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Abstract

We report herein a simple, metal- and additive-free, photoinduced borylation of haloarenes, 

including electron-rich fluoroarenes, as well as arylammonium salts directly to boronic acids. This 

borylation method has a broad scope and functional group tolerance. We show that it can be 

further extended to boronic esters, and carried out on gram scale as well as under flow conditions.

Aromatic boronic acids find increasingly important roles in the areas of synthetic organic 

chemistry,1 catalysis,2 molecular self-assembly,3 carbohydrate analysis,4 molecular sensing,5 

materials science6 and medicinal chemistry.7 While the reaction of organomagnesium and 

organolithium reagents with trialkyl borates, first described by Khotinsky (RMgX)8 and 

Letsinger (RLi),9 remains in use, transition metal-catalyzed C–X-10 and C–H-borylation11 

reactions have recently emerged as efficient alternatives that bypass air- and moisture-

sensitive intermediates. In addition, transition metal-free, base-mediated borylation of iodo- 

and bromoarenes to arylboronic esters,12 as well as the Sandmeyer-type borylation of 

anilines13 and electrophilic borylation of electron-rich arenes14 have been recently 

developed. These methods can be advantageous, since the use of heavy metals, expensive 

and air-sensitive catalysts and ligands can be avoided. However, the practicality and 

scalability of these methods may be limited by the narrow substrate scope and high 

molecular weight of the boron reagents.

Photochemical activation of molecules enables reactivity patterns that can be difficult to 

achieve from the ground states.15 A multitude of homolytic and heterolytic pathways that 

can be accessed from singlet and triplet excited states affords numerous synthetic 

possibilities. A number of photoinduced processes have been successfully adapted in the 

chemical industry (e.g. the Toray PNC process,16 rose oxide17 and vitamin D18 syntheses), 

pointing to the significant potential of photoinduced reactions.19

Photoinduced Ar–X bond dissociation is a key step in a number of important photochemical 

carbon–carbon and carbon–heteroatom bond-forming reactions, including nucleophilic 

substitution,20 arylation,21 alkylation,22 and photocyclization23 reactions.
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We report herein that haloarenes, including electron rich fluoroarenes, as well as 

aryltrimethylammonium salts readily react with tetrahydroxydiboron (first introduced by 

Molander and Dreher for the Pd-, and later Ni-catalyzed borylations24) and other diboron 

reagents to give aromatic boronic acids and esters under ultraviolet light in the absence of 

catalysts and additives in a scalable and practical manner in common grade solvents and 

without deoxygenation of the reaction mixtures (Figure 1).

Initial experiments showed that a reaction of bromobenzene with tetrahydroxydiboron in 

methanol under ultraviolet irradiation (λ = 254 nm) produced phenylboronic acid (1) in 92% 

yield after 3 h at 15 °C. The optimal temperature was 10–20 °C, with increased amounts of 

benzene observed at higher temperatures. The reaction did not proceed in the dark (see Table 

S1 in the SI) and showed a good quantum yield (Φ = 0.34).

The preparative scope of the reaction was explored with a series of substituted bromoarenes. 

A diverse set of functional groups is well tolerated, including amide (2, 71%), phenol (3, 

73%), arylacetate ester (4, 85%), thioether (5, 79% and 6, 69%), and other functionalities 

(7-25). Both electron-releasing and electron-withdrawing substituents can be very well 

accommodated. Nitrogen-, oxygen-, and sulfur-containing heteroarylboronic acids were also 

prepared in high yields, as shown for products 7–11. The boronic acids can be directly 

converted into the corresponding organotrifluoroborates as a part of the isolation procedure. 

For example, the borylation reaction of 3-bromoquinoline was followed by treatment of the 

reaction mixture with potassium difluoride25 to give the corresponding trifluoroborate 11 in 

81% yield.

Iodoarenes and chloroarenes were also successfully converted to boronic acids. The 

reactions with iodoarenes were very fast and produced the boronic acids (12 and 13) in high 

yields within 1 h. Chloroarenes reacted slower than bromoarenes (66% of 1 and 62% of 14 

after 24 h). These observations are in accord with the increase in the bond dissociation 

energies (BDE) of the C6H5–X bonds (C–I 272, C–Br 336, C–Cl 400 kJ·mol-1).26 The 

differential reactivity of C–X bonds can be used for the chemoselective and high-yielding 

synthesis of haloarylboronic acids, as shown for 12, 13, 15 and 16.

Boronic acids find increasing use in medicine,7 as exemplified by the fungal leucyl-tRNA 

synthetase inhibitor tavaborole (16, Table 1) that has recently been approved for treatment of 

onychomycosis.27 Using the photoinduced borylation, 16 was prepared from the 

corresponding bromoarene in 73% yield after a simple work-up. Tavaborole was previously 

prepared using air- and moisture-sensitive reagents (NaH, n-BuLi, and B(OiPr)3).28 The 

successful synthesis of 16 also indicates that an ortho-substituent is well-tolerated during the 

borylation event. Furthermore, good quantum efficiency of the borylation reaction enabled 

practical gram-scale syntheses of several representative boronic acids (12, 17, 18 on 1.1–1.8 

g scales) and trifluoroborate 7 (3 g) using simple quartz test-tubes and low intensity UV 

sources without deoxygenation of the reaction solutions.

Preliminary experiments also show that the reaction can be translated to a continuous flow 

process (1, 90% and 17, 60%). Reaction mixtures typically remained homogeneous. 
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Monitoring of the borylation reactions by 11B NMR indicated formation of trimethyl borate 

that may arise from solvolysis of B–X bond-containing inorganic byproducts of the reaction.

Fluorobenzene proved resistant to the borylation in line with the high BDE of the C6H5-F 

bond (526 kJ·mol-1)26 that exceeds the energy of absorbed light (469 kJ·mol-1). Remarkably, 

4-fluoroaniline readily produced (4-aminophenyl)boronic acid that was isolated as 

trifluoroborate 25 in 53% yield, indicating that certain Ar–F bonds can be harnessed for the 

synthesis of boronic acids without the use of transition metals.29 Similarly, 4-fluorophenol 

reacted smoothly to give boronic acid 3 in 69% yield (Table 2). Other fluoroarenes bearing 

electron-releasing substituents are also competent substrates (26–30). The procedure is 

particularly suitable for borylation of unprotected fluoroanilines and fluorophenols that have 

so far eluded C–F borylation. The reactivity observed for 4-fluoroanline and other similar 

fluoroarenes in the photoinduced borylation reaction is consistent with the formation of the 

triplet aryl cation via the heterolysis of the C–F bond. This process is favored for the 

electron rich haloarenes and, unlike Ar–F homolysis, is greatly facilitated in polar protic 

solvents, as previously described by Albini, Fagnoni and Protti.30 Indeed, the yield of the 

reaction of 4-fluorophenol with B2pin2 was solvent-dependent.

No reaction was observed in hexane after 2 h, and only 5% of the borylation product was 

formed in acetonitrile, while 20% of the borylation product was produced in methanol. This 

observation is in line with the experimental and computational data reported for the 

photoinduced heterolysis of 4-fluorophenol.30 Although B2(OR)4 generally behave as 

electrophiles, complexation with Lewis bases (e.g., fluoride, alkoxides, N-heterocyclic 

carbenes, 4-methylpyridine, and phosphines)31 produces nucleophilic sp2-sp3 Lewis base–

diboron adducts that react with organic electrophiles in the absence of transition metal 

catalysts.32 It is possible that the photoheterolytically-produced fluoride ion forms a 

transient nucleophilic sp2-sp3 B2(OR)4F- complex that then reacts with the triplet cation.33 

Interestingly, B2pin2F- adduct was proposed as an intermediate in the borylation of 

arenediazonium salts,13c and [NMe4][B2pin2F] was subsequently shown to effect the 

diazonium borylation.31d The photoinduced borylation of fluoroarenes is the first example of 

metal-free and direct conversion of fluoroarenes to arylboronic acids.

Encouraged by the outcome of the experiments with haloarenes, we turned our attention to 

the borylation of other carbon–heteroatom bonds. In particular, we focused on the Ar–N-

borylation, since few methods are known for this transformation.13,34 Interestingly, 

aryltrimethylammonium iodides reacted rapidly and produced the corresponding boronic 

acids 1, 14, 18, 23, and 24 in 70–98% yields. In addition, ring scission of the cyclic salt 31 

afforded boronic acid 32 in 69% yield (Table 3).

We next evaluated several diboron esters as counterparts in the reaction with haloarenes 

(Table 4). The borylation reactions with diboron esters derived from pinacol, neopentyl 

glycol, 1,1,3-trimethylethylene glycol, and 1,1,4,4,-tetramethylethylene glycol delivered the 

corresponding phenylboronic esters 33–36 in high yields using acetonitrile as a solvent. The 

reaction scope was further tested with several bromoarenes with varied substitution patterns. 

In all cases the corresponding borolanes 37–40 were produced in excellent yields without 

any noticeable phototransposition.35 Interestingly, the MIDA boronate ester 41 was also 
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prepared, indicating that bifunctional borylated arenes can be efficiently accessed using this 

method.

Although further work is necessary to clarify the mechanism, it is possible that homolytic 

substitution36 in the diboron reagents and sp2-sp3 Lewis base–diboron adducts by a 

photogenerated aryl radical and aryl triplet cation can be responsible for the observed 

reactivity.33

In summary, this paper describes a simple, scalable, metal- and additive-free method of 

photoinduced borylation of haloarenes and quaternary arylammonium salts. The borylation 

produces aromatic boronic acids and esters in good to excellent yields under mild conditions 

and with formation of innocuous, easy-to-remove byproducts. The reaction is distinguished 

by a broad scope that includes electron-rich fluoroarenes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Photoinduced borylation
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Table 1

Scope of the Photoinduced Reaction of Haloarenes with Tetrahydroxydiborona

a
Bromoarenes were used unless specified otherwise. Reaction conditions for small scale experiments: haloarene (0.6–1 mmol), 

tetrahydroxydiboron (1–1.6 mmol), CH3OH (5–6 mL), 15 °C, 3–24 h, UV lamp (254 nm); then treatment with KHF2 for ArBF3K.
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Table 2

Borylation of Fluoroarenesa

a
Reaction conditions: see footnote for Table 1.
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Table 3

Borylation of Quaternary Arylammonium Saltsa

a
Reaction conditions: see footnote for Table 1.
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Table 4

Photoinduced Reaction of Haloarenes with Diboronic Estersa

a
Bromoarenes were used unless specified otherwise. Reaction conditions: haloarene (0.5–1 mmol), diboron ester (1–2 mmol), CH3CN (6 mL), 

15 °C, 4–14 h, UV lamp (254 nm). Bpin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane.
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