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Abstract
Marginalization of latent variables or nuisance parameters is a fundamental aspect of Bayesian inference and uncertainty

quantification. In this work, we focus on scalable marginalization of latent variables in modeling correlated data, such
as spatio-temporal or functional observations. We first introduce Gaussian processes (GPs) for modeling correlated data
and highlight the computational challenge, where the computational complexity increases cubically fast along with the
number of observations. We then review the connection between the state space model and GPs with Matérn covariance
for temporal inputs. The Kalman filter and Rauch-Tung-Striebel smoother were introduced as a scalable marginalization
technique for computing the likelihood and making predictions of GPs without approximation. We then introduce recent
efforts on extending the scalable marginalization idea to the linear model of coregionalization for multivariate correlated
output and spatio-temporal observations. In the final part of this work, we introduce a novel marginalization technique
to estimate interaction kernels and forecast particle trajectories. The achievement lies in the sparse representation of
covariance function, then applying conjugate gradient for solving the computational challenges and improving predictive
accuracy. The computational advances achieved in this work outline a wide range of applications in molecular dynamic
simulation, cellular migration, and agent-based models.

keywords and phrases: Marginalization, Bayesian inference, Scalable computation, Gaussian process, Kalman filter,
Particle interaction.

1. INTRODUCTION

Given a set of latent variables in a model, do we fit a
model with a particular set of latent variables, or do we in-
tegrate out the latent variables when making predictions?
Marginalization of latent variables is an iconic feature of
the Bayesian analysis. The art of marginalization in statis-
tics can at least be traced back to the De Finetti’s theorem
[12], which states that an infinite sequence {Xi}∞i=1 is ex-
changeable, if and if only if there exists a random variable
θ ∈ Θ with probability distribution π(·), and a conditional
distribution p(· | θ), such that

p(x1, ..., xN ) =

∫ { N∏
i=1

p(xi | θ)

}
π(θ)dθ. (1.1)

Marginalization of nuisance parameters for models with in-
dependent observations has been comprehensively reviewed
in [8]. Bayesian model selection [6, 4] and Bayesian model
averaging [42], as two other examples, both rely on the
marginalization of parameters in each model.

For spatially correlated data, the Jefferys prior of the co-
variance parameters in a Gaussian process (GP), which is
proportional to the squared root of the Fisher information
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matrix of the likelihood, often leads to improper posteri-
ors [7]. The posterior of the covariance parameter becomes
proper if the prior is derived based on the Fisher informa-
tion matrix of the marginal likelihood, after marginalizing
out the mean and variance parameters. The resulting prior,
after marginalization, is a reference prior, which has been
studied for modeling spatially correlated data and computer
model emulation [39, 46, 28, 20, 37].

Marginalization of latent variables has lately been aware
by the machine learning community as well, for purposes
of uncertainty quantification and propagation. In [29], for
instance, the deep ensembles of models with a scoring func-
tion were proposed to assess the uncertainty in deep neural
networks, and it is closely related to Bayesian model averag-
ing with a uniform prior on parameters. This approach was
further studied in [64], where the importance of marginal-
ization is highlighted. Neural networks with infinite depth
were shown to be equivalent to a GP with a particular ker-
nel function in [38], and it was lately shown in [32] that the
results of deep neural networks can be reproduced by GPs,
where the latent nodes are marginalized out.

In this work, we study the marginalization of latent vari-
ables for correlated data, particularly focusing on scalable
computation. Gaussian processes have been ubiquitously
used for modeling spatially correlated data [3] and emulat-
ing computer experiments [50]. Computing the likelihood in
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GPs and making predictions, however, cost O(N3) opera-
tions, where N is the number of observations, due to find-
ing the inverse and determinant of the covariance matrix.
To overcome the computational bottleneck, various approx-
imation approaches, such as inducing point approaches [54],
fixed rank approximation [10], integrated nested Laplace ap-
proximation [48], stochastic partial differential equation rep-
resentation [33], local Gaussian process approximation [15],
and hierarchical nearest-neighbor Gaussian process mod-
els [11], circulant embedding [55], many of which can be
summarized into the framework of Vecchia approximation
[59, 27]. Scalable computation of a GP model with a multi-
dimensional input space and a smooth covariance function
is of great interest in recent years.

The exact computation of GP models with smaller com-
putational complexity was less studied in past. To fill this
knowledge gap, we will first review the stochastic differen-
tial equation representation of a GP with the Matérn co-
variance and one-dimensional input variable [63, 22], where
the solution can be written as a dynamic linear model [62].
Kalman filter and Rauch–Tung–Striebel smoother [26, 45]
can be implemented for computing the likelihood function
and predictive distribution exactly, reducing the computa-
tional complexity of GP using a Matérn kernel with a half-
integer roughness parameter and 1D input from O(N3) to
O(N) operations. Here, interestingly, the latent states of a
GP model are marginalized out in Kalman Filter iteratively.
Thus the Kalman filter can be considered as an example of
marginalization of latent variables, which leads to efficient
computation. Note that the Kalman filter is not directly ap-
plicable for GP with multivariate inputs, yet GPs with some
of the widely used covariance structures, such as the product
or separable kernel [5] and linear model of coregionalization
[3], can be written as state space models on an augmented
lattice [18, 17]. Based on this connection, we introduce a few
extensions of scalable marginalization for modeling incom-
plete matrices of correlated data.

The contributions of this work are twofold. First, the
computational scalability and efficiency of marginalizing la-
tent variables for models of correlated data and functional
data are less studied. Here we discuss the marginalization
of latent states in the Kalman filter in computing the like-
lihood and making predictions, with only O(N) computa-
tional operations. We discuss recent extensions on struc-
tured data with multi-dimensional input. Second, we de-
velop new marginalization techniques to estimate interac-
tion kernels of particles and to forecast trajectories of parti-
cles, which have wide applications in agent-based models [9],
cellular migration [23], and molecular dynamic simulation
[43]. The computational gain comes from the sparse repre-
sentation of inverse covariance of interaction kernels, and
the use of the conjugate gradient algorithm [24] for iterative
computation. Specifically, we reduce the computational or-
der from O((nMDL)3)+O(n4L2M2D) operations in recent
studies [34, 13] to O(Tn2MDL) +O(n2MDL log(nMDL))

operations based on training data of M simulation runs,
each containing n particles in a D dimensional space at L
time points, with T being the number of iterations in the
sparse conjugate gradient algorithm. This allows us to es-
timate interaction kernels of dynamic systems with many
more observations. Here the sparsity comes from the use of
the Matérn kernel, which is distinct from any of the approx-
imation methods based on sparse covariance structures.

The rest of the paper is organized below. We first intro-
duce the GP as a surrogate model for approximating com-
putationally expensive simulations in Section 2. The state
space model representation of a GP with Matérn covari-
ance and temporal input is introduced in Section 3.1. We
then review the Kalman filter as a computationally scal-
able technique to marginalize out latent states for comput-
ing the likelihood of a GP model and making predictions
in Section 3.2. In Section 3.3, we discuss the extension of
latent state marginalization in linear models of coregional-
iztion for multivariate functional data, spatial and spatio-
temporal data on the incomplete lattice. The new computa-
tionally scalable algorithm for estimating interaction kernel
and forecasting particle trajectories is introduced in Sec-
tion 4. We conclude this study and discuss a few potential
research directions in Section 5. The code and data used
in this paper are publicly available: https://github.com/
UncertaintyQuantification/scalable marginalization.

2. BACKGROUND: GAUSSIAN PROCESS

We briefly introduce the GP model in this section. We
focus on computer model emulation, where the GP emulator
is often used as a surrogate model to approximate computer
experiments [52]. Consider a real-valued unknown function
z(·), modeled by a Gaussian stochastic process (GaSP) or
Gaussian process (GP), z(·) ∼ GP(µ(·), σ2K(·, ·)), meaning
that, for any inputs {x1, . . . ,xN} (with xi being a p × 1
vector), the marginal distribution of z = (z(x1), ..., z(xN ))T

follows a multivariate normal distribution,

z | β, σ2, γ ∼MN (µ, σ2R) , (2.1)

where µ = (µ(x1), ..., µ(xN ))T is a vector of mean or trend
parameters, σ2 is the unknown variance and R is the cor-
relation matrix with the (i, j) element modeled by a kernel
K (xi,xj) with parameters γ. It is common to model the
mean by µ(x) = h(x)β , where h(x) is a 1× q row vector of
basis function, and β is a q × 1 vector of mean parameters.

When modeling spatially correlated data, the isotropic
kernel is often used, where the input of the kernel only de-
pends on the Euclidean distance K(xa,xb) = K(||xa−xb||).
In comparison, each coordinate of the latent function in
computer experiments could have different physical mean-
ings and units. Thus a product kernel is often used in con-
structing a GP emulator, such that correlation lengths can
be different at each coordinate. For any xa = (xa1, . . . , xap)
and xb = (xb1, . . . , xbp), the kernel function can be written

https://github.com/UncertaintyQuantification/scalable_marginalization
https://github.com/UncertaintyQuantification/scalable_marginalization
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as K(xa,xb) = K1(xa1, xb1) × ... ×Kp(xap, xbp), where Kl

is a kernel for the lth coordinate with a distinct range pa-
rameter γl, for l = 1, ..., p. Some frequently used kernels Kl

include power exponential and Matérn kernel functions [44].
The Matérn kernel, for instance, follows

Kl(dl) =
1

2νl−1Γ(νl)

(√
2νldl
γl

)νl
Kνl

(√
2νldl
γl

)
, (2.2)

where dl = |xal−xbl|, Γ(·) is the gamma function, Kνl(·/γl)
is the modified Bessel function of the second kind with the
range parameter and roughness parameter being γl and νl,
respectively. The Matérn correlation has a closed-form ex-
pression when the roughness parameter is a half-integer, i.e.
νl = 2kl + 1/2 with kl ∈ N. It becomes the exponential cor-
relation and Gaussian correlation, when kl = 0 and kl →∞,
respectively. The GP with Matérn kernel is bνl − 1c mean
square differentiable at coordinate l. This is a good property,
as the differentiability of the process is directly controlled
by the roughness parameter.

Denote mean basis of observations H =
(hT (x1), ...,hT (xN ))T . The parameters in GP contain
mean parameters β, variance parameter σ2, and range
parameters γ = (γ1, ..., γp). Integrating out the mean
and variance parameters with respect to reference prior
π(β, σ) ∝ 1/σ2, the predictive distribution of any input x∗

follows a student t distribution [20]:

z(x∗) | z, γ ∼ T (ẑ(x∗), σ̂2K∗∗, N − q) , (2.3)

with N − q degrees of freedom, where

ẑ(x∗) =h(x∗)β̂ + rT (x∗)R−1
(
z−Hβ̂

)
, (2.4)

σ̂2 =(N − q)−1
(
z−Hβ̂

)T
R−1

(
z−Hβ̂

)
, (2.5)

K∗∗ =K(x∗,x∗)− rT (x∗)R−1r(x∗) + h∗(x∗)T

×
(
HTR−1H

)−1
h∗(x∗), (2.6)

with β̂ =
(
HTR−1 H

)−1
HTR−1z being the gen-

eralized least squares estimator of β, r(x∗) =
(K(x∗,x1), . . . ,K(x∗,xN ))T and h∗(x∗) =(
h(x∗)−HTR−1r(x∗)

)
.

Direct computation of the likelihood requires O(N3) op-
erations due to computing the Cholesky decomposition of
the covariane matrix for matrix inversion, and the determi-
nant of the covariance matrix. Thus a posterior sampling
algorithm, such as the Markov chain Monte Carlo (MCMC)
algorithm can be slow, as it requires a large number of pos-
terior samples. Plug-in estimators, such as the maximum
likelihood estimator (MLE) were often used to estimate the
range parameters γ in covariance. In [20], the maximum
marginal posterior estimator (MMPE) with robust parame-
terizations was discussed to overcome the instability of the
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Figure 1: Predictions by the GP emulator of a function on
2D inputs with N = 12 and N = 24 observations (black
circles) are shown in the left and right panels, respectively.

MLE. The MLE and MMPE of the parameters in a GP em-
ulator with both the product kernel and the isotropic kernel
are all implemented in the RobustGaSP package [19].

In some applications, we may not directly observe the
latent function but a noisy realization:

y(x) = z(x) + ε(x), (2.7)

where z(.) is modeled as a zero-mean GP with covariance
σ2K(., .), and ε(x) ∼ N (0, σ2

0) follows an independent Gaus-
sian noise. This model is typically referred to as the Gaus-
sian process regression [44], which is suitable for scenarios
containing noisy observations, such as experimental or field
observations, numerical solutions of differential equations
with non-negligible error, and stochastic simulations. De-
note the noisy observations y = (y(x1), y(x2), ..., y(xN ))T at
design {x1,x2, ...,xN} and the nugget parameter η = σ2

0/σ
2.

Both range and nugget parameters in GPR can be estimated
by the plug-in estimators [19]. The predictive distribution of
f(x∗) at any input x∗ can be obtained by replacing R with
R̃ = R + ηIn in Equation (2.3).

Constructing a GP emulator to approximate computer
simulation typically starts with a “space-filling” design, such
as the Latin hypercube sampling (LHS), to fill the input
space. Numerical solutions of computer models were then
obtained at these design points, and the set {(xi, yi)}Ni=1 is
used for training a GP emulator. For any observed input x∗,
the predictive mean in (2.3) is often used for predictions, and
the uncertainty of observations can be obtained through the
predictive distribution. To demonstrate the increased accu-
racy with more inputs, we plot the predictive mean of a GP
emulator to approximate the Branin function [56] with N
training inputs sampled from LHS, using the default setting
of the RobustGaSP package [19]. When the number of ob-
servations increases from N = 12 (middle panel) to N = 24
(right panel), the predictive error becomes smaller.

The computational complexity of GP models increases at
the order of O(N3), which prohibits applications on emulat-
ing complex computer simulations, when a relatively large
number of simulation runs are required. In the next sec-
tion, we will introduce the state space representation of GP
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with Matérn covariance and one-dimensional input, where
the computational order scales as O(N) without approxi-
mation. This method can be applied to problems with high
dimensional input space discussed in Section 4.

3. MARGINALIZATION IN KALMAN FILTER

3.1 State space representation of GP with the
Matérn kernel

Suppose we model the observations by Equation (2.7)
where the latent process z(.) is assumed to follow a GP on
1D input. For simplicity, here we assume a zero mean pa-
rameter (µ = 0), and a mean function can be easily included
in the analysis. It has been realized that a GP defined in 1D
input space using a Matérn covariance with a half-integer
roughness parameter input can be written as stochastic dif-
ferential equations (SDEs) [63, 22], which can reduce the op-
erations of computing the likelihood and making predictions
from O(N3) to O(N) operations, with the use of Kalman
filter. Here we first review SDE representation and then we
discuss marginalization of latent variables in the Kalman
filter algorithm for scalable computation.

When the roughness parameter is ν = 5/2, for instance,
the Matérn kernel has the expression below

K(d) =

(
1 +

√
5d

γ
+

5d2

3γ2

)
exp

(
−
√

5d

γ

)
, (3.1)

where d = |xa − xb| is the distance between any xa, xb ∈ R
and γ is a range parameter typically estimated by data. The
output and two derivatives of the GP with the Matérn kernel
in (3.1) can be written as the SDE below,

dθ(x)

dx
= Jθ(x) + Lε(x), (3.2)

or in the matrix form,

d

dx

 z(x)
z(1)(x)
z(2)(x)

 =

 0 1 0
0 0 1
−λ3 −3λ2 −3λ

 z(x)
z(1)(x)
z(2)(x)

+

0
0
1

 ε(x),

where ε(x) ∼ N(0, σ2), with λ =
√
2ν
γ =

√
5
γ , and z(l)(·) is

the lth derivative of the process z(·). Denote c = 16
3 σ

2λ5

and F = (1, 0, 0). Assume the 1D input is ordered, i.e. x1 ≤
x2 ≤ ... ≤ xN . The solution of SDE in (3.2) can be expressed
as a continuous-time dynamic linear model [61],

y(xi) = Fθ(xi) + ε,

θ(xi) = G(xi)θ(xi−1) + w(xi),
(3.3)

where w(xi) ∼ MN (0,W(xi)) for i = 2, ..., N , and
the initial state follows θ(x1) ∼ MN (0,W(x1)). Here

G(xi) = eJ(xi−xi−1) and W(xi) =
∫ xi−xi−1

0
eJtLcLT eJ

T tdt
from i = 2, ..., N , and stationary distribution θ(xi) ∼

MN (0,W(x1)), with W(x1) =
∫∞
0
eJtLcLT eJ

T tdt. Both
G(xi) and W(xi) have closed-form expressions given in the
Appendix A.1. The joint distribution of the states follows(
θT (x1), ...,θT (xN )

)T ∼ MN (0,Λ−1), where the inverse
covariance Λ is a block tri-diagonal matrix discussed in Ap-
pendix A.1.

3.2 Kalman filter as a scalable marginalization
technique

For dynamic linear models in (3.3), Kalman filter and
Rauch–Tung–Striebel (RTS) smoother can be used as an
exact and scalable approach to compute the likelihood,
and predictive distributions. The Kalman filter and RTS
smoother are sometimes called the forward filtering and
backward smoothing/sampling algorithm, widely used in
dynamic linear models of time series. We refer the readers
to [61, 41] for discussion of dynamic linear models.

Write G(xi) = Gi, W(xi) = Wi, θ(xi) = θi and
y(xi) = yi for i = 1, ..., N . In Lemma 1, we summarize
Kalman filter and RTS smoother for the dynamic linear
model in (3.3). Compared with O(N3) computational op-
erations and O(N2) storage cost from GPs, the outcomes
of Kalman filter and RTS smoother can be used for com-
puting the likelihood and predictive distribution with O(N)
operations and O(N) storage cost, summarized in Lemma
1. All the distributions in Lemma 1 and Lemma 2 are condi-
tional distributions given parameters (γ, σ2, σ2

0), which are
omitted for simplicity.

Lemma 1 (Kalman Filter and RTS Smoother [26, 45]).

1. (Kalman Filter.) Let θi−1|y1:i−1 ∼MN (mi−1,Ci−1).
For i = 2, ..., N , iteratively we have,

(i) the one-step-ahead predictive distribution of θi given
y1:i−1,

θi|y1:i−1 ∼MN (bi,Bi), (3.4)

with bi = Gimi−1 and Bi = GiCi−1G
T
i + Wi,

(ii) the one-step-ahead predictive distribution of Yi given
y1:i−1,

Yi|y1:i−1 ∼ N (fi, Qi), (3.5)

with fi = Fbi, and Qi = FBiF
T + σ2

0,
(iii) the filtering distribution of θi given y1:i,

θi|y1:i ∼MN (mi,Ci), (3.6)

with mi = bi + BiF
TQ−1i (yi − fi) and Ci = Bi −

BiF
TQ−1i FBi.

2. (RTS Smoother.) Denote θi+1|y1:n ∼ N (si+1, Si+1),
then recursively for i = N − 1, ..., 1,

θi|y1:N ∼MN (si,Si), (3.7)

where si = mi + CiG
T
i+1B

−1
i+1(si+1 − bi+1) and Si = Ci −

CiG
T
i+1B

−1
i+1(Bi+1 − Si+1)B−1i+1Gi+1Ci.
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Lemma 2 (Likelihood and predictive distribution).
1. (Likelihood.) The likelihood follows

p(y1:N | σ2, σ2
0 , γ) =

{
N∏
i=1

(2πQi)
− 1

2

}
exp

{
−

N∑
i=1

(yi − fi)2

2Qi

}
,

where fi and Qi are given in Kalman filter. The likelihood
can be used to obtain the MLE of the parameters (σ2, σ2

0 , γ).
2. (Predictive distribution.)

(i) By the last step of Kalman filter, one has θN |y1:N and
recursively by the RTS smoother, the predictive distri-
bution of θi for i = N − 1, ..., 1 follows

θi|y1:N ∼MN (si,Si). (3.8)

(ii) For any x∗ (W.l.o.g. let xi < x∗ < xi+1)

θ(x∗) | y1:N ∼MN
(
θ̂(x∗), Σ̂(x∗)

)
where θ̂(x∗) = G∗i si + W∗

i (G
∗
i+1)T (W̃∗

i+1)−1(si+1 −
G∗i+1G

∗
i si) and Σ̂(x∗) = ((W∗

i )
−1 +

(G∗i+1)T (W∗
i+1)−1G∗i+1)−1 with terms denoted with ‘*’

given in the Appendix A.1.

Although we introduce the Matérn kernel with ν = 5/2
as an example, the likelihood and predictive distribution of
GPs with the Matérn kernel of a small half-integer rough-
ness parameter can be computed efficiently, for both equally
spaced and not equally spaced 1D inputs. For the Matérn
kernel with a very large roughness parameter, the dimen-
sion of the latent states becomes large, which makes efficient
computation prohibitive. In practice, the Matérn kernel with
a relatively large roughness parameter (e.g. with ν = 5/2)
is found to be accurate for estimating a smooth latent func-
tion in computer experiments [20, 2]. Because of this reason,
the Matérn kernel with ν = 5/2 is the default choice of the
kernel function in some packages of GP emulators [47, 19].

For a model containing latent variables, one may proceed
with two usual approaches:

(i) sampling the latent variables θ(xi) from the posterior
distribution by the MCMC algorithm,

(ii) optimizing the latent variables θ(xi) to minimize a loss
function.

For approach (i), the MCMC algorithm is usually much
slower than the Kalman filter, as the number of the latent
states is high, requiring a large number of posterior samples
[17]. On the other hand, the prior correlation between states
may not be taken into account directly in approach (ii),
making the estimation less efficient than the Kalman filter,
if data contain correlation across latent states. In compari-
son, the latent states in the dynamic linear model in (3.3)
are iteratively marginalized out in Kalman filter, and the
closed-form expression is derived in each step, which only
takes O(N) operations and storage cost, with N being the
number of observations.
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Figure 2: Comparison between the direct computation of
GP, and that by the Kalman filter (KF) and RTS smoother,
both having the Matérn kernel in (3.1). The left panel shows
the computational cost of computing the predictive mean
over different number of observations. When N = 5000,
direct computation takes around 20 seconds, whereas the
computation by KF and RTS smoother takes 0.029 seconds.
The predictive mean computed in both ways is plotted in
the right panel when N = 1, 000, where the root of mean
squared difference between two approaches is 5.98× 10−12.

In practice, when a sensible probability model or a prior
of latent variables is considered, the principle is to integrate
out the latent variables when making predictions. Posterior
samples and optimization algorithms, on the other hand,
can be very useful for approximating the marginal likeli-
hood when closed-form expressions are not available. As
an example, we will introduce applications that integrate
the sparse covariance structure along with conjugate gradi-
ent optimization into estimating particle interaction kernels,
and forecasting particle trajectories in Section 4, which in-
tegrates both marginalization and optimization to tackle a
computationally challenging scenario.

In Figure 2, we compare the cost for computing the pre-
dictive mean for a nonlinear function with 1D inputs [16].
The input is uniformly sampled from [0.5, 0.25], and an in-
dependent Gaussian white noise with a standard deviation
of 0.1 is added in simulating the observations. We com-
pare two ways of computing the predictive mean. The first
approach implements direct computation of the predictive
mean by Equation (2.4). The second approach is computed
by the likelihood function and predictive distribution from
Lemma 2 based on the Kalman filter and RTS smoother.
The range and nugget parameters are fixed to be 0.5 and
10−4 for demonstration purposes, respectively. The compu-
tational time of this simulated experiment is shown in the
left panel in Figure 2. The approach based on Kalman filter
and RTS smoother is much faster, as computing the like-
lihood and making predictions by Kalman filter and RTS
smoother only require O(N) operations, whereas the direct
computation cost O(N3) operations. The right panel gives
the predictive mean, latent truth, and observations, when
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N = 1000. The difference between the two approaches is
very small, as both methods are exact.

3.3 Marginalization of correlated matrix
observations with multi-dimensional inputs

The Kalman filter is widely applied in signal processing,
system control, and modeling time series. Here we introduce
a few recent studies that apply Kalman filter to GP models
with Matérn covariance to model spatial, spatio-temporal,
and functional observations.

Let y(x) = (y1(x), ..., yn1
(x))T be an n1-dimensional

real-valued output vector at a p-dimensional input vector
x. For simplicity, assume the mean is zero. Consider the
latent factor model:

y(x) = Az(x) + ε(x), (3.9)

where A = [a1, ...,ad] is an n1 × d factor loading ma-
trix and z(x) = (z1(x), ..., zd(x))T is a d-dimensional
factor processes, with d ≤ n1. The noise process fol-
lows ε(x) ∼ N (0, σ2

0In1). Each factor is modeled by a
zero-mean Gaussian process (GP), meaning that Zl =
(zl(x1), ..., zl(xn2

)) follows a multivariate normal distribu-
tion ZTl ∼ MN (0,Σl), where the (i, j) entry of Σl is
parameterized by a covariance function σ2

lKl(xi,xj) for
l = 1, ..., d. The model (3.9) is often known as the semipara-
metric latent factor model in the machine learning commu-
nity [53], and it belongs to a class of linear models of core-
gionalization [3]. It has a wide range of applications in mod-
eling multivariate spatially correlated data and functional
observations from computer experiments [14, 25, 40].

We have the following two assumptions for model (3.9).

Assumption 1. The prior of latent processes zi(.) and zj(.)
are independent, for any i 6= j.

Assumption 2. The factor loadings are orthogonal, i.e.
ATA = Id.

The first assumption is typically assumed for modeling
multivariate spatially correlated data or computer experi-
ments [3, 25]. Secondly, note that the model in (3.9) is un-
changed if we replace (A, z(x)) by (AE,E−1z(x)) for an
invertible matrix E, meaning that the linear subspace of A
can be identified if no further constraint is imposed. Further-
more, as the variance of each latent process σ2

i is estimated
by the data, imposing the unity constraint on each column of
A can reduce identifiability issues. The second assumption
was also assumed in other recent studies [31, 30].

Given Assumption 1 and Assumption 2, we review recent
results that alleviates the computational cost. Let us first
assume the observations are an N = n1 × n2 matrix Y =
[y(x1), ...,y(xn2)].

Lemma 3 (Posterior independence and orthogonal projec-
tion [17]). For model (3.9) with Assumption 1 and Assump-
tion 2, we have two properties below.

1. (Posterior Independence.) For any l 6= m

Cov[ZTl ,Z
T
m|Y] = 0,

and for each l = 1, ..., d,

ZTl |Y ∼MN (µZl
,Σzl),

where µzl = ΣlΣ̃
−1
l ỹl, ỹl = YTal and ΣZl

= Σl−ΣlΣ̃
−1
l Σl

with Σ̃l = Σl + σ2
0In2

.
2. (Orthogonal projection.) After integrating z(·), the
marginal likelihood is a product of multivariate normal den-
sities at projected observations:

p(Y) =

d∏
l=1

PN (ỹl; 0, Σ̃l)

n1∏
l=d+1

PN (ỹc,l; 0, σ
2
0In2), (3.10)

where ỹc,l = YTac,l with ac,l being the lth column of Ac,
the orthogonal component of A, and PN denotes the density
for a multivariate normal distribution.

The properties in Lemma 3.9 lead to computationally
scalable expressions of the maximum marginal likelihood es-
timator (MMLE) of factor loadings.

Theorem 1 (Generalized probabilistic principal component
analysis [18]). Assume ATA = Id, after marginalizing out
ZTl ∼ MN (0,Σl) for l = 1, 2, ..., d, we have the results
below.

• If Σ1 = ... = Σd = Σ, the marginal likelihood is maxi-
mized when

Â = US, (3.11)

where U is an n1 × d matrix of the first d principal
eigenvectors of G = Y(σ2

0Σ
−1 + In2)−1YT and S is a

d× d orthogonal rotation matrix;
• If the covariances of the factor processes are different,

denoting Gl = Y(σ2
0Σ
−1
l + In2

)−1YT , the MMLE of
factor loadings is

Â = argmaxA

d∑
l=1

aTl Glal, s.t. ATA = Id. (3.12)

The estimator A in Theorem 1 is called the generalized
probabilistic principal component analysis (GPPCA). The
optimization algorithm that preserves the orthogonal con-
straints in (3.12) is available in [60].

In [58], the latent factor is assumed to follow independent
standard normal distributions, and the authors derived the
MMLE of the factor loading matrix A, which was termed
the probabilistic principal component analysis (PPCA). The
GPPCA extends the PPCA to correlated latent factors mod-
eled by GPs, which incorporates the prior correlation infor-
mation between outputs as a function of inputs, and the
latent factor processes were marginalized out when estimat-
ing the factor loading matrix and other parameters. When
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the input is 1D and the Matérn covariance is used for mod-
eling latent factors, the computational order of GPPCA is
O(Nd), which is the same as the PCA. For correlated data,
such as spatio-temporal observations and multivariate func-
tional data, GPPCA provides a flexible and scalable ap-
proach to estimate factor loading by marginalizing out the
latent factors [18].

Spatial and spatio-temporal models with a separable co-
variance can be written as a special case of the model in
(3.9). For instance, suppose d = n1 and the n1 × n2 la-
tent factor matrix follows Z ∼ MN (0, σ2R1 ⊗R2), where
R1 and R2 are n1 × n1 and n2 × n2 subcovariances, re-
spectively. Denote the eigen decomposition R1 = V1Λ1V

T
1

with Λ1 being a diagonal matrix with the eigenvalues λi,
for i = 1, ..., n1. Then this separable model can be written
as the model in (3.9), with A = V1, Σl = σ2λlR2. The
connection suggests that the latent factor loading matrix
can be specified as the eigenvector matrix of a covariance
matrix, parameterized by a kernel function. This approach
is studied in [17] for modeling incomplete lattice with irreg-
ular missing patterns, and the Kalman filter is integrated
for accelerating computation on massive spatial and spatio-
temporal observations.

4. SCALABLE MARGINALIZATION IN
DYNAMIC SYSTEMS OF PARTICLE

INTERACTIONS AND TRAJECTORIES

Collective motions with particle interactions are very
common in both microscopic and macroscopic systems
[35, 36]. Learning interaction kernels between particles is
important for two purposes. First, physical laws are less
understood for many complex systems, such as cell migra-
tion or non-equilibrium thermodynamic processes. Estimat-
ing the interaction kernels between particles from fields or
experimental data is essential for learning these processes.
Second, simulation of particle interactions, such as ab initio
molecular dynamics simulation, can be very computation-
ally expensive. Statistical learning approaches can be used
for reducing the computational cost of simulations.

For demonstration purposes, we consider a simple first-
order system. In [34], for a system with n interacting par-
ticles, the velocity of the ith particle at time t, vi(t) =
dxi(t)/dt, is modeled by positions between all particles,

vi(t) =

n∑
j=1

φ(||xj(t)− xi(t)||)ui,j(t), (4.1)

where φ(·) is a latent interaction kernel function between
particle i and all other particles, with || · || being the Eu-
clidean distance, and ui,j(t) = xj(t) − xi(t) is a vector
of differences between positions of particles i and j, for
i, j = 1, ..., n. Here φ(·) is a two-body interaction. In molec-
ular dynamics simulation, for instance, the derivative of the

Lennard-Jones potential is sometimes used to model molec-
ular forces, and the acceleration of molecules can be de-
rived in a second-order system. The statistical learning ap-
proach can be extended to a second-order system that in-
volves acceleration and external force terms. The first-order
system as (4.1) can be considered as an approximation of the
second-order system. Furthermore, the interaction between
particles is global, as any particle is affected by all other par-
ticles. Learning global interactions is more computationally
challenging than local interactions [51], and approximating
the global interaction by the local interaction is of interest
in future studies.

One important goal is to efficiently estimate the unob-
servable interaction functions from the particle trajectory
data, without specifying a parametric form. This goal is key
for estimating the behaviors of dynamic systems in experi-
ments and in observational studies, as the physics law in a
new system may be unknown. In [13], φ(·) is modeled by a
zero-mean Gaussian process with a Matérn covariance:

φ(·) ∼ GP(0, σ2K(·, ·)). (4.2)

Computing estimation of interactions of large-scale systems
or more simulation runs, however, is prohibitive, as the di-
rect inversion of the covariance matrix of observations of ve-
locities requires O((nMDL)3) operations, where M is the
number of simulations or experiments, n is the number of
particles, D is the dimension of each particle, L denotes the
number of time points for each trial. Furthermore, construct-
ing such covariance contains computing an n2LM × n2LM
matrix of φ for a D-dimensional input space, which takes
O(n4L2M2D) operations. Thus, directly estimating inter-
action kernel with a GP model in (4.2) is only applicable to
systems with a small number of observations [34, 13].

This work makes contributions from two different as-
pects for estimating dynamic systems of interacting parti-
cles. We first show the covariance of velocity observations
can be obtained by operations on a few sparse matrices, after
marginalizing out the latent interaction function. The spar-
sity of the inverse covariance of the latent interaction kernel
allows us to modify the Kalman filter to efficiently com-
pute the matrix product in this problem, and then apply a
conjugate gradient (CG) algorithm [24, 21, 49] to solve this
system iteratively. The computational complexity of com-
puting the predictive mean and variance of a test point is
at the order of O(TnN) +O(nN log(nN)), for a system of
n particles, N = nMDL observations, and T is the number
of iterations required in the CG algorithm. We found that
typically around a few hundred CG iterations can achieve
high predictive accuracy for a moderately large number of
observations. The algorithm leads substantial reduction of
computational cost, compared to direct computation.

Second, we study the effect of experimental designs on es-
timating the interaction kernel function. In previous studies,
it is unclear how initial positions, time steps of trajectory
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and the number of particles affect the accuracy in estimating
interaction kernels. Compared to other conventional prob-
lems in computer model emulation, where a “space-filling”
design is often used, here we cannot directly observe the
realizations of the latent function. Instead, the output ve-
locity is a weighted average of the interaction kernel func-
tions between particles. Besides, we cannot directly control
distances between the particles moving away from the ini-
tial positions, in both simulation and experimental studies.
When the distance between two particles i and j is small,
the contribution φ(||xi(t) − xj(t)||)ui,j(t) can be small, if
the repulsive force by φ(·) does not increase as fast as the
distance decreases. Thus we found that the estimation of
interaction kernel function can be less accurate in the input
domain of small distances. This problem can be alleviated
by placing initial positions of more particles close to each
other, providing more data with small distance pairs that
improve the accuracy in estimation.

4.1 Scalable computation based on sparse
representation of covariance

For illustration purposes, let us first consider a simple
scenario where we have M = 1 simulation and L = 1 time
point of a system of n interacting particles at a D dimen-
sional space. Since we only have 1 time point, we omit the
notation t when there is no confusion. The algorithm for
the general scenario with L > 1 and M > 1 is discussed in
Appendix A.2. In practice, the experimental observations of
velocity from multiple particle tracking algorithms or parti-
cle image velocimetry typically contain noises [1]. Even for
simulation data, the numerical error could be non-negligible
for large and complex systems. In these scenarios, the ob-
served velocity ṽi = (vi,1, ..., vi,D)T is a noisy realization:
ṽi = vi + εi, where εi ∼ MN (0, σ2

0ID) denotes a vector of
Gaussian noise with variance σ2

0 .
Assume the nD observations of velocity are ṽ =

(ṽ1,1, ..., ṽn,1, ṽ1,2, ..., ṽn,2, ..., ṽn−1,D, ṽn,D)T . After integrat-
ing out the latent function modeled in Equation (4.2), the
marginal distribution of observations follows

(ṽ | Rφ, σ
2, σ2

0) ∼MN
(
0, σ2URφU

T + σ2
0InD

)
, (4.3)

where U is an nD× n2 block diagonal matrix, with the ith
D×n block in the diagonals being (ui,1, ...,ui,n), and Rφ is
an n2 × n2 matrix, where the (i′, j′) term in the (i, j)th
n × n block is K(di,i′ , dj,j′) with di,i′ = ||xi − x′i|| and
dj,j′ = ||xj − x′j || for i, i′, j, j′ = 1, ..., n. Direct computa-
tion of the likelihood involves computing the inverse of an
nD×nD covariance matrix and constructing an n2×n2 ma-
trix Rφ, which costs O((nD)3) + O(n4D) operations. This
is computationally expensive even for small systems.

Here we use an exponential kernel function, K(d) =
exp(−d/γ) with range parameter γ, of modeling any non-
negative distance input d for illustration, where this method
can be extended to include Matérn kernels with half-
integer roughness parameters. Denote distance pairs di,j =

||xi − xj ||, and there are (n − 1)n/2 unique positive dis-
tance pairs. Denote the (n − 1)n/2 distance pairs ds =
(ds,1, ...ds,(n−1)n/2)T in an increasing order with the sub-
script s meaning ‘sorted’. Here we do not need to consider
the case when di,j = 0, as ui,j = 0, leading to zero contribu-
tion to the velocity. Thus the model in (4.1) can be reduced
to exclude the interaction between particle at zero distance.
In reality, two particles at the same position are impractical,
as there typically exists a repulsive force when two particles
get very close. Hence, we can reduce the n2 distance pairs
di,j for i = 1, ..., n and j = 1, ..., n, to (n−1)n/2 unique posi-
tive terms ds,i in an increasing order, for i = 1, ..., (n−1)n/2.

Denote the (n− 1)n/2× (n− 1)n/2 correlation matrix of
the kernel outputs φ = (φ(ds,1), ..., φ(ds,(n−1)n/2))T by Rs

and Us is nD× (n−1)n/2 sparse matrix with n−1 nonzero
terms on each row, where the nonzero entries of the ith
particle correspond to the distance pairs in the Rs. Denote
the nugget parameter η = σ2

0/σ
2. After marginalizing out

φ, the covariance of velocity observations follows

(ṽ | γ, σ2, η) ∼MN
(
0, σ2R̃v

)
, (4.4)

with

R̃v = (UsRsU
T
s + ηInD). (4.5)

The conditional distribution of the interaction kernel
φ(d∗) at any distance d∗ follows

(φ(d∗) | ṽ, γ, σ2, σ2
0) ∼ N (φ̂(d∗), σ2K∗), (4.6)

where the predictive mean and variance follow

φ̂(d∗) = rT (d∗)UT
s R̃−1v ṽ, (4.7)

σ2K∗ = σ2
(
K(d∗, d∗)− rT (d∗)UT

s R̃−1v Usr(d∗)
)
, (4.8)

with r(d∗) = (K(d∗, ds,1), ...,K(d∗, ds,n(n−1)/2))T . After ob-
taining the estimated interaction kernel, one can use it to
forecast trajectories of particles and understand the physical
mechanism of flocking behaviors.

Our primary task is to efficiently compute the predictive
distribution of interaction kernel in (4.6), where the most
computationally expensive terms in the predictive mean and
variance is R̃−1v ṽ and R̃−1v Usr(d∗). Note that the Us is a
sparse matrix with n(n− 1)d nonzero terms and the inverse
covariance matrix R−1s is a tri-diagonal matrix. However,
directly applying the CG algorithm is still computationally
challenging, as neither R̃v nor R̃−1v is sparse. To solve this
problem, we extend a step in the Kalman filter to efficiently
compute the matrix-vector multiplication with the use of
sparsity induced by the choice of covariance matrix. Each
step of the CG iteration in the new algorithm only costs
O(nDT ) operations for computing a system of n particles
and D dimensions with T CG iteration steps. For most sys-
tems we explored, we found a few hundred iterations in the
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Figure 3: Estimation of particle interaction kernel by the
truncated Lennard-Jones potential in [34] with D = 2. The
left panel shows the true interaction kernel (black curve)
and estimated kernel functions (colored curves), based on
three different ways of initial positions of n = 200 parti-
cles. The computational time of the full GP in [13] and the
sparse CG-GP approach is given in the right panel. Here the
most computational intensive part of the full GP model is in
constructing the correlation matrix Rs of φ for n(n − 1)/2
distance pairs in Equation (4.5), which scales as O(n4D).

CG algorithm achieve high accuracy. The substantial re-
duction of the computational cost allows us to use more
observations to improve the predictive accuracy. We term
this approach the sparse conjugate gradient algorithm for
Gaussian processes (sparse CG-GP). The algorithm for the
scenario with M simulations, each containing L time frames
of n particles in a D dimensional space, is discussed in Ap-
pendix A.2.

The comparison of the computational cost between the
full GP model and the proposed sparse CG-GP method is
shown in the right panel in Figure 3. The most computa-
tional expensive part of the full GP model is on constructing
the n(n− 1)/2/×n(n− 1)/2 correlation matrix Rs of φ for
n(n − 1)/2 distance pairs. The sparse CG-GP algorithm is
much faster as we do not need to construct this covariance
matrix; instead we only need to efficiently compute matrix
multiplication by utilizing the sparse structure of the inverse
of Rs (Appendix A.2). Note the GP model with an expo-
nential covariance naturally induces a sparse inverse covari-
ance matrix that can be used for faster computation, which
is different from imposing a sparse covariance structure for
approximation.

In the left panel in Figure 3, we show the predictive mean
and uncertainty assessment by the sparse CG-GP method
for three different designs for sampling the initial positions
of particles. From the first to the third designs, the initial
value of each coordinate of the particle is sampled indepen-
dently from a uniform distribution U [a1, b1], normal distri-
bution N (a2, b2), and log uniform (reciprocal) distribution
LU [log(a3), log(b3)], respectively.

For experiments with the interaction kernel being the

truncated Lennard-Jones potential given in Appendix A.2,
we use a1 = 0, b1 = 5, a2 = 0, b2 = 5, a3 = 10−3 and b3 = 5
for three designs of initial positions. Compared with the first
design, the second design of initial positions, which was as-
sumed in [34]), has a larger probability mass of distributions
near 0. In the third design, the distributions of the distance
between particle pairs are monotonically decreasing, with
more probability mass near 0 than those in the first two
designs. In all cases shown in Figure 3, we assume M = 1,
L = 1 and the noise variance is set to be σ0 = 10−3 in
the simulation. For demonstration purposes, the range and
nugget parameters are fixed to be γ = 5 and ν = 10−5 re-
spectively, when computing the predictive distribution of φ.
The estimation of the interaction kernel on large distances
is accurate for all different designs, whereas the estimation
of the interaction kernel at small distances is not satisfy-
ing for the first two designs. When particles are initialized
from the third design (log-uniform), the accuracy is better,
as there are more particles near each other, providing more
information about the particles at small values. This result
is intuitive, as the small distance pairs have relatively small
contributions to the velocity based on equation (4.1), and
we need more particles close to each other to estimate the
interaction kernel function at small distances.

The numerical comparison between different designs al-
lows us to better understand the learning efficiency in dif-
ferent scenarios, which can be used to design experiments.
Because of the large improvement of computational scala-
bility compared to previous studies [13, 34], we can accu-
rately estimate interaction kernels based on more particles
and longer trajectories.

4.2 Numerical results

Here we discussed two scenarios, where the interaction
function follows the truncated Lennard-Jones (LJ) and opin-
ion dynamics (OD) interaction functions. The LJ potential
is widely used in MD simulations of interacting molecules
[43]. First-order systems of form (4.1) have also been suc-
cessfully applied in modeling opinion dynamics in social net-
works (see the survey [36] and references therein). The in-
teraction function φ models how the opinions of pairs of
people influence each other. In our numerical example, we
consider heterophilious opinion interactions: each agent is
more influenced by its neighbors slightly further away from
its closest neighbors. As time evolves, the opinions of agents
merge into clusters, with the number of clusters significantly
smaller than the number of agents. This phenomenon is
studied in [36] that heterophilious dynamics enhance con-
sensus, contradicting the intuition that would suggest that
the tendency to bond more with those who are different
rather than with those who are similar would break connec-
tions and prevent clusters of consensus.

The details of the interaction functions are given in Ap-
pendix A.3. For each interaction, we test our method based
on 12 configurations of 2 particle sizes (n = 50 and n = 200),
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Figure 4: Estimation of interaction function based on the sparse CG-GP method, and trajectory forecast for the truncated
LJ and OD simulation. In panel (a), the colored curves are estimated interactions for different initial positions and
particle sizes, all based on trajectories using only L = 1 time step, whereas the black curve is the truncated LJ used in the
simulation. The colored curves in panel (b) are the same as those in panel (a), but based on trajectories in L = 10 time
steps. The panels (d) and (e) are the same as panels (a) and (b), respectively, but the simulated data are generated by the
OD interaction kernel. The shared areas are the 95% predictive interval. In panel (c), we graph the simulated trajectories
of 10 out of 50 particles L = 200 time steps, and the trajectory forecast based on estimated interaction function and initial
positions. The arrow indicates the direction of velocities of particles at the last time step. Panel (f) is the same as panel
(c), but for the OD interaction kernel.

2 time lengths (L = 1 and L = 10), and 3 designs of initial
positions (uniform, normal and log-uniform). The compu-
tational scalability of the sparse CG algorithm allows us to
efficiently compute the predictions in most of these experi-
mental settings within a few seconds. For each configuration,
we repeat the experiments 10 times to average the effects of
randomness in the initial positions of particles. The root of
the mean squared error in predicting the interaction kernels
by averaging these 10 experiments of each configuration is
given in Appendix A.4.

In Figure 4, we show the estimation of interactions kernels
and forecasts of particle trajectories with different designs,
particle sizes and time points. The sparse CG-GP method is
relatively accurate for almost all scenarios. Among different
initial positions, the estimation of trajectories for LJ inter-
action is the most accurate when the initial positions of the
particles are sampled by the log-uniform distribution. This
is because there are more small distances between particles
when the initial positions follow a log-uniform distribution,

providing more data to estimate the interaction kernel at
small distances. Furthermore, when we have more particles
or observations at larger time intervals, the estimation of the
interaction kernel from all designs becomes more accurate
in terms of the normalized root mean squared error with the
detailed comparison given in Appendix A.4.

In panel (c) and panel (f) of Figure 4, we plot the tra-
jectory forecast of 10 particles over 200 time points for the
truncated LJ kernel and OD kernel, respectively. In both
simulation scenarios, interaction kernels are estimated based
on trajectories of n = 50 particles across L = 20 time steps
with initial positions sampled from the log-uniform design.
The trajectories of only 10 particles out of 50 particles are
shown for better visualization. For trajectories simulated by
the truncated LJ, some particles can move very close, since
the repulsive force between two particles becomes smaller as
the force is proportional to the distance from Equation (4.1),
and the truncation of kernel substantially reduces the repul-
sive force when particles move close. For the OD simulation,
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the particles move toward a cluster, as expected, since the
particles always have attractive forces between each other.
The forecast trajectories are close to the hold-out truth, in-
dicating the high accuracy of our approach.

Compared with the results shown in previous studies
[34, 13], estimating the interaction kernels and forecasting
trajectories both look more accurate. The large computa-
tional reduction by the sparse CG-GP algorithm shown in
Figure 3 permits the use of longer trajectories from more
particles to estimate the interaction kernel, which improves
the predictive accuracy. Here particle has interactions with
all other particles in our simulation, making the number of
distance pairs large. Yet we are able to estimate the interac-
tion kernel and forecast the trajectories of particles within
only tens of seconds in a desktop for the most time con-
suming scenario we considered. Since the particles typically
have very small or no interaction when the distances be-
tween them are large, approximation can be made by en-
forcing interactions between particles within the specified
radius, for further reducing the computational cost.

5. CONCLUDING REMARKS

We have introduced scalable marginalization of latent
variables for correlated data. We first introduce GP models
and reviewed the SDE representation of GPs with Matérn
covariance and one-dimensional input. Kalman filter and
RTS smoother were introduced as a scalable marginaliza-
tion way to compute the likelihood function and predictive
distribution, which reduces the computational complexity
of GP with Matérn covariance for 1D input from O(N3)
to O(N) operations without approximation, where N is the
number of observations. Recent efforts on extending scal-
able computation from 1D input to multi-dimensional input
are discussed. In particular, we developed a new scalable al-
gorithm for predicting particle interaction kernel and fore-
cast trajectories of particles. The achievement is through the
sparse representation of GPs in modeling interaction kernel,
and then efficient computation for matrix multiplication by
modifying the Kalman filter algorithm. An iterative algo-
rithm based on CG can then be applied, which reduces the
computational complexity.

There are a wide range of future topics relevant to this
study. First, various models of spatio-temporal data can be
written as random factor models in (3.9) with latent fac-
tors modeled as Gaussian processes for temporal inputs. It
is of interest to utilize the computational advantage of the
dynamic linear models of factor processes, extending the
computational tools by relaxing the independence between
prior factor processes in Assumption 1 or incorporating the
Toeplitz covariance structure for stationary temporal pro-
cesses. Second, for estimating systems of particle interac-
tions, we can further reduce computation by only consid-
ering interactions within a radius between particles. Third,

a comprehensively study the experimental design, initializa-
tion, and parameter estimation in will be helpful for estimat-
ing latent interaction functions that can be unidentifiable or
weakly identifiable in certain scenarios. Furthermore, veloc-
ity directions and angle order parameters are essential for
understanding the mechanism of active nematics and cell
migration, which can motivate more complex models of in-
teractions. Finally, the sparse CG algorithm developed in
this work is of interest to reducing the computational com-
plexity of GP models with multi-dimensional input and gen-
eral designs.
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APPENDIX

A.1 Closed-form expression of state space
representation of GP having Matérn
covariance with ν = 5/2

Denote λ =
√
5
γ , q = 16

3 σ
2λ5 and di = |xi − xi−1|. For

i = 2, ..., N , Gi and Wi in (3.3) have the expressions below:

Gi =
e−λdi

2

λ2d2i + 2λ+ 2 2(λd2i + di) d2i
−λ3d2i −2(λ2d2i − λdi − 1) 2di − λd2i

λ4d2i − 2λ3di 2(λ3d2i − 3λ2di) λ2d2i − 4λdi + 2

 ,

Wi =
4σ2λ5

3

W1,1(xi) W1,2(xi) W1,3(xi)
W2,1(xi) W2,2(xi) W2,3(xi)
W3,1(xi) W3,2(xi) W3,3(xi)

 ,

with

W1,1(xi) =
e−2λdi (3 + 6λdi + 6λ2d2i + 4λ3d3i + 2λ4d4i )− 3

−4λ5
,

W1,2(xi) = W2,1(xi) =
e−2λdid4i

2
,

W1,3(xi) = W3,1(xi) =
e−2λdi (1 + 2λdi + 2λ2d2i + 4λ3d3i − 2λ4d4i )− 1

4λ3
,

W2,2(xi) =
e−2λdi (1 + 2λdi + 2λ2d2i − 4λ3d3i + 2λ4d4i )− 1

−4λ3
,

W2,3(xi) = W3,2(xi) =
e−2λdid2i (4− 4λdi + λ2d2i )

2
,

W3,3(xi) =
e−2λdi (−3 + 10λ2d2i − 22λ2d2i + 12λ2d2i − 2λ4d4i ) + 3

4λ
,

and the stationary covariance of θi, i = 1, ..., Ñ , is

W1 =

 σ2 1 −σ2λ2/3
0 σ2λ2/3 1

−σ2λ2/3 0 σ2λ4

 ,
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The joint distribution of latent states follows(
θT (x1), ...,θT (xN )

)T ∼ MN (0,Λ−1), where the Λ is a sym-
metric block tri-diagonal matrix with the ith diagonal block being
W−1

i + GT
i W−1

i+1Gi for i = 1, ..., N − 1, and the Nth diagonal block

being W−1
N . The primary off-diagonal block of Λ is −GT

i W−1
i , for

i = 2, ..., N .

Suppose xi < x∗ < xi+1. Let d∗i = |x∗i −xi| and d∗i+1 = |xi+1−x∗i |.
The “*” terms G∗i and W∗

i can be computed by replacing di in Gi and
Wi by d∗i , whereas the “*” terms G∗i+1 and W∗

i+1 can be computed

by replacing the di in Gi and Wi by d∗i+1. Furthermore, W̃∗
i+1 =

W∗
i+1 + G∗i+1W∗

i (G∗i+1)T .

A.2 The sparse CG-GP algorithm for
estimating interaction kernels

Here we discuss the details of computing the predictive mean and
variance in (4.6). The N -vector of velocity observations is denoted as
ṽ, where the total number of observations is defined by N = nDML.
To compute the predictive mean and variance, the most computational
challenging part is to compute N -vector z = (UsRsUT

s + ηIN )−1ṽ.
Here Rs and Us are Ñ × Ñ and N × Ñ , respectively, where Ñ =
n(n− 1)ML/2 is the number of non-zero unique distance pairs. Note
that both Us and R−1

s are sparse. Instead of directly computing the
matrix inversion and the matrix-vector multiplication, we utilize the
sparsity structure to accelerate the computation in the sparse CG-GP
algorithm. In the iteration, we need to efficiently compute

z̃ = (UsRsU
T
s + ηIN )z, (A.1)

for any real-valued N-vector z.

We have four steps to compute the quantity in (A.1) efficiently.
Denote xi,j,m[tl] the jth spatial coordinate of particle i at time tl,
in the mth simulation, for i = 1, ..., n, j = 1, ..., D, l = 1, ..., L and
m = 1, ...,M . In the following, we use x·,·,m[·] to denote a vector of
all positions in the mth simulation and vice versa. Furthermore, we
use z[k] to mean the kth entry of any vector z, A[k, .] and A[., k] to
mean the kth row vector and kth column vector of any matrix A,
respectively. The rank of a particle with position xi,.,m[tl] is defined
to be P = (m− 1)Ln+ (l − 1)n+ i.

First, we reduce the N × Ñ sparse matrix Us of distance difference
pairs to an N × n matrix Ure, where ‘re’ means reduced, with the
((m − 1)LnD + (l − 1)nD + (j − 1)n + i1, i2)th entry of Ure being
(xi1,j,m[tl] − xi2,j,m[tl]), for any |i1 − i2| = 1, ..., n − 1, i1 ≤ n and

i2 ≤ n. Furthermore, we create a Ñ × 2 matrix Pr in which the hth
row records the rank of a distance pair is the hth largest in the zero-
excluded sorted distance pairs ds, where Pr[h, 1] and Pr[h, 2] are the
rank of rows of these distances in the matrix dmat, where the jth
column records the unordered distance pairs of the jth particle for
j = 1, ..., n. We further assume Pr[h, 1] > Pr[h, 2].

For any N -vector z, the kth entry of UT
s z can be written as

(UT
s z)[k] =

D−1∑
jk=0

Ure

[
Pr[k, 1]+ cjk , Pr[k, 2]− (m−1)nL− (l−1)n

]

×
(
z[Pr[k, 1] + cjk ]− z[Pr[k, 2] + cjk ]

)
, (A.2)

where cjk = (D−1)(m−1)nL+ (D−1)(l−1)n+njk for k = 1, ..., Ñ ,
if the kth largest entry of distance pair is from time frame l in the mth
simulation. The output is denoted as an Ñ vector g1, i.e. g1 = (UT

s z).

Second, since the exponential kernel is used, R−1
s is a tri-diagonal

matrix [20]. We modify a Kalman filter step to efficiently compute the
product of an upper bi-diagonal g2 = LTs g1, where Ls is the factor
of the Cholesky decomposition Rs = LsLTs . Denote the Cholesky de-
composition of the inverse covariance the factor R−1

s = L̃sL̃Ts , where

L̃s can be written as the lower bi-diagonal matrix below:

L̃s =



1√
1−ρ21
−ρ1√
1−ρ21

1√
1−ρ22

−ρ2√
1−ρ22

. . .

. . . 1√
1−ρ2

Ñ−1
−ρ

Ñ−1√
1−ρ2

Ñ−1

1


, (A.3)

where ρk = exp(−(ds,k+1 − ds,k)/γ) for k = 1, ..., Ñ − 1. We modify

the Thomas algorithm [57] to solve g2 from equation (LTs )−1g2 = g1.
Here (LTs )−1 is an upper bi-diagonal matrix with explicit form

(LTs )−1 =



1 −ρ1√
1−ρ21
1√

1−ρ21
. . .

. . .

1√
1−ρ2

Ñ−2

−ρ
Ñ−1√

1−ρ2
Ñ−1

1√
1−ρ2

Ñ−1


. (A.4)

Here only up to 2 entries in each row of (LTs )−1 are nonzero. Using a
backward solver, the g2 can be obtained by the iteration below:

g2[Ñ ] = g1[Ñ ]
√

1− ρ2
Ñ−1

, (A.5)

g2[k] =
√

1− ρ2k−1g1[k] +
ρkg2[k + 1]

√
1− ρ2k−1√

1− ρ2k
, (A.6)

for k = Ñ −1, ..., 2, 1. Note that the Thomas algorithm is not stable in
general, but here the stability issue is greatly improved, as the matrix
in the system is bi-diagonal instead of tri-diagonal.

Third, we compute g3 = Lsg2 by solving L−1
s g3 = g2:

g3[1] = g2[1], (A.7)

g3[k] =
√

1− ρ2k−1g2[k] + ρk−1g3[k − 1], (A.8)

for k = 2, ...., Ñ − 1.
Finally, we denote a MLn×n matrix Pc. Pc is initialized as a zero

matrix. And then for rc = 1, ...,MLn, row rc of Pc stores the ranks of
distances between the ith particle and other n− 1 particles in ds. For
instance, at the lth time step in the mth simulation, particle i has n−1
non-zero distances ||x1−xi||, ..., ||xi−1−xi||, ||xi+1−xi||, ..., ||xn−xi||
with ranks h1, ...., hi−1, hi+1, ...hn in ds. Then the ((m− 1)Ln+ (l−
1)n+ i)th row of Pc is filled with (h1, ..., hi−1, hi+1, ..., hn).

Given any Ñ -vector g3, the kth entry of Usg3 can be written as

(Usg3)[k] = Ure[k, .]g3[Pc[k
′, .]T ], (A.9)

assuming that k satisfies k = (m − 1)LnD + (l − 1)nD + jn + i and
k′ = i+ (m− 1)Ln+ (l − 1)n for some m, l, j and i, and k = 1, ..., N .
The output of this step is an N vector g4, with the kth entry being
g4[k] := (UT

s g3)[k], for k = 1, ..., N .
We summarize the sparse CG-GP algorithm using the following

steps to compute z̃ in (A.1) below.

1. Use equation (A.2) to compute g1[k] = (UT
s z)[k], for k = 1, ..., Ñ .

2. Use equations (A.5) and (A.6) to solve g2 from (LTs )−1g2 = g1

where (LTs )−1 = (L−1
s )T with L−1

s given in equation (A.4).

3. Use equations (A.7) and (A.8) to solve g3 from L−1
s g3 = g2,

where L−1
s is given in equation (A.4).

4. Use equation (A.9) to compute g4[k] = (Usg3)[k] and let z̃ =
g4 + ηz.



Scalable marginalization of correlated latent variables with applications to learning particle interaction kernels 13

A.3 Interaction kernels in simulated studies
Here we give the expressions of the interaction kernels of the trun-

cated L-J and OD in [34, 13]. The truncated LJ kernel is given by

φLJ (d) =

{
c2 exp(−c1d12), d ∈ [0, 0.95],
8(d−4−d−10)

3
, d ∈ (0.95,∞),

where

c1 = −
1

12

c4

c3(0.95)11
and c2 = c3 exp(c1(0.95)12),

with c3 = 8
3

(0.95−4 − 0.95−10) and c4 = 8
3

(10(0.95)−11 − 4(0.95)−5).
The interaction kernel of OD is defined as

φOD(d) =


0.4, d ∈ [0, c5),
−0.3 cos(10π(d− c5)) + 0.7, d ∈ [c5, c6),
1, d ∈ [c6 ≤ d < 0.95),
0.5 cos(10π(d− 0.95)) + 0.5, d ∈ [0.95, 1.05),
0, d ∈ [1.05,∞),

where c5 = 1√
2
− 0.05 and c6 = 1√

2
+ 0.05.

A.4 Further numerical results on estimating
interaction kernels

We outline the numerical results of estimating the interaction func-
tions at N∗1 = 1000 equally spaced distance pairs at d ∈ [0, 5] and
d ∈ [0, 1.5] for the truncated LJ and OD, respectively. For each con-
figuration, we repeat the simulation N∗2 = 10 times and compute the
predictive error in each simulation. The total number of test points
is N∗ = N∗1N

∗
2 = 104. For demonstration purposes, we do not add

a noise into the simulated data (i.e. σ2
0 = 0). The range and nugget

parameters are fixed to be γ = 5 and η = 10−5. We compute the
normalized root of mean squared error (NRMSE) in estimating the
interaction kernel function:

NRMSE =
1

σφ

√√√√N∗∑
i=1

(φ̂(d∗i )− φ(d∗i ))2

N∗
,

where φ̂(.) is the estimated interaction kernel from the velocities and
positions of the particles; σφ is the standard deviation of the interaction
function at test points.

Truncated LJ n=50 n=200 n=50 n=200
L=1 L=1 L=10 L=10

Uniform .11 .021 .026 .0051
Normal .037 .012 .0090 .0028
Log-uniform .043 .0036 .0018 .00091

OD n=50 n=200 n=50 n=200
L=1 L=1 L=10 L=10

Uniform .024 .0086 .0031 .0036
Normal .13 .013 .038 .0064
Log-uniform .076 .0045 .0018 .00081

Table 1. NRMSE of the sparse CG-GP method for estimating
the interaction for truncated LJ and OD.

Table 1 gives the NRMSE of the sparse CG-GP method for the
truncated LJ and OD kernels at 12 configurations. Typically the esti-
mation is the most accurate when the initial positions of the particles
are sampled from the log-uniform design for a given number of obser-
vations and an interaction kernel. This is because the contributions to
the velocities from the kernel function are proportional to the distance
of particle in (4.1), and small contributions from the interaction kernel
at small distance values make the kernel hard to estimate from the
trajectory data in general. When the initial positions of the particles

are sampled from the log-uniform design, more particles are close to
each other, which provides more information to estimate the interac-
tion kernel at a small distance.

Furthermore, the predictive error of the interaction kernel is
smaller, when the trajectories with a larger number of particle sizes
or at longer time points are used in estimation, as more observations
typically improve predictive accuracy. The sparse CG-GP algorithm
reduces the computational cost substantially, which allows more ob-
servations to be used for making predictions.
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