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Abstract—We present a method for scalable and fully 3D
magnetic field simultaneous localisation and mapping (SLAM)
using local anomalies in the magnetic field as a source of
position information. These anomalies are due to the presence of
ferromagnetic material in the structure of buildings and in objects
such as furniture. We represent the magnetic field map using a
Gaussian process model and take well-known physical properties
of the magnetic field into account. We build local maps using
three-dimensional hexagonal block tiling. To make our approach
computationally tractable we use reduced-rank Gaussian process
regression in combination with a Rao–Blackwellised particle filter.
We show that it is possible to obtain accurate position and
orientation estimates using measurements from a smartphone,
and that our approach provides a scalable magnetic field SLAM
algorithm in terms of both computational complexity and map
storage.

I. INTRODUCTION

The use of the magnetic field as a source of position infor-
mation for indoor navigation is a promising novel approach
that has gained interest in recent years [1]–[8]. It relies upon
the spatial variation of the ambient magnetic field which
is typically due to ferromagnetic material in the structures
of buildings and to a lesser extent due to the presence of
e.g. furniture. The advantage of using the magnetic field for
positioning is that it can be measured by a small device,
without additional infrastructure and without line-of-sight re-
quirements. Furthermore, magnetometers are nowadays present
in (almost) any smartphone. Crucial to this approach is the
ability to build maps of the magnetic field that can be used
for interpolation and extrapolation and the ability to localise
inside this map. In this paper, we present a scalable and
fully three-dimensional simultaneous localisation and mapping
(SLAM) approach that builds a map of the magnetic field while
simultaneously localising the sensor in the map.

Extending previous work [9], we build the magnetic field
map using Gaussian process regression [10] and incorporate
physical knowledge about the magnetic field known from
Maxwell’s equations in the Gaussian process prior. To over-
come issues with computational complexity, we use the rank-
reduced approach first presented in [11]. This results in a rep-
resentation that fits perfectly in a Rao–Blackwellised particle
filter (RBPF) [12] which can be used both for building the
map and for localisation in the map, resulting in a tractable
localisation algorithm. Example results can be found in Fig. 1.

⋆ This work was undertaken whilst MK was a Research Associate at the
Department of Engineering, University of Cambridge, and AS was a Visiting
Research Fellow at the Department of Engineering, University of Cambridge.

Fig. 1. Illustration of a magnetic field map built using our SLAM approach.
Each hexagonal block (with radius of 5 m and height of 4 m) covers a Gaussian
process magnetic map volume of ∼260 m3 in a state dimension of 256. A
more detailed map is provided in Fig. 5.

The approach presented in [11] relies on a basis function
expansion on a specific domain where the required number of
basis functions scales with the size of the domain. To allow
for mapping large 3D areas, we propose a map representa-
tion using hexagonal block tiling, which aims at providing
a very compact (in terms of required storage per volume)
representation of the magnetic field map (all three vector field
components and associated uncertainties). Using this approach,
hexagonal block tiles are created whenever particles enter
unexplored areas, resulting in a growing number of local
Gaussian process maps.

We present experimental results where we obtain mag-
netometer measurements as well as odometry from a smart-
phone. This odometry gives us information about the change
in position and orientation but the resulting pose estimates
drift over time. This drift is corrected by making use of the
magnetometer measurements and the magnetic field map. We
show that accurate 6D pose and 3D map estimates can be
obtained in large scale and 3D experiments, as illustrated in
Fig. 1.

Previous work on magnetic field SLAM typically assumes
that the motion is in 2D or 2.5D [13]–[16]. To the best of
the authors’ knowledge, this is the first fully 3D approach to
magnetic field SLAM. It is also the first time the reduced-
rank approach from [11] has been used for SLAM and that
the domain in this approach has been chosen to be hexagonal.

II. PROBLEM FORMULATION

We are interested both in estimating the position and the
orientation of the sensor and in building a map of the magnetic



field. We denote the position of the sensor at time instance t
by pw

t . The superscript w refers to the world frame. In our
SLAM formulation, it is always possible to move or rotate the
estimated map while simultaneously moving and rotating the
position and orientation estimates. In other words, the absolute
position and orientation are not observable. Because of this,
without loss of generality we choose the origin of the world
frame to be equal to the initial position of the sensor and its
axes to be aligned with the coordinate system defined by the
initial orientation.

The orientation of the sensor is denoted by qwb
t , where b

refers to the body frame. Its origin lies in the centre of the
magnetometer triad and its axes are aligned with the axes
of the magnetometer. We encode the orientation using a unit
quaternion. There is a direct mapping from the quaternion qwb

t

to the rotation matrix Rwb
t and because of this we use these

interchangeably. The double superscript wb denotes the rota-
tion from body frame to world frame. The reverse rotation is

denoted by bw and hence, Rwb
t =

(

Rbw
t

)T

.

We denote our estimate of the magnetic field map by mt.
More details about the exact form of mt can be found in
Section III-A. Note that we assume that the map of the
magnetic field does not change over time. The subscript t refers
to the fact that our belief of the map changes over time because
more data results in more information about the map.

The resulting state vector xt is given by

xt =
(

(pw
t )

T (qwb
t )T mT

t

)T

. (1)

The dynamics of the position and orientation are modelled
in terms of the change in position ∆pt and orientation ∆qt

obtained from the odometry information. We consider these
to be inputs to our dynamic model. Using the assumption that
the magnetic field does not vary over time, our dynamic model
can be written as

xt+1 =





pw
t +∆pt + εp,t

∆qt ⊙ qwb
t ⊙ expq(εq,t)
mt



 . (2)

We assume that the noise on the position (εp,t) and on the
orientation (εq,t) is Gaussian with εp,t ∼ N (0,∆Tσ2

p I3)
and εq,t ∼ N (0,∆Tσ2

q I3). Here, ∆T is the (possibly time-
varying) time between subsequent samples. In (2), ⊙ denotes
the quaternion multiplication and expq(εq,t) refers to the rep-

resentation of the noise vector εq,t ∈ R
3 as a unit quaternion.

The dynamics of the orientation qwb
t can be interpreted as the

rotation equivalent of the dynamics of the position pw
t . For

more information about quaternion algebra and representations
of orientation, see e.g. [17].

We use the magnetometer measurements to provide infor-
mation about the magnetic field map as well as the position
and orientation of the sensor. This can be modelled as

ym,t = Rbw
t ∇Φt(p

w
t )mt + εm,t. (3)

Here, ∇Φt(p
w
t )mt is the prediction of the magnetic field at the

location pw
t . More details about the specific form of ∇Φt(p

w
t )

can be found in Section III-A. Note that the magnetic field
map is represented in world frame. Hence, the magnetometer
measurements are modelled as the prediction ∇Φt(p

w
t )mt,

rotated to body frame.

Together with a prior on the state at the first time instance,
the models (2) and (3) constitute the state space model that we
use in the RBPF to estimate the state defined in (1). Because
the initial position and orientation fix the world coordinate
frame w, pw

1 and qwb
1 are set to the initial position and

orientation with zero uncertainty. The magnetic field map at the
first time instance is set to be equal to the Gaussian process
prior. More details about the Gaussian process map will be
discussed in Section III-A. The RBPF implementation will
subsequently be discussed in Section III-B.

III. METHODS

A. Gaussian process magnetic field map

Building on previous work [9], we build a Gaussian process
magnetic field map in which we encode physical knowledge
about the magnetic field. First of all, we know that the
measured magnetic field consists of the Earth’s magnetic field
and the magnetic field due to anomalies induced by small-
scale variations and building structures. Furthermore, using
Maxwell’s equations and classical electromagnetism [18], we
know that the magnetic field due to the anomalies can be
modelled using a latent scalar potential field ϕ(p). Here,
ϕ : R3 → R, where p ∈ R

3 is the spatial coordinate in world
frame and the magnetometer measures the derivative of this
scalar potential. We assume the scalar potential field to be a
realisation of a Gaussian process prior and the magnetometer
measurements to be corrupted by Gaussian noise, resulting in
the following model

ϕ(p) ∼ GP(0, κlin.(p,p
′) + κSE(p,p

′)),

ym,t = Rbw
t ∇ϕ(p)

∣

∣

p=p
w
t

+ εm,t,
(4)

where εm,t ∼ N (0, σ2
m I3), for each observation t =

1, 2, . . . , NT . The local Earth’s magnetic field contributes
linearly to the scalar potential which we model in terms of
a linear covariance function [19] as

κlin.(p,p
′) = σ2

lin. p
Tp′, (5)

where σ2
lin. is the magnitude scale hyperparameter. The mag-

netic field anomalies are captured by the squared exponential
covariance function

κSE(p,p
′) = σ2

SE exp

(

−‖p− p′‖2
2ℓ2

)

, (6)

where σ2
SE is a magnitude and ℓ the characteristic length-scale

hyperparameter. Including the additional prior information
introduced by the scalar potential in (4) results in a coupling
between the three components of the magnetic field according
to physical laws. This has been shown in [9] to improve
prediction accuracy over simply modelling each magnetic field
component separately.

Using the model (4), it is possible to predict the magnetic
field at previously unseen locations. In practice, however, this
quickly becomes computationally intractable because of the
large amount of magnetometer measurements we collect and
the fact that the computational complexity scales as O(N3

T ). A
computationally tractable solution was presented in [9] where
the problem was projected on the eigenbasis of the (negative)
Laplace operator in a confined domain Ω ⊂ R

3. In this domain,



the eigendecomposition of the Laplace operator subject to
Dirichlet boundary conditions can be solved as

{−∇2φj(p) = λ2
jφj(p), p ∈ Ω,

φj(p) = 0, p ∈ ∂Ω.
(7)

Using this eigendecomposition, it is possible to approximate
the covariance function in (4) as

κ(p,p′) = κlin.(p,p
′) + κSE(p,p

′)

≈ κlin.(p,p
′) +

m
∑

j=1

SSE(λj)φj(p)φj(p
′), (8)

where κSE(p,p
′) is approximated using m basis functions φj

and their corresponding eigenvalues λj . The exact form of φj

and λj depends on the shape of the domain Ω. Note that SSE(·)
denotes the spectral density function of the squared exponential
kernel SSE(·) for which a closed form solution exists, see [9].
Using the approximation (8) with the boundary conditions
defined in (7) implies that our model of the magnetic field
reverts back to the Earth’s magnetic field at the boundary of
the domain.

A fixed domain Ω is not desirable in SLAM, as we do
not know a priori the spatial extent of the final magnetic
field map. Furthermore, the number of basis functions that is
needed for a good approximation scales with the size of the
domain and for large scale SLAM problems will hence become
intractable. We therefore propose a scalable representation
where we split the magnetic map into a three-dimensional grid
of hexagonal blocks with radius r and height 2Lz, such that
each subdomain d is given by

Ω(d) = {p | (p1, p2) ∈ hexagon(r,p
(d)
1,2),

p3 ∈ [p
(d)
3 − Lz, p

(d)
3 + Lz]}. (9)

Here, p(d) is the center point of the dth hexagon cell in the
grid representation. The hexagonal grid provides an efficient
way of maximising the area per number of basis functions
for representing the magnetic field map, thus requiring less
memory for storing the map representation.

To compute the basis functions φj and their corresponding
eigenvalues λj , we need to solve the eigendecomposition
of the Laplace operator (7) in a two-dimensional hexagon.
This can not be solved in closed form, but instead it can
be solved numerically. We set up the eigenvalue problem
by composing the sparse stencil matrix corresponding to the
Laplacian using a nine-point finite difference approximation.
The solution itself is given by the Lanczos algorithm (see,
e.g., [20], callable in Matlab through eigs) that we use
for solving the m largest real eigenvalues [λhex

n ]2—together
with the corresponding eigenfunctions φhex

n (p). Fig. 2 shows
the 40 first eigenfunctions of the negative Laplacian in a
unit hexagonal domain with respect to Dirichlet boundary
conditions.

The eigendecomposition is extended to cover the three-
dimensional hexagonal grid cell Ω(d) by considering the nu-
merically solved horizontal eigendecomposition and a closed-
form solution to the separable vertical dimension. This choice
is motivated by the assumption that paths typically exhibit
most variation in the horizontal direction while exhibiting

Fig. 2. The first 40 eigenfunctions of the negative Laplace operator in a
hexagonal domain subject to Dirichlet boundary conditions. The eigenbasis
can be effectively solved by a numerical solver, and the calculations are only
required once.

less variation in the vertical direction. In other words, we
assume most variation to happen in horizontal cross sections
since human motion tends to be along two-dimensional planes
with less-frequent ascending and descending. None of the
computational benefits rely on this assumption, and it is also
a sensible choice for other (non-bipedal) movement.

The final eigenbasis then becomes the combination:

φj(p) = φhex
nj,1

(p1,2)

[

1√
Lz

sin

(

πnj,2(p3 + Lz)

2Lz

)]

, (10)

λ2
j = [λhex

nj,1
]2 +

(

πnj,2

2Ld

)2

, (11)

where the matrix n ∈ R
m×2 consists of an in-

dex set of permutations of integers {1, 2, . . . ,m} (i.e.,
{(1, 1), (2, 1), . . . , (1, 2), . . . , (2, 2), . . .}) corresponding to the
m largest eigenvalues.

The numerical solution for the two-dimensional hexagon is
fast and takes less than a second even with a tight discretisation
on an average laptop computer. Furthermore, because the basis
functions (10) are independent of the hyperparameters and
the input locations, they only need to be evaluated once, not
causing any computational overhead in our SLAM algorithm.

The basis function expansion described above allows us to
write the prior model for each hexagonal tile at time t = 0 in
terms of a mean m0 = 0m+3 and a covariance

P0 = diag
(

σ2
lin., σ

2
lin., σ

2
lin., SSE(λ1), SSE(λ2), . . . , SSE(λm)

)

.
(12)

The posterior can be updated sequentially [21] as new mag-
netometer data arrives at t = 1, 2, . . . , NT and can be written
as

St = CtPt−1C
T

t + σ2
m I3,

Kt = Pt−1C
T

t S
−1
t ,

mt = mt−1 +Kt(ym,t −Ct mt−1),

Pt = Pt−1 −KtStK
T

t ,

(13)

with Ct = Rbw
t ∇Φt and

∇Φt =
(

∇pT

t ,∇φ1(pt),∇φ2(pt), . . . ,∇φm(pt)
)

. (14)



Note that (13) is a Kalman filter measurement update of the
state mt representing the magnetic field map in a specific
tile. This fact will be exploited in our magnetic field SLAM
algorithm presented in Section III-B.

B. Magnetic field SLAM

As discussed in Section II, we are interested in estimating
the position and the orientation of the sensor while building
a map of the magnetic field. We represent the map in terms
of a varying number of hexagonal block tiles, each using the
basis function expansion presented in Section III-A. We use
a nonlinear filtering technique to estimate the position, the
orientation and the map of each tile that has been visited.
The state vector (1) has a relatively large dimension due to
the representation of the magnetic field map mt. For instance,
in Section IV we set the dimension of the state mt to 256 per
hexagonal block. However, mt enters conditionally linearly
into the state space model. It is possible to exploit this by using
an RBPF [12] which uses a Kalman filter for the conditionally
linear states xl

t and a particle filter for the nonlinear states xn
t

where

xn
t =

(

(pw
t )

T (qwb
t )T

)

, xl
t = {mt}ND,t

d=1 . (15)

Here, ND,t is the number of hexagonal block tiles that have
been created up to time t.

In the RBPF, i = 1, . . . , NP particles having a position

p
w,(i)
t and an orientation q

wb,(i)
t are used to represent the state

at time t. Each of the particles also contains an estimate of the

map m
(i)
t and its covariance P

(i)
t . Note that m

(i)
t consists of

the magnetic field map of each hexagonal block that particle i
has visited. We assume that each tile is independent. The
covariance of the linear state can therefore be described as
Pt = {Pt}ND,t

d=1 .

The dynamics of the state is chosen as in (2) and the
measurement model is given in (3). It is important to note that,
as discussed in Section II, the absolute position and orientation
are not observable. Because of this, we set the initial position

p
w,(i)
0 and orientation q

wb,(i)
0 of all particles i = 1, . . . , NP

equal to an initial position and orientation p
w,(i)
0 = 03,

q
wb,(i)
0 = qwb

0 . We initialise the magnetic field according to
the Gaussian process prior (see also Section III-A).

The state space model presented in Section II results in a
fairly straightforward RBPF implementation. The major differ-
ence from a standard RBPF is that each particle only updates
the local magnetic field map at its current location. Note that
the computational complexity of the algorithm scales linearly
with the number of particles and linearly with the number of
hexagonal tiles per particle. The algorithm is summarised in
Alg. 1.

In a practical magnetic field SLAM implementation care
must be taken of the following in terms of updating the map:

• To avoid boundary effects due to the Dirichlet bound-
ary conditions, the actual tile extends slightly outside
of the hexagonal block domain for updating.

• To allow for a smooth transition from one tile to the
next, particles close to the border of a tile also update
the map of the neighbouring tiles.

Alg 1: Magnetic field SLAM

Input: {ym,t,∆pw
t ,∆qt}NT

t=1, qwb
0 , Σp, Σq, m.

Output: For each t, pw
t , qwb

t , mt of the highest-weight
particle at t.

1: Initialisation: Initialise the particles as p
w,(i)
0 = 03,

q
wb,(i)
0 = qwb

0 , set m
(i)
0 = 0m+3, P

(i)
0 as given in (12)

and initialise the weights of the particles as w
(i)
0 = 1

NP
,

for i = 1, . . . NP .
2: For t = 1, . . . , NT ,

3: Create new hexagonal block tiles: If p
w,(i)
t is in a new

hexagonal block tile d, create this tile for particle i and

initialise m
(i)
d,t = 0m+3 and P

(i)
d,t as given in (12).

4: Evaluate the importance weights: For i = 1, . . . , NP ,

evaluate the importance weights w
(i)
t based on the

measurement model (3) and normalise.
5: Resampling: If 90% of the particles is in a tile that

they are revisiting, resample those particles with re-
placement.

6: Kalman filter measurement update: For i = 1, . . . , NP ,

update the magnetic field map m
(i)
d,t and its covariance

P
(i)
d,t of the hexagon d that the particle is in using the

nonlinear states p
w,(i)
t and R

wb,(i)
t according to (13). If

the particle is close to the border of a tile, also update
the map of the neighbouring tiles.

7: Obtain a point estimate: Output the position, orienta-
tion, and estimated map of the particle with the highest
weight.

8: Particle filter time update: For i = 1, . . . , NP , predict

new particles x
n,(i)
t+1 as

x
n,(i)
t+1 =

(

p
w,(i)
t +∆p

w,(i)
t + ε

(i)
p,t

∆qt ⊙ q
wb,(i)
t ⊙ expq(ε

(i)
q,t)

)

, (16)

where ε
(i)
p,t and ε

(i)
q,t are drawn from N (0,Σp) and

N (0,Σq), respectively.
9: Set t := t+ 1.

During the “exploration phase” when particles start building
a map of previously unseen locations, very little information
is available to distinguish between the particles. Because of
this, we would like to ensure that the particle cloud keeps
spreading during this phase. To this end, we adapt the RBPF
implementation in two ways:

• To maintain the particle spread during the exploration
phase, we delay the updating of the map by one
lengthscale ℓ.

• To not collapse the particle cloud too quickly, we
only resample the particles when they revisit a tile.
Resampling is further delayed until at least 90% of
the particles has arrived in a tile that they revisit.

IV. RESULTS

In the empirical experiments, we use the built-in magnetometer
and odometry data captured by a smartphone for simultane-
ously building the magnetic field map and localising on it.
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Fig. 3. The SLAM solution for walking in a square for several loops for around 250 meters. Subfigures (a)–(f) show the norm of the magnetic field map for
the highest weight particle. The transparency of the maps scales with the marginal variance of the GP map. Subfigures (g)–(i) show the corresponding vector
field components for the final map in (f). The odometry trajectory is visualised in (j), and (k) shows the 3D hexagonal tiles with a cross-section of the magnetic
field maps.

We use an Apple iPhone 6s (published in September 2015), a
previous flagship product of Apple which by current standards
represents more of a standard smartphone.

The interest in this paper is purely on building of the
map and on localisation, so we choose to leverage on the re-
cent developments in visual-inertial pedestrian dead-reckoning
(PDR) methods and use the built-in ARKit PDR provided
by Apple. ARKit (released September 2017, used version
running in iOS 11.2.5) is using the IMU and camera of the
phone to provide a 6-DoF (position and orientation) PDR
movement trajectory. ARKit does visual relocalisation under
the hood, which aims to correct for long-term drift, resulting in
discontinuities in the PDR track. These discontinuities turned
out to be more harmful than useful for our approach, and
we implemented a heuristic filtering approach for removing
the relocalisation jumps. The PDR—albeit being surprisingly
robust—suffers from long-term drift both in position and
orientation (see Fig. 3).

The data was captured by a customised data capture appli-
cation running on the phone. It collects the IMU (at 100 Hz)
and three-axis magnetometer (100 Hz) data time-locked to the
ARKit PDR estimates (60 Hz). Furthermore, the captured data
was complemented with video frames of the back-facing phone
camera (resolution 1280×720 at 60 fps), the barometric air

pressure (10 Hz), and GNSS locations captured by the phone,
none of which were used in the SLAM implementation, but
captured for validation and reference. All data was stored on
the device, downsampled to 10 Hz before use, and the SLAM
implementation was run off-line in a Mathworks MATLAB

implementation.

For simplicity and generalisability, we use the same model
parameters in all our experiments. We choose the settings for
the RBPF and the hexagonal blocks to be:

• We set the size of the hexagonal blocks to r = 5 m,
Lz = 2 m and the number of basis functions per tile
to m = 256. The radius and height used in solving the
eigenbasis of the Laplacian extends one meter outside
the hexagon.

• The number of particles in the RBPF is NP = 100.

• Neighbouring tiles are updated if samples are closer
than 10 cm to the hexagonal block boundary.

• The process noise parameters are set to Σp =
diag(0.12, 0.12, 0.022) (values specified in meters
drift per second) and Σq = diag(0.012, 0.012, 0.242)
(values specified in degrees drift per second).



In terms of memory usage, these choices mean that for each
initialised map tile, the particle state dimension grows by 256.
For fast look-up, our implementation uses a hashmap (per
particle) for storing and keeping track of the map tiles. Each
tile stores the GP mean and covariance matrix.

We use the same Gaussian process hyperparameter values
for each of the experiments. These hyperparameters are typ-
ically learned from data. However, in sequential algorithms,
hyperparameter values need to be available already before any
data is processed. We therefore choose values that seem phys-
ically reasonable and that fit the data in the different scenarios
that we consider reasonably well. We set the Gaussian process
hyperparameters defined in Section III-A to σ2

lin. = 650,
σ2

SE = 200, ℓ = 1.3, and σ2
n = 10 (the length-scale units

are meters, the magnitude parameters in µT). This assumes
that the lengthscale of the magnetic field anomalies is in the
order of 1.3 m. The measurement noise standard deviation σn

is rather high to also account for model discrepancies.

A. Illustrating magnetic field SLAM in 2D

In a first experiment, a data set is collected in the Design
& Project Office (DPO) at the Engineering Department of the
University of Cambridge. Significant excitation in the magnetic
field is present for instance due the presence of radiators and
a large number of computers. The trajectory is around 250
meters long and covers an area of around 20 × 5 m. The
same circular trajectory is traversed several times. Because of
this, it is easy to visually inspect the quality of the estimates
from our SLAM algorithm which are shown in Fig. 3. The
different subfigures illustrate the workings of our algorithm.
As a supplementary file to this paper, there is also a video1

demonstrating the workings of the SLAM algorithm.

Figs. 3(a) – 3(f) show how the estimates progress over
time. For visualisation purposes, the norm of the magnetic
field is predicted by the map of the highest weight particle at
a large number of locations in each hexagon. The transparency
in the map visualises the uncertainty of the map. It can be seen
that the uncertainty is large in unexplored regions (no map is
actually visible) and that the uncertainty of the map decreases
over time in the re-visited regions.

The black line displays the trajectory of the highest weight
particle. In Figs. 3(a) and (b), the deliberate slight delay
in updating the map can clearly be seen. As discussed in
Section III-B, we wait with resampling until at least 90% of the
particles is in a tile that they have previously updated and left.
Because of this, no resampling is done in the first loop, until
around 50 seconds and the spread in the particles in Fig. 3(c)
is therefore fairly large. This allows the algorithm to properly
close the loop as visualised in Fig. 3(d). Another aspect to note
about our algorithm is that in Fig. 3(c), most particles are on
the border between the tile in which the trajectory was started
and a new tile below. To allow for smooth transitions between
these two tiles, many of the particles will in this case update
the local magnetic field maps in both tiles.

The map that is visualised in Figs. 3(a) – (f), shows the
norm of the predicted magnetic field. Our model (4), however,

1The supplementary video is available on YouTube:
https://youtu.be/pbwWLoh6mvI

Fig. 4. Example showing the three-dimensional nature of our SLAM
algorithm. The path covers a flight of stairs in the University of Cambridge
Engineering Department. The complete path length is 125 meters. The cross-
sections of the tiles show the magnetic map norm (the color scale is the same
as in Fig. 3(f)).

explicitly models the magnetic field as a three-dimensional
vector. Instead of visualising the norm of the predicted mag-
netic field, it is therefore also possible to visualise the predicted
magnetic field in three directions. This is shown in Figs. 3(g) –
(i). Because the dip angle of the Earth’s magnetic field is fairly
large in Cambridge, UK, the z-component of the magnetic
field is of significantly larger magnitude than the x- and y-
components.

Based on Fig. 3(f) it can be concluded that our SLAM
algorithm estimates the trajectory with high accuracy since
the same trajectory can be seen to be traversed multiple times.
For comparison, we also show the odometry in Fig. 3(j) which
clearly shows a drift in the position. Our magnetic SLAM
approach is able to correct for this drift. To illustrate the fact
that even though the movement for this data set is in a 2D
plane the estimation is still done in 3D, the tilted 3D view is
shown in Fig. 3(k).

B. Fully 3D magnetic field SLAM

In Section IV-A, the movement was close to two-dimensional.
However, exactly the same procedure also applies to movement
and block tile structures in three dimensions. In Fig. 4 we
show the estimated trajectory and the magnetic field map
for an empirical experiment in which we first walked up
and subsequently down a set of stairs at the Engineering
Department of the University of Cambridge.

Again, each hexagonal block has its own local magnetic
field map. To visualise these, the norm of the predicted
magnetic field for a hexagonal slice in the middle of each
block is shown. The transparency visualises the uncertainty of
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Fig. 5. The SLAM map solution for a large-scale outdoor–indoor example.
The visualised color field is the norm of the magnetic field, and the opacity
follows the uncertainty. The layout corresponds to that of Fig. 1.

the map. Just as in the results presented in Section IV-A, our
algorithm only starts to resample particles on the way down
the stairs. This results in an estimated path that is fairly similar
in both directions.

C. Large-scale magnetic field SLAM

In a third empirical data set we walk around St. John’s college
in Cambridge. The college consists of several courts and even
though the data set is captured outdoors, the close proximity
of the buildings results in small magnetic field anomalies
that can be used for localisation. The SLAM results were
previously presented in Fig. 1 and are presented in more
detail in Fig. 5. The map extends over 27 tiles covering
the courtyard. For many algorithms the extent of the data
set would therefore be prohibitively large. However, due to
our computationally efficient model in terms of hexagonal
tiling, our approximate Gaussian process model and the RBPF
algorithm, the computations remain feasible. It can therefore
be concluded from Fig. 5 that our approach scales to large-
scale magnetic field SLAM.

V. CONCLUSIONS AND FUTURE WORK

We have presented a scalable algorithm for magnetic field
SLAM in 3D. It builds local Gaussian process maps where
each map is an approximation to the local full GP solution
in terms of a basis function expansion. This approximation
allows us to map a magnetic map volume of ∼ 260 m3 in
a state dimension of only 256. Each local map is modelled
in terms of a hexagonal block tile, which minimises the
number of tiles that are needed to cover the total mapping
volume. The formulation fits perfectly in an RBPF resulting
in a computationally tractable algorithm. The computational
complexity scales linearly both with the number of particles
in the particle filter and with the number of hexagonal tiles
of each particle. The algorithm is shown to perform well on
three challenging empirical data sets.

One of the challenges in the data we used for testing, is that
the odometry we obtain from the ARKit does not always obey

our motion model. More specifically, for straight paths the
odometry shows almost no drift, while fast turns can introduce
sudden errors. This does not follow our motion model in
which we model a constant process noise. In future work we
would like to focus on using inertial PDR as odometry instead.
Apart from avoiding these issues, this would also result in a
positioning algorithm only based on widely available inertial
and magnetometer sensors. Other directions of future work
are in the direction of using a Rao–Blackwellised Particle
Smoother and further reducing the computational complexity
of the algorithm.
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