logic synthesis in CAD tools. Due to their extreme speed 
and good quality, they can be used in hardware emulation, early 
estimation of the design complexity, software synthesis [27], and 
preprocessing of miters before equivalence checking [22]. 

Future work will include extending the local transformations to use 
larger cut sizes. The challenge is to search an even larger space of 
alternative circuit structures while keeping runtime low, thereby 
allowing multiple optimization passes. 



Acknowledgement 
This research was supported in part by the NSF (CCR-0312676), 

the MARCO Focus Center for Circuit System Solution (2003-CT-
888), and by the California Micro program with industrial sponsors, 
Intel, Magma, Synplicity, and Altera. 

References 
[1] Berkeley Logic Synthesis and Verification Group, ABC: A system for 

sequential synthesis and verification, Release 60306. 
http://www.eecs.berkeley.edu/~alanmi/abc/ 

[2] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic 
functions," Proc. ICCAD ‘97, pp. 78-82. 

[3] P. Bjesse and A. Boralv, "DAG-aware circuit compression for formal 
verification", Proc. ICCAD '04, pp. 42-49. 

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation 
of a BDD package”, Proc. DAC ‘90, pp. 40-45. 

[5] D. Brand. “Verification of large synthesized designs”. Proc. ICCAD ’93, 
pp. 534 -537. 

[6] R. Brayton and C. McMullen, “The decomposition and factorization of 
Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54. 

[7] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, “Multilevel logic 
synthesis”, Proc. IEEE, Vol. 78, Feb.1990. 

[8] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, 
"Reducing structural bias in technology mapping", Proc. ICCAD’05. 
http://www.eecs.berkeley.edu/~alanmi/publications/2005/iccad05_map.
pdf 

[9] S. Chatterjee, A. Mishchenko, and R. Brayton, "Factor cuts", Proc. 
IWLS ’06. ttp://www.eecs.berkeley.edu/~alanmi/publications/2006/ 
iwls06_cut.pdf 

[10] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a 
general and efficient FPGA mapping solution,” Proc. FPGA `99, pp. 29-
35. 

[11] A. Darringer, W. H. Joyner, Jr., C. L. Berman, L. Trevillyan, "Logic 
synthesis through local transformations," IBM J. of Research and 
Development, Vol. 25(4), 1981, pp 272-280. 

[12] L. Hellerman, "A catalog of three-variable Or-Inverter and And-Inverter 
logical circuits", IEEE Trans. Electron. Comput., Vol. EC-12, June 
1963, pp. 198-223. 

[13] IWLS ‘05 Benchmarks. http://iwls.org/iwls2005/benchmarks.html 

[14] K. Keutzer, “DAGON: Technology binding and local optimizations by 
DAG matching”, Proc. DAC ’87, pp. 617-623. 

[15] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes 
in circuit optimization”, Proc. DAC ’04, pp. 438-441. 

[16] A. Kuehlmann, “Dynamic transition relation simplification for bounded 
property checking”. Proc. ICCAD’04, pp 50-57. 

[17] A. Mishchenko and R. Brayton, "SAT-based complete don't-care 
computation for network optimization", Proc. DATE '05, pp. 418-423. 
http://www.eecs.berkeley.edu/~alanmi/publications/2005/ 
date05_satdc.pdf 

[18] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton. “FRAIGs: A 
unifying representation for logic synthesis and verification”. ERL 
Technical Report, UC Berkeley, 2004. http://www.eecs.berkeley.edu/ 
~alanmi/publications/2005/tech05_fraigs.pdf 

[19] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. Brayton, and M. 
Chrzanowska-Jeske, "Using simulation and satisfiability to compute 
flexibilities in Boolean networks", IEEE TCAD, May 2006. 
http://www.eecs.berkeley.edu/~alanmi/publications/2005/ 
tcad05_s&s.pdf 

[20] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG 
rewriting: A fresh look at combinational logic synthesis", Proc. DAC 
'06. http://www.eecs.berkeley.edu/~alanmi/publications/ 
2006/dac06_rwr.pdf 

[21] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to 
technology mapping for LUT-based FPGAs”, Proc. FPGA’06, pp. 41-
49. http://www.eecs.berkeley.edu/~alanmi/publications/ 
2006/fpga06_map.pdf 

[22] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Eén, “Improvements 
to combinational equivalence checking”, Proc. IWLS ’06. http://www. 
eecs.berkeley.edu/~alanmi/publications/2006/iwls06_cec.pdf 

[23] S. Muroga, Logic design and switching theory, John Wiley & Sons, Inc., 
New York, NY, 1979 

[24] P. Pan and C.-C. Lin, “A new retiming-based technology mapping 
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42. 

[25] H. Savoj. Don't cares in multi-level network optimization. Ph.D. 
Dissertation, UC Berkeley, May 1992. 

[26] E. Sentovich et al. “SIS: A system for sequential circuit synthesis.” 
Technical Report, UCB/ERI, M92/41, ERL, Dept. of EECS, UC 
Berkeley, 1992. 

[27] A. Solar-Lezama, R. Rabbah, R. Bodik, K. Ebcioglu, ”Programming by 
sketching for bitstreaming programs”, ACM SIGPLAN Conference on 
Programming Language Design and Implementation (PLDI '05), 
Chicago, IL, June 2005. 

 
 


