
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Scalable Model Checking Beyond Safety - A Communication Fabric Perspective

Permalink
https://escholarship.org/uc/item/8dk5b1qz

Author
Ray, Sayak

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dk5b1qz
https://escholarship.org
http://www.cdlib.org/

Scalable Model Checking Beyond Safety
A Communication Fabric Perspective

by

Sayak Ray

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Robert K. Brayton, Chair
Professor Sanjit A. Seshia

Professor Lauren K. Williams

Fall 2013

Scalable Model Checking Beyond Safety
A Communication Fabric Perspective

Copyright 2013
by

Sayak Ray

1

Abstract

Scalable Model Checking Beyond Safety
A Communication Fabric Perspective

by

Sayak Ray

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

In this research, we have developed symbolic algorithms and their open-source implemen-
tations that effectively solve liveness verification problem for industrially relevant hardware
systems. In principle, our tool-suite works on any sequential hardware circuit and for the
whole family of ω-regular properties. Practicality and effectiveness of our tool-suite have
been demonstrated in the context of proving response properties (a very common and impor-
tant liveness property) of on-chip communication fabrics.

i

To Maa

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 3
1.3 Organization . 4

2 Algorithmics for Liveness 6
2.1 Safety vs. Liveness . 6
2.2 LTL Model Checking . 6
2.3 Algorithms for Liveness Verification . 9

3 Formal Model for Communication Fabrics 12
3.1 Executable Micro-Architecture Specification (XMAS) 13
3.2 Benchmarks . 17
3.3 XMAS in Perspective . 22

4 Bug Hunting for Liveness 26
4.1 Introduction . 26
4.2 Preliminaries . 26
4.3 L2S Conversion for Stabilization Properties . 28
4.4 Experimental Results . 30

5 Efficient Proof Of Liveness 33
5.1 Introduction . 33
5.2 Credit Mechanism and Buffer Relations . 34
5.3 Response Formulation . 36
5.4 Approach I : Breaking Into Safety Properties . 37

iii

5.5 Approach II: Well-founded Induction . 44
5.6 Approach III : Skeleton Independent Proof Heuristics 55
5.7 Approach IV : Proof based on k-LIVENESS . 66

6 Structural Invariant Generation 80
6.1 Introduction . 80
6.2 Related Works . 82
6.3 Preliminaries . 83
6.4 Invariant Mining For XMAS fabrics . 86
6.5 Experimental Results . 92
6.6 Conclusion . 95

7 Conclusion and Future Work 96
7.1 Conclusion . 96
7.2 Future Work . 96

Bibliography 98

iv

List of Figures

2.1 Taxonomy of SCC analysis algorithms . 10

3.1 XMAS symbols for structural components of communication fabrics 13
3.2 A synchronous FIFO queue with a write port (on the left) and a read port (on the

right). The queue can store k data elements. In each clock cycle, if the queue is
not full, a new element may be inserted; and if the queue is not empty, the oldest
element may be removed. read_data exposes the oldest element if the queue is
not empty. If the queue is empty, the incoming data appears at the output one
cycle later. 14

3.3 Back-to-back composition of two buffers with modified interface signals 14
3.4 A succinct representation of two buffers connected back-to-back from Figure 3.3 . 15
3.5 Credit mechanism . 18
3.6 Virtual channel (VC) . 19
3.7 Buffered virtual channel (VCB) . 20
3.8 Virtual channel with ordering (VCO) . 20
3.9 A pair of agents communicating over a simple fabric (MS) 21
3.10 A two entry scoreboard (SB) . 22

4.1 Liveness-to-safety transformation for Fp . 29
4.2 L2S for stabilization property FGa⇒ FGb+ FGc 31

5.1 Credit mechanism . 35
5.2 Virtual channel . 36
5.3 A deadlocking virtual channel . 41
5.4 Well-founded structure for virtual channel . 45
5.5 WFS for virtual channel with order . 48
5.6 A folded representation the same . 49
5.7 Various configurations of B5 (captured in predicates π1, π1, π2) 50
5.8 Well-founded structure for Master/Slave design . 53
5.9 Compositional structure for Master/Slave design . 54
5.10 Schematic representation of a linearly graded pending graph 58

v

5.11 Schematic representation of a topologically graded pending graph 59
5.12 Discovering linear gradation using Boolean signals 61
5.13 Abstract state-space for virtual channel . 64
5.14 Abstract state-space (some transitions pruned) for virtual channel 65
5.15 A typical waveform for a signal p that satisfies property FGp 66
5.16 Absorber Logic that absorbs one ‘drop’ on p . 67
5.17 A typical waveform for signal p that enters the absorber logic of Figure 5.16 and

the corresponding waveform for pout . 68
5.18 Cascade of absorber logic for absorbing 2 ‘drops’ on p 68
5.19 Waveform for p and pout obtained from a two-level cascade of absorber circuit . . 69
5.20 Formation of arena with stabilizing constraints and their role in precluding un-

reachable loops . 70

6.1 Credit mechanism . 81
6.2 A directed graph and one of its spanning tree . 84
6.3 VCO: A virtual channel with ordering . 88
6.4 Sub-network that steers type(A1)-flit . 88
6.5 Sub-network that steers type(A2)-flit . 89
6.6 Sub-network of Figure 6.4 simplified by ‘shorting’ arbiters and switches 89
6.7 Sub-network of Figure 6.5 simplified by ‘shorting’ arbiters and switches 90
6.8 Marked graphs for the sub-networks of VCO . 91

vi

List of Tables

4.1 CL . 32
4.2 VC . 32
4.3 MS . 32

5.1 Auxiliary safety assertions . 39
5.2 Assumptions used in the proofs . 42
5.3 Experiment on various communication fabrics . 43
5.4 Verification run-times for intermediate assertions on well-foundedness 55
5.5 Verification run-times for skeleton independent proof 65
5.6 Liveness property verification run-time with liveness-to-safety transformation . . . 76
5.7 Performance of k-LIVENESS with ❛r❡♥❛❱✐♦❧❛t✐♦♥ . 77
5.8 Performance of k-LIVENESS without ❛r❡♥❛❱✐♦❧❛t✐♦♥ 77

6.1 Correspondence between vertices of marked graph in Figure 6.8(a) and XMAS

components of Figure 6.6 . 90
6.2 Correspondence between vertices of marked graph in Figure 6.8(b) and XMAS

components of Figure 6.7 . 90
6.3 Edge identifiers for the marked graphs . 91
6.4 Assumptions used in the proofs . 93
6.5 Experiment on various communication fabrics (1) . 94
6.6 Experiment on various communication fabrics (2) . 94

vii

Acknowledgments

I thank Prof. Robert Brayton for advising me during my graduate study. His open and positive
outlook has remained the principal guideline in my research. I hope this will continue to
steer my way from now on. He will always remain a colossal figure of inspiration to me. Alan
Mishchenko taught me the basic skills of research from the ground up. He showed me what it
means to be passionate about research. He was my guide in almost every path that I explored
in the past few years, be it an intricate research idea of AIG isomorphism or a fun hike in
the Columbia River Gorge. I found him relentlessly enthusiastic whenever I approached him
with a problem. I was fortunate to have Niklas Een, Baruch Sterin and Jiang Long as my
colleagues in Bob’s group. Working with them was an enriching experience. I thank to Mike
Case for always responding to my queries and concerns.

Satrajit Chatterjee has deep influence in this dissertation. We had long hours of research
discussions in Intel, and Satrajit made them productive and joyful with his own charisma.
Some of the works presented in this dissertation began under his mentorship. I am indebted
to him for being a caring mentor in my research projects and beyond. I thank Michael
Kishinevsky for letting me and Satrajit work together under his watchful eyes. Timothy Kam,
Qi Zhu, Emily Shriver, Umit Ogras, Murali Talupur and the full team of Strategic CAD Lab
made my Intel internships fruitful and memorable during my formative years. I thank Prosenjit
Chatterjee, Yogesh Mahajan and Vigyan Singhal for arranging another wonderful internship
in Nvidia.

I thank Prof. Sanjit Seshia and Prof. Lauren Williams for being members of my disserta-
tion committee. Prof. Seshia’s comments and feedback on the initial draft of the dissertation
were very helpful. I acknowledge Prof. Edward Lee for his feedback on my qualifier examina-
tion. I am deeply grateful to Prof. Koushik Sen and Prof. Jaijeet Roychowdhury for being my
temporary advisers and funding my research efforts during the initial and final months of my
study respectively. Stavros Tripakis was a great peer in the DOP Center with whom I had
many stimulating research discussions. I gratefully acknowledge Prof. Christos Papadim-
itriou’s support in the Fall 2010 semester. Shirley Salanio and Ruth Gjerde were tirelessly
supportive in all of my graduate matters. This dissertation would not have been possible
without this collaborative Cal community.

I thank Prof. P. P. Chakrabarti, Prof. Pallab Dasgupta and Prof. Dipankar Sarkar for
motivating and preparing me for the graduate study. Without their inspiration and support, I
could not have experienced the wonders of Berkeley. I sincerely acknowledge Prof. Goutam
Biswas, Prof. Abhijit Das, Prof. Arijit Bishnu, Prof. Arobinda Gupta and Prof. Chandan
Mazumdar for their encouragements.

I enjoyed few great years in the DOP Center with Mehdi Maasoumy, Susmit Jha, Rhishikesh
Limaye, Daniel Holcomb, Wenchao Li, Dai Bui, Tobias Welp and Pierluigi Nuzzo. I had brief
but quite memorable overlap with Xuening Sun, Shauki Elassaad, Aaron Hurst, Zile Wei,
Shanna-Shaye Forbes, Bryan Brady, Alberto Puggelli, Antonio Iannopollo, Yen-Sheng Ho,
Aaditya V. Karthik and Rohit Sinha. I thank James Cook, Anindya De, Kurt Miller and Siu

viii

Man Chan for being my incredibly helpful GSI colleagues. My transition from India to United
States would never have been a smooth one without Avishek Saha and Anirvan Duttagupta’s
help. I appreciate Partha Sarathi De, Arnab Sen, Subhroshekhar Ghosh, Koushik Pal, Shar-
modeep Bhattacharya, Riddhipratim Basu, Sujayam Saha and Shubhankar Chaudhuri for
creating a homely space around me that I left back in my home-town.

I thank the members of my family for their endless good wishes which have been instru-
mental to all my decisions and reflections. Their unconditional support during my times of
difficulties can hardly be reciprocated.

1

Chapter 1

Introduction

This dissertation belongs to the broad area of formal methods for system design. Its over-
arching theme is to develop scalable algorithms and tools for liveness verification. Liveness
is a type of formal specification used to specify certain behaviors of hardware and software
systems. The other type, which is relatively simpler than liveness, is called safety. Safety
properties specify that something bad will never happen. For example, the property of mutual
exclusion, which specifies that two concurrent processes will never access a critical section
simultaneously, is a safety property. Liveness properties, on the other hand, specify that
something good will happen eventually. Scenarios like deadlock-freedom, livelock-freedom,
stabilization etc. are modeled using liveness properties. In our research, we have developed
various symbolic algorithms and their open-source implementations that are effective in solv-
ing liveness verification problems for industrially relevant hardware systems and outperform
traditional algorithms. In principle, the tool-suite that we have developed in this thesis works
on any sequential hardware circuit, and for the whole family of ω-regular properties [Thomas,
1990]. In particular, practicality and effectiveness of our tool-suite have been demonstrated in
the context of proving response properties1 of on-chip communication fabrics. This tool-suite
consists of a proof engine and a bug-hunting engine. The proof engine extends the recent
development of k-LIVENESS proposed by Claessen and Sörensson [Claessen and Sörensson,
2012]. The bug-finder is based on the liveness-to-safety conversion algorithm originally pro-
posed by Biere et al. [Schuppan and Biere, 2004]. Following are the three main components
of this dissertation:

Proof Engine The main thrust of our proof engine is scalability. In order to achieve this, we
have deviated from the classic approaches like nested fix-point formulation or strongly
connected component enumeration for reasoning about liveness, and resorted to a more
scalable technique called ranking oriented proof. In general, automatically finding a
ranking oriented proof is known to be a challenging task; there is no known mathe-
matical theory for extracting ranking information from an arbitrary finite state machine

1A response property is a common and important liveness property. See Section 5.3 for further details.

CHAPTER 1. INTRODUCTION 2

represented as a sequential circuit. To address this challenge, we devised a special-
ized constraint mining algorithm that discovers special kinds of Boolean relations from
the target hardware. These relations can convey useful ranking information for various
types of hardware of practical importance. In fact, these ranking constraints played an
instrumental role in the scalability of our tool-suite for proving response properties of
communication fabrics.

Bug Finder The core idea of k-LIVENESS is aimed at proving a liveness property, but it cannot
disprove an incorrect property i.e. it cannot find a bug if one exists. Thus to complete
our tool-suite, a separate bug-finder was developed. In principle, it can both prove or
disprove a liveness property, but its underlying algorithm is more effective for finding
bugs using bounded model checking or random simulation.

Analysis of Invariants In addition to advancing core techniques for liveness verification, this
dissertation also emphasizes the impact of design invariants on scalable liveness veri-
fication. It is well-known that design invariants can be crucial ingredients for scalable
safety verification. Because we leverage safety verification technology for liveness ver-
ification in our work, we demonstrate that the role of design invariants can be extended
naturally to liveness verification. With the introduction of design invariants in our ex-
periments, we achieve a speed-up in liveness verification for our target communication
fabrics (see experimental results in Chapter 5). For these systems, Chatterjee and
Kishinevsky presented an algorithm [Chatterjee and Kishinevsky, 2010a] that discovers
a set of linear invariants automatically. These invariants were shown to be crucial for
efficient safety verification. Our experiments show that these invariants are essential
for efficient liveness verification as well. Additionally, we provide a novel and rigorous
mathematical justification about the scope of the Chatterjee-Kishinevsky algorithm. We
show that the classic notion of Kirchhoff’s voltage law (more fundamentally, the null-
space analysis of the incidence matrix of a directed graph) offers a precise mathematical
tool for mining this particular kind of invariants from communication fabrics.

1.1 Motivation

Theoretical foundations for safety and liveness verification (eg. theory of ω-regular model
checking) have been developed by researchers over the last four decades. Comprehensive
books like [Clarke et al., 1999] and [Baier and Katoen, 2008] are available as authoritative
expositions on this topic. Based on this rich body of foundational knowledge, significant effort
is now being invested, both in academia and industry, in transforming this theory into useful
software technology that engineers can use to solve their verification problems arising in in-
dustry. Safety verification, being the first hurdle in this direction, has received the lion’s share
of attention from researchers so far. As a result, today there exist extremely sophisticated
symbolic algorithms for reachability analysis and their heavily engineered implementations

CHAPTER 1. INTRODUCTION 3

that can solve many industrially important safety verification problems. These were beyond
the capacity of available technologies even five years ago. Liveness verification, being the
second hurdle in this area, is yet to receive a comparable effort. This dissertation is a step
in bridging this gap. It aims to leverage knowledge and techniques acquired from the many
advances in safety verification and to develop successful technologies for liveness verification.

1.2 Contributions

This dissertation offers new capabilities of bit-level liveness verification in general and an
in-depth formal analysis of communication fabrics with the objective of their scalable bit-level
response verification. At the conceptual level, we make the following contributions:

Well-foundedness in Hardware Systems: We show that the operations of industrially rele-
vant hardware systems (communication fabrics in our case studies) can naturally give
rise to a well-founded ordering in their state spaces. We call such well-founded order-
ing a ranking structure. We show how we can use disjunctive stabilizing assertions to
capture this ranking structure, and subsequently use them to speed up liveness verifica-
tion. We propose an algorithm that discovers these stabilizing assertions automatically
from the bit-level netlists. We demonstrate a few other heuristic techniques that can
leverage these ranking structures implicitly to speed up liveness verification. These
heuristic techniques improve on verification runtime at the expense of lesser automa-
tion.

Invariant Characterization: We provide an algebraic analysis of a set of industrially rele-
vant communication fabrics. The analysis offers a rigorous mathematical justification of
the Chatterjee-Kishinevsky invariants and their connection to the underlying network
topology. Our analysis enhances our understanding about the Chatterjee-Kishinevsky
invariants which are crucial for timely convergence of verification experiments on the
target fabrics.

This dissertation involves significant experimental work. We have supported our con-
ceptual claims and contributions with numerous experiments and benchmarking. Various
prototypical tools have been developed and released as part of this research as described
below:

Open Source Tool and Benchmark Development: Our proof and debug engines for liveness
are developed in the ABC verification environment [Mishchenko, 2013]. ABC is an open-
source hardware synthesis and verification tool that offers state-of-the-art safety verifi-
cation capabilities. Mainly utilizing ABC’s netlist manipulation functions and property
directed reachability engine, we have developed our liveness verification engines which
are now publicly available with the official distribution of ABC. The now available ABC

CHAPTER 1. INTRODUCTION 4

commands kcs, l2s and l3s correspond to our proof and debug engines. While command
kcs offers the prototypical implementation of the k-LIVENESS algorithm extended with
the notion of disjunctive stabilizing constraints, commands l2s and l3s offer two variants
of liveness-to-safety conversion algorithm for stabilization properties. In order to per-
form verification experiments, we have developed our own implementation of component
libraries for communication fabrics (see Chapter 3 for details). This includes Verilog
implementation of libraries and a code generator for fabrics from high-level textual
description of fabric connections. We have developed various benchmarks of industri-
ally relevant, publicly available fabric designs using our framework. These benchmarks
have been used extensively in all our experiments and are publicly available for further
experimentation.

1.3 Organization

The remaining chapters of this dissertation are organized as follows:

Chapter 2, 3 : Background Concepts

We recapitulate necessary background concepts in Chapter 2 and 3. Chapter 2 discusses the
basics of model checking for linear temporal logic (LTL) properties and the traditional algo-
rithms for solving the liveness verification problem. Chapter 3 discusses the XMAS framework.
XMAS (Executable Micro-Architecture Specification) is a high-level modeling framework suit-
able for design and formal analysis of communication fabrics. It was proposed by researchers
at the Intel Strategic CAD Laboratory [Chatterjee et al., 2010] and has gained popularity
among practitioners in very short time. After describing the basic library primitives of XMAS,
Chapter 3 discusses XMAS models for a collection of industrially relevant fabrics in detail.
These models are used as benchmarks in our experiments.

Chapter 4 : The Bug Finder

Our liveness-to-safety bug-hunting technique is described in Chapter 4. It first introduces
stabilization properties, a syntactic subset of LTL which is semantically equivalent to the
entire class of ω-regular properties. Then it describes a simple construction for converting
a stabilization verification problem into an equi-satisfiable safety verification problem. This
construction enables bounded model checking and random simulation to be used for bug
hunting for stabilization properties.

Chapter 5 : Proof Techniques

Chapter 5 is devoted to proof techniques for liveness. While our main objective is to discuss
our liveness proof engine that operates on the k-LIVENESS principle, we gradually build the

CHAPTER 1. INTRODUCTION 5

idea by illustrating how ranking structures are hidden in the state spaces of communication
fabrics and how our techniques discover and leverage them. First we explain how the end-to-
end response property can be split into intermediate safety properties (Chapter 5.4). As proof
obligations, these intermediate safety properties are easier than the end-to-end liveness one.
This makes the scheme an attractive way to cope with the state explosion problem associated
with liveness verification. However, this scheme requires significant manual intervention; a
rigorous understanding of the design is required because there exists no automatic method
for splitting an end-to-end liveness property into intermediate safety properties. Also, one
needs to argue that satisfaction of the intermediate safety properties implies satisfaction of the
liveness property. The nature of this argument is situation-specific and usually ad-hoc. One
way of mitigating this issue is to use the notion of well-founded ordering. We demonstrate
how this well-founded ordering information can be extracted from the design description
of communication fabrics (Chapter 5.5). While the notion of well-founded ordering offers a
systematic mathematical reasoning about liveness (contrary to the ad-hoc reasoning involved
in the technique of intermediate safety properties), still the overall process is manual. In
general, we do not know any algorithmic way of discovering a well-founded ordering from a
design description. For our benchmarks, the ordering information is discovered manually. We
increase the level of automation in the subsequent section (Chapter 5.6) by using a heuristic
proof technique called skeleton independent proof proposed by Aaron Bradley et al. [Bradley
et al., 2011]. Finally, we discuss our algorithmic proof technique based on k-LIVENESS at the
end (Chapter 5.7). In principle, although it is a fully automatic algorithm, it can benefit from
human guidance as well. A comparison among all these alternative techniques for proving
liveness is discussed in detail in Chapter 5.

Chapter 6 : Structural Invariant Generation

Our contribution to invariant generation for communication fabrics is discussed in Chapter
6. We summarize some necessary background on linear algebra and related works at the
beginning of the chapter. Then we demonstrate how Kirchhoff’s voltage law can be leveraged
to generate invariants for communication fabrics.

Chapter 7 : Conclusion

Finally, Chapter 7 concludes the dissertation with a discussion on interesting possibilities of
future investigations.

6

Chapter 2

Algorithmics for Liveness

2.1 Safety vs. Liveness

Safety and liveness are the main categories of temporal specification for reactive systems.
Informally, safety properties specify that something ‘bad’ will never happen and liveness
properties specify that something ‘good’ will happen eventually. The notions of safety and
liveness was introduced first by Leslie Lamport in the 1970s in the context of the analysis of
distributed systems [Lamport, 1980]. After this, numerous specification formalisms were pro-
posed to capture these requirements in rigorous mathematical frameworks. These formalisms
include linear temporal logic (LTL), computation tree logic (CTL), ω-regular specification etc.
In this dissertation, we adopt LTL for specification since it is the most widely used temporal
logic and particularly appealing for liveness specification. We devote this chapter to outline
syntax, semantics and model checking algorithms for LTL. Since an extensive literature is
available on this topic, we focus only on the aspects that are most relevant to our work i.e.
the algorithms for liveness verification.

The chapter is organized in two sections: Section 2.2 overviews the basics of LTL model
checking and Section 2.3 discusses the taxonomy of the most prominent liveness verification
algorithms.

2.2 LTL Model Checking

LTL is an extensively studied temporal logic and used widely for specifying behavior of reactive
systems. LTL model checking is now an entry-level topic in formal methods with a plethora
of literature available on specification and verification of LTL formulas. For completeness,
we present a brief overview of syntax, semantics and basic model checking algorithm for LTL
here. It is only a quick outline and does not attempt to reveal the full technical depth of the
topic. We refer curious readers to comprehensive books like [Clarke et al., 1999], [Baier and
Katoen, 2008] for full details.

CHAPTER 2. ALGORITHMICS FOR LIVENESS 7

2.2.1 Syntax of LTL

Let AP be a set of atomic propositions and let p ∈ AP be some atomic proposition. LTL has
the following syntax given in Backus-Naur form:

φ := ⊤ | ⊥ | p | ¬φ | φ ∧ φ | Xφ | φUφ

Here symbols ⊤ and ⊥ stand for logical constants true and false respectively. ¬ and
∧ are standard Boolean connectives denoting negation and conjunction respectively. X and
U are temporal connectives that stand for next and until respectively. The above syntax
is minimalistic in that it avoids many other (standard) Boolean and temporal connectives
that can be expressed with the above connectives. For example, often we will use Boolean
expressions φ1 ∨ φ2 (disjunction) and φ1 ⇒ φ2 (implication) in place of ¬(¬φ1 ∧ ¬φ2) and
¬φ1∨φ2 respectively. Similarly, Fp and Gp are standard LTL expressions that are shorthands
of ⊤Up, and ¬(⊤U¬p) respectively. F and G stand for future and globally respectively.

2.2.2 Semantics of LTL

The semantics of LTL is defined over a formal model of transition systems called Kripke
structure. A standard definition of Kripke Structure is given below:

Definition 1 (Kripke Structure). A Kripke structure K = (S, S0, R, L) is defined over a set
of atomic propositions AP such that S is a set of states, S0 ⊆ S is the set of initial states,
R ⊆ S × S is a total transition relation and L : S → 2AP is a labelling function.

A path π in a Kripke structure K is an infinite sequence of states s0, s1, s2, . . . such that
(si, si+1) ∈ R for all possible i ≥ 0 and s0 ∈ S0. In our discussion, we consider only infinite
paths in a Kripke structure unless stated otherwise. The i-th state on a path π is denoted
as π(i), for i ≥ 0 and the suffix sub-path of π that starts from π(i) is denoted as πi. Using
symbol |= to denote logical satisfaction relation, the semantics of LTL is defined as follows:

• K, π |= p⇔ p ∈ L(π0)

• K, π |= ¬φ⇔ K, π 6|= φ

• K, π |= φ1 ∧ φ2 ⇔ K, π |= φ1 ∧ K, π |= φ2

• K, π |= Xφ⇔ K, π1 |= φ

• K, π |= φ1Uφ2 ⇔ there exists j ≥ 0 such that K, πj |= φ2 and K, πi |= φ1 for all i < j .

CHAPTER 2. ALGORITHMICS FOR LIVENESS 8

2.2.3 Model Checking Algorithm for LTL

We overview the basic LTL model checking algorithm based on Büchi automaton construction
below. We first summarize the model checking algorithm, then recapitulate the notion of
Büchi automaton.

2.2.3.1 The Basic LTL Model Checking Algorithm

Let K be a Kripke structure representation of some reactive system. Let φ be an LTL formula
over a set of atomic propositions AP that specifies all bad behaviors. We want to prove that
K |= ¬φ i.e. K does not admit any bad behavior specified by φ. We build a Büchi automaton
Aφ that accepts all sequences over 2AP satisfying φ. We then check whether L(Aφ)∩L(K) = ∅
where L(X) denotes the language accepted by automaton X . If L(Aφ) ∩ L(K) = ∅, then K

satisfies ¬φ; otherwise we obtain a counterexample. Model checking of LTL is a PSPACE-
complete problem in general. For details of the model checking procedure see [Clarke et al.,
1999], [Vardi and Wolper, 1984].

2.2.3.2 Büchi automaton

A Büchi automaton is a type of automaton on infinite strings and lies at the heart of LTL model
checking. It has been studied extensively by automata theorists and logicians. Although in
this dissertation we never construct a Büchi automaton explicitly, still it is an important
background concept, particularly for Chapters 4 and 5. For completeness, we review the
definition of a Büchi automaton and algorithm for its emptiness check. For further details
see [Thomas, 1990]. Any LTL property can be translated into a Büchi automaton, but we omit
details of this construction here and refer interested readers to [Kupferman and Vardi, 2005].

Definition 2 (Büchi Automaton). A Büchi automaton is defined on an alphabet Σ as a quadru-
ple 〈S, S0, R, F〉 where S is a (finite) set of states, S0 ⊆ S is the set of initial state,
R ⊆ S × Σ × S is a set of transitions (labeled with symbols from Σ) and F ⊆ S is the
set of accepting states.

Let Σω denote the set of all infinite strings of symbols from Σ. A Büchi automaton accepts
strings from Σω. For a string a ∈ Σω where a = a0, a1, a2, . . . for ai ∈ Σ, a run of a on a
Büchi automaton B = 〈S, S0, R, F〉 is an infinite sequence of states ρa = s0, s1, s2, . . . such
that all si ∈ S, s0 ∈ S0 and (si, ai, si+1) ∈ R for all i ≥ 0. Let Inf(ρa) ⊆ S denote the set
of states in the run ρa that appear infinitely many times. Now, a run ρa is an accepting run
if Inf(ρa) ∩ F 6= ∅. A string a ∈ Σω is accepted by Büchi automaton B if it produces an
accepting run. The set of all infinite strings accepted by B is called the language of B and
is denoted by L(B).

CHAPTER 2. ALGORITHMICS FOR LIVENESS 9

2.2.4 Emptiness check of Büchi Automaton

The problem of emptiness check of a Büchi automaton is a fundamental concern in formal
verification. It is not difficult to see that the product automaton Aφ × K is also a Büchi
automaton and hence the model checking question for LTL i.e. if L(Aφ) ∩ L(K) = ∅ reduces
to the emptiness check of a Büchi automaton. Given a Büchi automaton B = 〈S, S0, R, F〉,
L(B) is empty if and only if B can not produce an infinite sequence of states obeying R

starting from an initial state that visits at least one state in F infinitely often. Since the
set of states S of B is finite, an infinite sequence of states that obeys R must form a lasso
loop, a run of states that starts from an initial state and eventually enters and remains in
a cycle of states. Moreover, if such an infinite sequence must visit at least one state in
F infinitely many times, the loop part of the lasso loop must have at least one state in F .
Therefore, a necessary and sufficient condition for L(B) = ∅ is that the underlying graph of
B cannot have a cycle, reachable from an initial state, that contains a state in F . In other
words, no reachable maximal strongly connected component (MSCC) of B can contain a state
in F . An algorithm for finding strongly connected component (SCC) in a directed graph can,
therefore, solve the emptiness checking problem of a Büchi automaton as well as the LTL
model checking problem, at least in theory.

2.3 Algorithms for Liveness Verification

At the heart of any LTL liveness verification algorithm, there is a variant of SCC analysis
routine. Over the last three decades, researchers came up with different techniques of SCC
analysis to improve the scalability of LTL model checking. Early SCC analysis algorithms
date back to Tarjan’s work on depth first search and related linear-time graph traversal
algorithms [Tarjan, 1972]. These algorithms, though have linear time-complexity, rely on
explicit state traversal which makes them un-usable for model checking because explicit
construction of graphs of transitions systems is infeasible in practice. Therefore, researchers
proposed algorithms that perform state traversal implicitly a.k.a. symbolically. Thus there
exist two broad categories of SCC analysis algorithms, explicit state traversal algorithms (i.e.
the Tarjan-style classical algorithms) and symbolic state traversal algorithms. Because the
explicit algorithms are rarely used for practical model checking, we omit further discussion
about them and refer to algorithm text-books like [Cormen et al., 2009] for their description.
Instead, we focus on the family of symbolic algorithms that are actively used for model
checking in practice. The taxonomy of different SCC analysis algorithms is presented in
Figure 2.1.

As shown in Figure 2.1, the class of symbolic algorithms is divided into BDD-based
algorithms and SAT-based algorithms. BDD is the acronym for binary decision diagram
[Bryant, 1992] - a data structure used for canonical representation of Boolean functions.
SAT, on the other hand, stands for Boolean satisfiability solver [Eén and Sörensson, 2003].

CHAPTER 2. ALGORITHMICS FOR LIVENESS 10

Algorithms for Fair SCC Detection

Explicit Symbolic

BDD-based

SCC-hull SCC-Enumeration

SAT-based

L2S Barrier-oriented

❋✐❣✉r❡ ✷✳✶✿ ❚❛①♦♥♦♠② ♦❢ ❙❈❈ ❛♥❛❧②s✐s ❛❧❣♦r✐t❤♠s

Under BDD-based algorithms, there are SCC hull-finding algorithms and SCC enumeration
algorithms. SAT-based algorithms are split into liveness-to-safety conversion algorithms
(L2S) and barrier-oriented algorithms. Before describing them in detail, we make a remark
on the nomenclature of the algorithms:

Remark 1. we use the terms ‘BDD-based’ and ‘SAT-based’ in order to emphasize the under-
lying verification technologies that are used with the corresponding algorithms. This attribute
is not necessarily stringent because the algorithms that are designated as SAT-based can
be solved with BDDs as well (if tractable). However, the formulations discussed under the
BDD-based category are generally not SAT-solver friendly. A stronger distinguishing feature
for these algorithms is the time period of their development. All algorithms discussed in the
BDD-based category were developed in the late 1980s and the 1990s. SAT-based algorithms
came after 2000 as SAT solvers began to outperform BDDs in solving large practical prob-
lems, thanks to successfully engineered SAT solvers like ZCHAFF [Zhang and Malik, 2002]
and MINISAT [Eén and Sörensson, 2003]. Liveness-to-safety conversion was proposed around
2002 mainly as a novel theoretical concept, without any special attachment to the use of
SAT-solvers. Effective use of SAT-solvers with this formulation is an added plus. An alterna-
tive theme that may be identified among the SAT-based symbolic SCC analysis algorithms is
‘looking at the liveness verification problem from a safety verification standpoint’. We expand
more on this as we present the algorithms below.

2.3.1 BDD-based algorithms

BDD-based algorithms may be divided into two categories, viz. SCC hull-finding algorithms
and SCC enumeration algorithms. Among the SCC hull-finding algorithms, the best-known
is the Emerson-Lei algorithm [Emerson and Lei, 1986]. It works on the nested fixpoint formu-
lation for finding MSCC hulls. Several variants have been proposed, for example see [Hojati

CHAPTER 2. ALGORITHMICS FOR LIVENESS 11

et al., 1993a], [Hojati et al., 1993b], [Kesten et al., 1998], [Hardin et al., 2001]. These variants
achieve better speed-ups on certain types of state graphs. [Somenzi et al., 2002] provides
a comprehensive comparison and a generalization of these ideas. [Xie and Beerel, 1999]
proposed a BDD-based algorithm for explicit enumeration of the SCCs and improvements
on this idea were proposed later in [Bloem et al., 2006]. However, these BDD-based algo-
rithms, though elegant, do not scale in practice. [Ravi et al., 2000] provides a survey, and a
comparative analysis of these algorithms.

2.3.2 SAT-based algorithms

As mentioned before, this family of algorithms works on formulations that are solvable by
both BDD and SAT-solvers. But their ability of working with SAT-solvers makes them more
attractive in practice. These algorithms have a deep connection to modern verification tech-
niques for safety properties and their developments were inspired by the practical success
of contemporary safety verification technologies. The liveness-to-safety conversion technique
is such a method that converts a liveness problem into an equi-satisfiable safety problem
[Schuppan and Biere, 2004]. This technique applies to LTL formulas as well as ω-regular
properties. This technique forms the core of our work on a BMC-based debugger for stabiliza-
tion properties presented in Chapter 4. We defer an in-depth discussion of liveness-to-safety
conversion until that chapter.

In the last few years, significant development has taken place in SAT-based algorithms for
liveness verification. A liveness track was introduced in the hardware model checking compe-
tition and the top contending tools offered advanced SAT-based algorithms for liveness, the
top two being IIMC and TIP. The algorithms behind these tools are known as FAIR [Bradley
et al., 2011] and k-LIVENESS [Claessen and Sörensson, 2012] respectively. Algorithm FAIR

introduced the idea of barriers in the context of symbolic SCC analysis. Barriers are induc-
tive invariants that separate MSCCs of a directed graph. FAIR proves a liveness property by
iteratively discovering barriers, thereby discovering SCC hulls in a symbolic and incremental
way. Bradley et al. introduced a heuristic called skeleton independent proof in [Bradley et
al., 2011] which forms the foundation of Chapter 5.6 of this dissertation. k-LIVENESS, which
was the winner in the liveness track of the recent-most hardware model checking competition
[HWM, 2012] borrows the idea of barriers in a subtle way and offers a more scalable algo-
rithm. This is the reason for putting these two algorithms together in the barrier-oriented
category in (Figure 2.1). k-LIVENESS is the core of our Chapter 5.7. We will discuss these
two algorithms in further detail in Chapter 5. In the particular context of liveness verification
algorithms for communication fabrics, Holcomb et al. proposed a SAT-based algorithm for
bounded liveness and performance analysis [Holcomb et al., 2012].

12

Chapter 3

Formal Model for Communication Fabrics

Communication fabrics are integral part of contemporary hardware systems. They are modules
of logic that connect various computation units and I/O units within a large system and
mediate data communication among them. The term ‘communication fabric’ encompasses a
vast variety of logic whose generic responsibility is to transfer data from one point to another
within a system. Enroute, it may change some data field(s) for the purpose of arbitration,
scheduling, routing or other book-keeping, but involves no heavy computation. Examples of
such logic range from local circuitry like a hardware scoreboard to system-wide circuit like
a network-on-chip.

Design and analysis of communication fabrics have matured over decades of practice, but
very little attention has been given to its formal modeling. Traditionally, there exist var-
ious formalisms like Petri nets [Murata, 1989] and data-flow networks [Arvind and Culler,
1986] for modeling communication-centric hardware systems, but they have witnessed only
a modest adoption in the main-stream hardware industry. Recently, scientists from Intel’s
Strategic CAD Laboratory proposed a new formal model called Executable Micro-Architecture
Specification, XMAS in short, which is particularly suitable for modeling communication fab-
rics and has promises for seamless adoption in the hardware engineering community [Chat-
terjee et al., 2010], [Chatterjee and Kishinevsky, 2010a], [Gotmanov et al., 2011]. It has a
simple but rigorous formal semantics which makes it amenable to formal analysis and yet it
is very close to the way the hardware engineers are trained to think. This is our choice of
formal model for expressing and analyzing communication fabrics for their liveness properties.
In this chapter, we present XMAS in detail. Readers already familiar with XMAS may skip
this chapter, but a good understanding of the examples presented in Section 3.2 is necessary
to grasp the subsequent chapters.

The chapter is organized as follows: we begin with a detailed discussion on the structural
components of XMAS and their formal semantics (Section 3.1). We then illustrate a variety
of example fabrics modeled in XMAS (Section 3.2). These examples are used as benchmarks
in all our subsequent experiments. We conclude this chapter with Section 3.3 where we
draw a critical comparison between XMAS and other prevailing formalisms like Petri nets

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 13

and data-flow networks.

3.1 Executable Micro-Architecture Specification (XMAS)

The core observation that Intel’s researchers made while developing XMAS was that commu-
nication fabrics are essentially ‘networks of finite FIFO buffers, with intervening glue logic’.
In most of the cases, this glue logic can be described with a small number of characteristic
primitives. XMAS is, therefore, simply described as a library of a small number of structural
components 1 that includes finite FIFO buffer, source and sink of data items, synchronization
primitives fork and join, function, arbiter and switch.

Each component of XMAS is defined as a synchronous Boolean circuit. FIFO buffer, source,
sink and arbiter have sequential components while the rest are defined as combinational
circuits. A communication fabric is constructed by stitching instances of different components
together. A fabric thus constructed automatically becomes a synchronous, sequential Boolean
circuit triggered by a single global clock. The timing model follows the synchronous model
of time as in [Benveniste et al., 2003]. For the ease of high-level modeling and informal
exchange of designs, each component is represented with a visual symbol as shown in Figure
3.1. Logical definition of individual components are presented below. For further detail, see
[Chatterjee et al., 2010].

buffer fork join switch arbiter source sink function

k

❋✐❣✉r❡ ✸✳✶✿ ①▼❆❙ s②♠❜♦❧s ❢♦r str✉❝t✉r❛❧ ❝♦♠♣♦♥❡♥ts ♦❢ ❝♦♠♠✉♥✐❝❛t✐♦♥ ❢❛❜r✐❝s

3.1.1 FIFO buffer

Consider a synchronous FIFO queue with a standard interface comprising a read port and
a write port as shown in Figure 3.2. The queue has two parameters: size k (the number
of elements it can contain) and a type τ (the type of elements it can contain). To compose
two instances of such a queue back-to-back without any extra glue logic, XMAS proposes
slightly modified interface signals for each FIFO buffer as described below. Figure 3.3 shows
composition of two FIFO buffers with such a modified interface definition.

o.data := read_data write_data := i.data
o.irdy := not is_empty write_en := i.irdy
1we use terms components, structural components and primitives interchangeably in this dissertation

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 14

i.trdy := not is_full read_end := o.trdy

write data

write en

is full

read data

is empty

read en

k

❋✐❣✉r❡ ✸✳✷✿ ❆ s②♥❝❤r♦♥♦✉s ❋■❋❖ q✉❡✉❡ ✇✐t❤ ❛ ✇r✐t❡ ♣♦rt ✭♦♥ t❤❡ ❧❡❢t✮ ❛♥❞ ❛ r❡❛❞ ♣♦rt ✭♦♥ t❤❡
r✐❣❤t✮✳ ❚❤❡ q✉❡✉❡ ❝❛♥ st♦r❡ k ❞❛t❛ ❡❧❡♠❡♥ts✳ ■♥ ❡❛❝❤ ❝❧♦❝❦ ❝②❝❧❡✱ ✐❢ t❤❡ q✉❡✉❡ ✐s ♥♦t ❢✉❧❧✱ ❛ ♥❡✇
❡❧❡♠❡♥t ♠❛② ❜❡ ✐♥s❡rt❡❞❀ ❛♥❞ ✐❢ t❤❡ q✉❡✉❡ ✐s ♥♦t ❡♠♣t②✱ t❤❡ ♦❧❞❡st ❡❧❡♠❡♥t ♠❛② ❜❡ r❡♠♦✈❡❞✳
r❡❛❞❴❞❛t❛ ❡①♣♦s❡s t❤❡ ♦❧❞❡st ❡❧❡♠❡♥t ✐❢ t❤❡ q✉❡✉❡ ✐s ♥♦t ❡♠♣t②✳ ■❢ t❤❡ q✉❡✉❡ ✐s ❡♠♣t②✱ t❤❡
✐♥❝♦♠✐♥❣ ❞❛t❛ ❛♣♣❡❛rs ❛t t❤❡ ♦✉t♣✉t ♦♥❡ ❝②❝❧❡ ❧❛t❡r✳

i.irdy
i.trdy

i.data
o.irdy
o.trdy

o.data
irdy
trdy

data

kk

❋✐❣✉r❡ ✸✳✸✿ ❇❛❝❦✲t♦✲❜❛❝❦ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❜✉✛❡rs ✇✐t❤ ♠♦❞✐✜❡❞ ✐♥t❡r❢❛❝❡ s✐❣♥❛❧s

3.1.1.1 Channel

Note that input and output ports of FIFO buffers in Figure 3.3 comprises of three signals:
data (a ‘bit vector’ signal), irdy (a single bit signal, for initiator ready) and trdy (another
single bit signal, for target ready). This triplet of signals is called a channel. Channels are
the only communication mechanism in the XMAS framework. A channel always connects two
ports: an initiator, and a target. The data and irdy signals go from initiator to target and
the trdy signal go from target to initiator. irdy indicates that the initiator is ready to send
data and trdy indicates that the target is ready to accept data. Data are transferred exactly
on those clock cycles when both irdy and trdy are true. Each channel has a type τ which
indicates the type of data it carries. Channels induce types on the ports they connect to.
For example, both i and o ports of a queue have type τ and this is denoted by i, o : τ. In
subsequent diagrams, we use only a single line to designate a channel which essentially
encapsulates all the three signals associated with it. For example, Figure 3.4 is a simplified
version of Figure 3.3 which captures all functional information about the system in a succinct
way.

The labels k on the buffers in Figure 3.4 denote that the buffers are of size k . In the
sequel, we will often drop this label from the diagrams when no ambiguity is ensued or when
the buffer sizing information is not important for the context.

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 15

kk

❋✐❣✉r❡ ✸✳✹✿ ❆ s✉❝❝✐♥❝t r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t✇♦ ❜✉✛❡rs ❝♦♥♥❡❝t❡❞ ❜❛❝❦✲t♦✲❜❛❝❦ ❢r♦♠ ❋✐❣✉r❡ ✸✳✸

3.1.2 Sources and Sinks

A source is a primitive which is parameterized by a constant expression e : α . At each cycle,
it non-deterministically attempts to send a packet e through its output port. A source has a
single output port o : α and is governed by the following equations:

o.irdy := oracle or pre(o.irdy and not o.trdy)
o.data := e

where pre is the standard synchronous operator that returns the value of its argument in the
previous cycle and the value 0 in the first cycle; and oracle is an unconstrained primary input
that is used to model the non-determinism of the source in the synchronous model. o.irdy is
persistent, i.e. once a source makes a value available on the channel, it preserves that value
until a transfer.

A sink is a component which non-deterministically consumes a packet. It has one input
port i and is characterized by the following equation:

i.trdy := oracle or pre(i.trdy and not i.irdy)

3.1.3 Synchronization

A fork is a primitive with one input port i : α and two output ports a : β and b : γ parameterized
by two functions f : α → β, and g : α → γ. Intuitively, a fork takes an input packet and
creates a packet at each output. It coordinates the input and outputs so that a transfer
only takes place when the input is ready to send and both the outputs are ready to receive.
Formally,

a.irdy := i.irdy and b.trdy a.data := f(i.data)
b.irdy := i.irdy and a.trdy b.data := g(i.data)
i.trdy := a.trdy and b.trdy

A join is the dual of a fork. It has two input ports a : α and b : β and one output port o : γ.
It is parameterized by a single function h : α × β → γ. Intuitively, a join takes two input
packets (one at each input) and produces a single output packet. It coordinates the input and
outputs so that a transfer only takes place when the inputs are ready to send and the output
is ready to receive. Formally,

a.trdy := o.trdy and b.irdy
b.trdy := o.irdy and a.irdy
o.irdy := a.irdy and b.irdy o.data := h(a.data, b.data)

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 16

3.1.4 Function

A function is an XMAS primitive that transforms data. It is parameterized by two types α
and β and a function f : α → β. It has an input port i : α and an output port o : β. It is
characterize by the following combinational equations:

o.irdy := i.irdy o.data := f(i.data)
i.trdy := o.trdy

3.1.5 Switching

A switch is a primitive to route packets in the network. It consists of one input port i and two
output ports a and b, all of type α . It is parameterized by a switching function s : α → Bool.
Informally, the switch applies s to a packet x at its input, and if s(x) is true, it routes the
packet to port a and otherwise it routes it to port b. Formally,

a.irdy := i.irdy and s(i.data) a.data := i.data
b.irdy := i.irdy and not s(t.data) b.data := i.data
i.trdy := (a.irdy and a.trdy) or (b.irdy and b.trdy)

3.1.6 Arbitration

Arbitration is modeled by a merge primitive that selects one packet among multiple input
ports and one output port. Requests for a shared resource are modeled by sending packets to
a merge and a grant is modeled by the selected packet. A complete definition of a two-input
merge that has two input ports a : α and b : α and one output o : α

o.irdy := a.irdy or b.irdy
o.data := a.data
a.trdy := u and o.trdy and a.irdy
b.trdy := not u and o.trdy and b.irdy

u := 1 if a.irdy and not b.irdy

0 if not a.irdy and b.irdy

not pre(u) if pre(o.irdy and o.trdy)

pre(u) otherwise

3.1.7 Persistence Property of XMAS Components

XMAS components are so defined that the associated channels hold a property called per-
sistence. Informally, a signal is persistent means that once the signal is asserted by the

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 17

initiator agent, it remains asserted until it is properly served by the target agent. For any
XMAS channel u, both its irdy and trdy signals are persistent. Persistence of these two
signals of channel u is termed as forward persistence and backward persistence and denoted
with FwdPersistence(u) and BwdPersistence(u) respectively. Formally, these two properties
of channel u can be defined in LTL as follows:

FwdPersistence(u) , G((u.irdy.¬u.trdy)⇒ Xu.irdy)

BwdPersistence(u) , G((u.trdy.¬u.irdy)⇒ Xu.trdy)

Persistence is an important property that every XMAS channel satisfies. It greatly simpli-
fies behavior of XMAS fabrics, significantly limits potential deadlocks and allows for simpler
definition of channel liveness. It helps in compositional analysis of fabric behaviors and their
liveness analysis with intermediate safety properties.

3.2 Benchmarks

We illustrate how XMAS primitives are used to construct communication fabrics with the help
of few examples. These examples are taken from industrially relevant applications and are
used as benchmarks in our subsequent experiments. We discuss the following examples in
order: credit logic, virtual channel, virtual channel with buffer, virtual channel with ordering,
master/slave communication and hardware scoreboard.

3.2.1 Credit Logic

Credit-based flow-control is a popular technique of switch-level flow control, especially in
wormhole routing systems. Figure 3.5 illustrates an XMAS implementation of the basic idea
of credit-based flow-control mechanism where a source (S1) wants to send flits 2 to a sink
(S2) through a buffer (B2), and the flow of flits across B2 is controlled by the credit_logic
sub-circuit. Main purpose of credit_logic is to allow only a restricted number of flits to
enter the system which it is guarding (in this case, the buffer B2).

3.2.2 Virtual Channel

Consider the model shown in Figure 3.6. It is an implementation of virtual channel in XMAS.
Here a single physical channel (channel e) is shared between two sources (sources A1 and A2).
Virtual channel is a fundamental building block of on-chip communication networks which was
invented to mitigate the head-of-line (HOL) blocking problem in wormhole switching. See
texts like [Dally and Towles, 2003], [Duato et al., 2002] for details. Figure 3.6 shows how two

2A flit (flow-control unit) is a unit of data transfer in communication fabrics, see [Dally and Towles, 2003]
for details.

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 18

S1

S2

credit logic

B3

B1

B2

❋✐❣✉r❡ ✸✳✺✿ ❈r❡❞✐t ♠❡❝❤❛♥✐s♠

sources A1 and A2 share the virtual channel e to transfer flits to their respective sinks (sink1

and sink3 respectively) while credit logic blocks CL1 and CL2 control flow of flits from source
A1 and A2 respectively. When source A1 wants to send a flit to sink1, it makes a request
on channel a1. If buffer B1 has a token, this request is forwarded to channel d1. Based on
various conditions like whether channel d2 is also making a concurrent request or whether
buffer B3 has an empty slot, the arbiter decides when to issue a grant against the request
on channel d2. This grant is transmitted to source A1 which allows A1 to complete the flit
transmission. Similar steps take place when A2 wants to send a flit to sink3 and makes a
request on channel a2. We refer to the model of Figure 3.6 as VC in the subsequent chapters.

3.2.3 Virtual Channel with Buffer

In different applications, virtual channel needs to store flits temporarily before it forwards
them to their respective destinations. This is implemented by putting a temporary buffer on
the shared channel itself. An XMAS implementation is shown in Figure 3.7. We refer to this
model as VCB. Structurally, it is same as VC with the only difference of the presence of
buffer Bch which splits channel e into two channels e1 and e2.

3.2.4 Virtual Channel with Order

Suppose we have the following ordering restriction on flits travelling in a virtual channel:

an A1-flit can be sunk only if all A2-flits that came before it on channel e have been
sunk.

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 19

CL1

CL2

A1

A2

B1

B2

B3

B4

B5

B6

sink1

sink2

sink3

sink4

a1

b1

c1

d1

i1

f1

g1

h1

j1
k1 l1

m1

a2

b2

c2

d2

e

f2

g2

h2

j2k2 l2

m2

i2

arbiter switch

❋✐❣✉r❡ ✸✳✻✿ ❱✐rt✉❛❧ ❝❤❛♥♥❡❧ ✭VC✮

e is called an ordering point. Such one-way ordering restrictions are often needed to imple-
ment cache coherence protocols, or to guarantee producer-consumer ordering for software yet
avoiding deadlock as would have been caused by total ordering. Figure 3.8 shows how this
may be implemented using XMAS primitives. We call this model VCO. In this implementation,
as shown in Figure 3.8, all buffers except B5 can hold two flits. B5 can hold four flits instead.
Another speciality of B5 is that it can hold both type(A1) and type(A2)-flits, whereas each
of the other buffers holds either type(A1), or type(A2) flits, but not both. For further detail,
see [Chatterjee et al., 2010].

3.2.5 Master/Slave Communication

Figure 3.9 shows two agents P and Q communicating over a trivial fabric composed of six
queues. Two types of flits are circulating in this fabric, viz. req (request type), and rsp

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 20

k

a1

b1

c1

d1

h1

i1

j1k1

m1

a2

b2

c2

d2

h2

i2

j2k2

m2

l1

l2

e1 e2

f1

f2

Bch

B1

B2

B3

B4

B5

B6

A1

A2

❋✐❣✉r❡ ✸✳✼✿ ❇✉✛❡r❡❞ ✈✐rt✉❛❧ ❝❤❛♥♥❡❧ ✭VCB✮

a1

b1

c1

d1

h1

i1

j1

k1

m1

a2

b2 c2

d2

h2

i2

j2

k2

m2

k3

k4

p1

p2

p3

j3
h3

r1

l1

l2
e

B1

B2

B3

B4

B5
B6

B7

B8

A1

A2

❋✐❣✉r❡ ✸✳✽✿ ❱✐rt✉❛❧ ❝❤❛♥♥❡❧ ✇✐t❤ ♦r❞❡r✐♥❣ ✭VCO✮

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 21

(response type). Each agent creates new requests for the other agent. When an agent
receives a request, it produces a response (by changing the packet type using a function
x 7→ rsp) after a non-deterministic delay. The response is sent back to the original agent
where it is sunk when the sink is ready to receive it. Thus each agent behaves like a master
that produces requests, and responses, and a target that consumes responses, and requests.
Communication between agents is done through the virtual channels. Consider agent P as
example. It sends requests, and responses to agent Q through the shared channel, and the
data transfer queue B4, and then to two ingress queues B7, and B8, one per message type. An
arbiter modeled by the merge primitive selects fairly between req and rsp messages that are
exposed to arbitration only if they have credit tokens inside the corresponding credit queues
B1, and B2. Credits are initialized inside the credit counters B6, and B9 to the values equal
to the sizes of the ingress queues B7, and B8, i.e. to k . Credits are returned through fabric
credit queues B3, and B5. We call this model MS.

2 2 2 2 2 2

k k

kkkk

kkkk

kkB1 B2

B3 B4 B5

B6
B7 B8 B9

C1 C2

C3 C4 C5

C6
C7 C8 C9

x 7→ rsp

x 7→ rsp

req

req

(x == req)

(x == req)

router

agent P

agent Q

❋✐❣✉r❡ ✸✳✾✿ ❆ ♣❛✐r ♦❢ ❛❣❡♥ts ❝♦♠♠✉♥✐❝❛t✐♥❣ ♦✈❡r ❛ s✐♠♣❧❡ ❢❛❜r✐❝ ✭MS✮

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 22

3.2.6 Hardware Scoreboard

Figure 3.10 shows how a two-entry scoreboard may be modeled using the XMAS primitives.
An incoming transaction on the left needs to obtain a tag before it can enter the scoreboard.
Different tags are used to distinguish different in-flight transactions in the scoreboard. In this
example, the scoreboard supports two simultaneous in-flight transactions, and hence there
are two tag sources. These tag sources are modeled using credit logic. Once the transaction
enters the scoreboard it competes with the other transaction (if there is one) to enter the
first phase of processing. The results of this phase may return out of order: tags are used to
match a result with the corresponding transaction in the scoreboard. Once the result of the
first phase is returned, the transaction moves on to the second phase. After the second phase
is done, the transaction becomes eligible for retirement. When it wins arbitration, it retires
and releases its tag which is then recycled for use by a future transaction. For details, see
[Chatterjee et al., 2010]. We call this model SB.

tag store

scoreboard

(to phase 1) (from phase 1) (to phase 2) (from phase 2)

ALLOC PHASE 1 PHASE 2 RETIRE

(retired
transaction)

(recycled
tags)

(new transaction)

(fresh tags)

B1
B2

B3
B4

B5
B6 B7 B8 B9

B10 B11 B12
B13 B14

❋✐❣✉r❡ ✸✳✶✵✿ ❆ t✇♦ ❡♥tr② s❝♦r❡❜♦❛r❞ ✭SB✮

3.3 XMAS in Perspective

3.3.1 From XMAS to bit-level netlist

As we mentioned before, an XMAS fabric is constructed by stitching various instances of
the primitives together. This connection scheme can be represented textually, as well as

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 23

diagrammatically. Thanks to the precise logical semantics of the primitives, such a connection
scheme can easily be translated into Verilog or VHDL or any other hardware description
language (HDL) and from there, a bit-level netlist can easily be generated using any existing
compiler. This quick-and-easy translation of a micro-architectural description into a bit-
level netlist enables us to use state-of-the-art SAT solvers and bit-level verification tools for
verifying architecture level properties. We have developed our own Verilog implementation
of XMAS library closely following the semantics defined in [Chatterjee et al., 2010]. We have
also developed a compiler that can read plain textual descriptions of connection schemes and
generate Verilog descriptions. In our framework, we convert these Verilog descriptions into
bit-level netlists by invoking our in-house tool veriABC. It uses Verific, a commercial Verilog
front-end analyzer, for translation and elaboration into netlists. Finally, we use our bit-level
verification tool ABC to perform verification experiments on them. This seamless integration
of micro-architecture level modeling with the main-stream hardware verification flow is the
major strength of XMAS formalism and this makes XMAS more attractive than some of the
prevailing formalisms as discussed below.

3.3.2 Comparison with Petri nets

Petri net is an extensively studied model of computation, suitable for modeling and analysis
of concurrent, and distributed systems, both in software and hardware. A huge volume of
literature is available on this topic. [Murata, 1989] is an excellent introduction to Petri nets
and their applications. Over the past few decades, different variations of the basic Petri net
have been proposed and used in modeling various complex scenarios in hardware design.
However, in spite of extensive study in academia, this formalism is hardly used in practice for
developing large, complex systems. We may identify the following reasons for poor adoption
of Petri nets in the industry:

• first, most hardware engineers feel comfortable thinking about a design in terms of
the operational semantics of their choice of HDL - Verilog or VHDL most of the time.
Expressing a design in a different formal model like Petri net and then bit-blasting it
often seem counter-productive to them.

• second, legacy designs and codes play a significant role in this mind-set. Design
houses have huge repertoire of designs already coded in HDL’s like Verilog or VHDL.
It is practically impossible to re-model them in some other formalism that share little
syntactic similarity with the HDL’s.

• third, the most successful analysis tools for Petri nets are developed mainly for the
simplest class of nets. For effective modeling of real-life hardware systems, we need
more expressive families of Petri nets, like colored Petri net. Unfortunately, mathe-
matical properties of these advanced families are rather weak, less studied and/or not

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 24

so well-known. There is not much of tool support and human expertise available for
analysis of systems modeled in such advanced formalisms.

On the contrary, XMAS is a trivial syntactic extension over the basic HDLs that a hardware
engineer is acquainted with. Adapting XMAS requires no extra learning, analysis or tool
development.

3.3.3 Comparison with Data-flow networks

Data-flow networks are widely used models of computation for design of embedded systems.
However, they are not so popular in the main-stream hardware industry. While the design
automation tools for data-flow networks meet the needs of embedded system designers, they
hardly provide any extra benefit to the general-purpose hardware engineers. The most ‘prac-
tically effective’ data-flow models, viz. synchronous data-flow (SDF) [Lee and Messerschmitt,
1987] or cyclo-static data-flow (CSDF) [Bilsen et al., 1995], do not capture all the modeling
needs for general-purpose hardware. Boolean data-flow (BDF) [Buck, 1993], which is capa-
ble of modeling Boolean conditions, switching, merging etc., is perhaps the most expressive
variation of data-flow models that suites the purpose of general-purpose hardware design.

XMAS models do have syntactic similarities with BDF models, but there are several se-
mantic differences that make BDF more expressive than XMAS. Some differences are outlined
below:

• xMAS has finite memory, whereas in the standard dataflow models, queues are a-priori
unbounded. Some models like BDF can simulate Turing machines using this unbounded
memory capability. On the other hand, finite FIFOs can easily be simulated in dataflow
models by adding backward queues to control writing to a forward queue (so the number
of initial tokens in the backward queue represents and controls the size of the forward
queue).

• XMAS is a synchronous model, whereas dataflow models are asynchronous: each pro-
cess proceeds at its own pace, and only needs to wait/synchronize with other processes
when it needs to wait for data on input queues or when output queues are full (which is
simulated by waiting for data on the backward queue). These synchronization features
are also part of xMAS, but still the latter is a fundamentally synchronous model.

• xMAS has non-deterministic components (eg. sources, sinks) whereas in Kahn Process
Networks and their subclasses like BDF, SDF, etc, processes are deterministic.

In spite of being more expressive than XMAS, however, BDF does not possess any par-
ticularly useful mathematical property that the other variations of data-flow models possess.
For hardware communication fabric design, BDF’s extra expressive power does not offer any
extra benefit over XMAS. Analysis of hardware modeled as BDF rely on the same Boolean

CHAPTER 3. FORMAL MODEL FOR COMMUNICATION FABRICS 25

techniques (like model checking) as XMAS models do. The latter, on the other hand, provides
neat modeling primitives for finite FIFO networks compared to the cumbersome ‘backward
queue techniques’ of BDF models. This offers XMAS a competitive advantage over BDF in
practice. It might be interesting to perform a rigorous comparative analysis between Boolean
data-flow and XMAS as models of computation, but we leave this discourse outside the scope
of this dissertation.

26

Chapter 4

Bug Hunting for Liveness

4.1 Introduction

Counterexample generation, an important step in formal verification, produces a trace demon-
strating why the design does not meet a specification. Automatic generation of counterexam-
ples is one of the most useful features of model checkers. It is most useful during the early
design cycles when the design has not matured and contains many bugs. A model checker
helps focus on bugs in the designs through the counterexamples it generates. The two most
successful technologies for counterexample generation for safety properties are random simu-
lation and bounded model checking. In this chapter, we describe how we use them to generate
counterexamples for a class of liveness properties called stabilization properties. For this, we
use a construction called liveness-to-safety transformation, originally proposed by Biere et
al. [Schuppan and Biere, 2004]. The chapter is organized as follows: we begin with a pre-
liminary discussion in Section 4.2. Then we present the liveness-to-safety conversion scheme
in Section 4.3 and conclude the chapter with experimental results presented in Section 4.4.

4.2 Preliminaries

The most intuitive notion of stabilization states that the system will always reach a particular
state, and will stay there forever, no matter which state the system started from, or which
path it took. More generally, stabilization means that the system will eventually reach and
stay within a given subset of states. Also, stabilization may denote conditions on the input
and output signals of a system when it attains a stable state. For recent applications of
stabilization properties, see [Cook et al., 2011] and [Gotmanov et al., 2011]. Below we review
some basic linear temporal logic (LTL) terminology and formally define stabilization using
LTL.

CHAPTER 4. BUG HUNTING FOR LIVENESS 27

4.2.1 LTL, Model Checking and Stabilization Property

In this chapter, we assume reader’s familiarity with LTL syntax and semantics, basic model
checking algorithms and related terminology like Kripke structures, Büchi automata etc. For
further details, see [Clarke et al., 1999]. In our current context, we use LTL properties GFp
and FGp and overview their semantics here: let π be a path in some Kripke structure K ;
π |=K Gp means property p will hold on every state along π; π |=K Fp means property p

will hold eventually on some state along π; π |=K GFp means p will hold along π infinitely
often and π |=K FGp means p will hold eventually on π forever. Temporal operators F and
G are dual (i.e. Fp ≡ ¬G¬p), operators FG and GF are also dual (i.e. FGp ≡ ¬GF¬p).

Definition 3 (GF-atom). An LTL formula of the form GFp or FGp, where p is some atomic
proposition or some Boolean formula involving atomic propositions only, will be called a
‘GF-atom’.

Stabilization properties are defined as the family of LTL formulas that are Boolean com-
binations of GF-atoms. Formally:

Definition 4 (Stabilization Property). The set of stabilization properties is the syntactic subset
of LTL defined as:

• any GF-atom is a stabilization property

• if φ is a stabilization property, then so is ¬φ

• if φ and ψ are stabilization properties, then so are φ ∧ ψ and φ ∨ ψ

Example 1. FGp, GFp ⇒ GFq, FGp ∧ FGq ⇒ FGr and FGp ⇒ FGq ∨ (FGr ∧ GFs)
are few examples of stabilization properties where p, q, r and s are atomic propositions or
Boolean formulas involving atomic propositions only (a⇒ b is the usual shorthand for ¬a∨b).
However, G(r ⇒ Fg) is an LTL liveness property but not a stabilization property.

Needless to say, all stabilization properties are liveness properties. However, not all of
them specify system stabilization directly. Properties like FGp and FGp∧FGq⇒ FGr (or its
generalization ∧ki=1FGpi ⇒ FGq) are perhaps the most elementary stabilization properties.
FGp means that the system eventually will reach a state from where p will always hold,
i.e. the system will eventually ‘stabilize’ at p. FGp ∧ FGq⇒ FGr means that if the system
stabilizes at p and also at q (possibly at some other time), then it will eventually stabilize at r.
Hence, the semantics of these properties are close to the intuitive notion of stabilization. [Cook
et al., 2011] has demonstrated an use and significance of this kind of stabilization properties in
the context of biological systems. However, our definition of stabilization captures a broader
family of specifications. It includes properties like FGp⇒ FGq∨(FGr∧GFs) which may look
contrived, but for example [Gotmanov et al., 2011] uses many such complicated stabilization
properties for compositional deadlock analysis of micro-architectural communication fabrics.

CHAPTER 4. BUG HUNTING FOR LIVENESS 28

Our definition also includes many properties which are not intended to specify so-called
stabilization behavior. For example, GFp or GFp ⇒ GFq. The main motivation behind
considering this broader subset of LTL is that we offer a short-cut liveness-to-safety (L2S)
conversion, avoiding Büchi automaton construction, in a uniform way. This uniformity in
our treatment comes from the duality between FG and GF operators. The most significant
applications of this class of properties that we have encountered is stabilization verification
and hence the name is coined for the class. This name is inspired by [Cook et al., 2011].

The class of LTL properties, defined as stabilization properties in this thesis, is a very
important class extensively studied by the temporal logic community. It is related to so-called
fairness specifications. Operators GF and FG are often called infinitary operators [Hojati
et al., 1993a] and symbols F∞ and G∞ are used instead respectively [Emerson, 1990]. The
class itself has been called general fairness constraints [Emerson and Lei, 1987], [Hojati et
al., 1993a]. As shown in [Emerson and Lei, 1987], various notions of fairness like impartial-
ity [Lehmann et al., 1981], weak fairness [Lamport, 1980](also called justice [Lehmann et al.,
1981]), strong fairness [Lamport, 1980] (also called compassion [Lehmann et al., 1981]), gen-
eralized fairness [Francez and Kozen, 1984], state fairness [Pnueli, 1983] (also known as fair
choice from states [Queille and Sifakis, 1983]), limited looping fairness [Abrahamson, 1980]
and fair reachability of predicate [Queille and Sifakis, 1983] can be expressed by stabiliza-
tion properties. These properties are used to exclude “unfair" counterexamples in liveness
verification in both linear time and (fair) branching time paradigms. For liveness verifica-
tion, we usually have a liveness property (the actual proof obligation) along with a set of
fairness constraints. The liveness property in hand may not be a stabilization property. In
that case we may need to construct the product of the system and the Büchi automaton of
the (negation of the) liveness property before performing the L2S conversion. Interestingly,
for applications like [Cook et al., 2011] and [Gotmanov et al., 2011], the liveness verification
obligations fall entirely in the family of stabilization properties. For these applications, the
simple L2S scheme proposed in this chapter works. Note that some liveness properties like
G(request ⇒ Fgrant) are not stabilization properties, but also have a direct L2S conversion
[Schuppan and Biere, 2004]. It is, therefore, an interesting question that under what more
general conditions does there exist a direct L2S conversion.

4.3 L2S Conversion for Stabilization Properties

It is important to understand that any counterexample to a liveness property (which must be
an infinite trace) can be seen as a “lasso" like configuration with a finite handle and a finite
loop. A liveness counter-example is a lasso which does not satisfy the property on the loop
but satisfies all imposed fairness constraints on the loop.

In general, a liveness problem is converted to a safety problem by adding loop-detection
logic and property-detection logic to the product of FSM of the original system and the Büchi
automata of the property. The loop-detection logic consists of a set of shadow registers,

CHAPTER 4. BUG HUNTING FOR LIVENESS 29

.

.

.

.

.

.

Save

1

0

0

1

Shadow Registers

state bits

=

p

Saved

Looped

Live

Verification

Circuit Under

❋✐❣✉r❡ ✹✳✶✿ ▲✐✈❡♥❡ss✲t♦✲s❛❢❡t② tr❛♥s❢♦r♠❛t✐♦♥ ❢♦r ❋p

comparator logic and an ‘oracle’. The oracle saves the system state in the shadow registers
at a non-deterministically chosen time. In all subsequent time frames, the current state of the
system is compared to the state in the shadow registers. Whenever these two states match,
the system has completed a loop. The non-deterministic nature of the oracle allows all such
loops to be explored. The property verification logic checks if any of the liveness conditions
are violated in any such loop and all fairness conditions always hold in the loop. This check
is done as a safety obligation. For a more detailed exposition, see [Schuppan and Biere,
2004].

As mentioned before, for some simple properties L2S conversion can be achieved while
avoiding explicit Büchi automata construction. This is done by adding more functionality to
the property detection logic. As presented in [Schuppan and Biere, 2004], these properties are
Fp,GFp,FGp, pUq, ,G(r ⇒ Fq) and F(p∧Xq) (see Table 1 of [Schuppan and Biere, 2004]).
This approach is reviewed in Figure 4.1 which depicts an L2S converted circuit for verifying the
LTL property Fp. How this construction works is presented below. In Section 4.3.1 we explain
how to extend the same idea of Figure 4.1 for stabilization properties. Instead of presenting
the liveness-to-safety conversion through Kripke structure-based representations, we present
the idea in terms of circuit construction. The same mechanism handles fairness constraints
too which are always stabilization properties. Handling fairness constraints only requires
addition of extra logic to the property monitor. For Kripke structure-based descriptions of
liveness-to-safety conversion, see [Schuppan and Biere, 2004].

In Figure 4.1, s❛✈❡ represents an additional primary input added to the circuit. This plays
the role of the ‘oracle’. When s❛✈❡ is asserted for the first time, the current state of the
circuit is saved in the set of shadow registers and register s❛✈❡❞ is set. s❛✈❡❞ thus remembers
that input s❛✈❡ has been asserted and any further activity on s❛✈❡ is ignored thereafter. For

CHAPTER 4. BUG HUNTING FOR LIVENESS 30

subsequent time frames, s❛✈❡❞ enables the equality detector between the current state and the
state in the shadow registers. Clearly, signal ❧♦♦♣❡❞ is asserted iff the system has completed
a loop. Signal ❧✐✈❡ remembers if signal p has ever been asserted. The safety property that the
circuit verifies is, therefore, ❧♦♦♣❡❞ ⇒ ❧✐✈❡. In general, this is ❧♦♦♣❡❞ ∧ ❢❛✐r ⇒ ❧✐✈❡. The block
marked with “⇑” represents logical implication - the direction of the arrow distinguishes the
antecedent signal from the consequent signal.

4.3.1 L2S for Stabilization Properties

In [Schuppan and Biere, 2004], the authors show how to do the L2S conversion for GFp and
FGp, which are GF-atoms. We demonstrate how to extend this to any Boolean combination
of GF-atoms using the following example. Formal proof of correctness of this construction is
straightforward, thus omitted.

Consider a simple stabilization property φ of the form FGa ⇒ FGb + FGc. An L2S
converted circuit for φ is shown in Figure 4.2. (For simplicity, we do not show any fairness
constraint in the example.) Note that signal ❧✐✈❡ in Figure 4.1 monitors if signal p has ever
been asserted. But for verifying GFp, we need to monitor whether signal p has been asserted
between the time when s❛✈❡❞ is set and the time when ❧♦♦♣❡❞ becomes true. Using this fact
and the duality between FG and GF operators and the Boolean structure Xa ⇒ Xb + Xc of
φ we can derive the circuit of Figure 4.2. Logic that captures the Boolean structure of φ is
marked with a dotted triangle in Figure 4.2. Therefore for any arbitrary stabilization property,
we need to create monitors for individual GF-atoms and a crown of combinational logic on top
of these monitors that captures the Boolean structure of the property. The following theorem
captures the key behavior of such an L2S-converted circuit:

Theorem 1. For any stabilization property φ, a safety verification engine will find a coun-
terexample in the L2S-converted circuit constructed using the above method if and only if the
original circuit violated φ.

(Proof Sketch) Any stabilization property can be transformed into another stabilization
property with GF operators only. Let f be the Boolean structure in the negation of the given
stabilization property. The procedure described above will create a monitor that will search
for a lasso-loop where f is violated inside the loop. Since the procedure implicitly enumerates
all possible cycles in the state space, it will detect a violating cycle if one exists.

4.4 Experimental Results

We implemented our L2S scheme for general stabilization properties in ABC and experimented
with several designs of communication fabrics from industry. Our objective was to verify
all stabilization properties defined for every structural primitive of the XMAS framework
[Gotmanov et al., 2011]. The properties, though local to each component, are verified in

CHAPTER 4. BUG HUNTING FOR LIVENESS 31

.

.

.

.

.

.

.

.

.

.

.

.
=

Save

=

1

0

0

1

Shadow Registers

state bits

Saved

Looped

Circuit Under
Verification

b

c

a

❋✐❣✉r❡ ✹✳✷✿ ▲✷❙ ❢♦r st❛❜✐❧✐③❛t✐♦♥ ♣r♦♣❡rt② FGa⇒ FGb+ FGc

the context of the whole design in order to avoid explicit environmental modeling. BLIF
models of the communication fabrics were generated by the XMAS compiler [Chatterjee et al.,
2010] from high-level C++ models. The L2S monitor logic was then created by ABC on these
BLIF models. The XMAS compiler also generates SMV models from C++ models so that
the LTL encoding of the stabilization properties can be verified directly on the SMV models
using the NuSMV model checker.

We found that the ABC based L2S implementation has much better scalability than
NuSMV. NuSMV can solve only toy designs while on the large designs of interest, it fails
to produce a result. On the other hand, our tool works well even on large designs. For most
cases, it produces a result almost immediately. For a few cases, initial trials could not pro-
duce a proof, but with the latest version of ABC using simplification, abstraction, speculative
reduction and property directed reachability (PDR) analysis [Bradley, 2011], the proofs were
completed. This observation supports the premise that the use of highly developed safety
techniques can pay off for liveness verification.

Experimental results are shown below. Among all the local properties that the XMAS

compiler generated, we provide results for the most challenging one. Call this property ψ; it
is defined for a FIFO buffer and has the following LTL form

ψ := FG(¬a)⇒ FG(¬b) ∨ FG(c)

where a, b, and c are appropriate design signals (i.e. interface signals of a FIFO buffer).
Table 1, 2 and 3 compare the performance of ABC with NuSMV on small examples. These
examples are instances of communication fabrics or sub-modules thereof and are explained

CHAPTER 4. BUG HUNTING FOR LIVENESS 32

Prop #
ABC NuSMV
(sec) (sec)

0 0.25 0.115
1 0.05 0.14
2 0.02 0.09

❚❛❜❧❡ ✹✳✶✿ CL

Prop #
ABC NuSMV
(sec) (sec)

0 0.09 33.23
1 0.07 31.8
2 0.06 39.57
3 0.03 16.46
4 0.5 41.37
5 0.03 16.89

❚❛❜❧❡ ✹✳✷✿ VC

Prop #
ABC NuSMV
(sec) (sec)

0 0.03 431.5
1 0.12 379.59
2 0.8 471.36
3 0.8 385.67

❚❛❜❧❡ ✹✳✸✿ MS

in full detail in [Chatterjee and Kishinevsky, 2010b]. CL and VC (Table 1 and 2 respectively)
are designs corresponding to Figure 4 and 5 of [Chatterjee and Kishinevsky, 2010b] and
MS (Table 3) is a much simpler version of the design shown in Figure 6 of [Chatterjee and
Kishinevsky, 2010b]. Note from the tables how the performance of NuSMV degrades even for
small designs. For large designs, NuSMV could not finish for any single instance of ψ.

Since ψ is defined for a FIFO buffer and the XMAS compiler created one instance of ψ for
each FIFO buffer, the number of ψ instances is the same as the number of FIFO buffers. For
example, the designs corresponding to Table 1, 2 and 3 above have 3, 6 and 4 FIFO buffers
respectively.

We also experimented on two large communication fabrics of practical interest [Chatterjee
and Kishinevsky, 2010b], [Gotmanov et al., 2011]. One has 20 buffers and the other has 24
buffers. 19 out of 20 of the first design and 23 out of 24 from the second design were proved
by ABC by a light-weight interpolation engine within a worst case time of 5.83 seconds
(most were proved in less than a second). Light-weight interpolation could not prove one
instance from each design. These were proved using advanced techniques from ABC’s arsenal
of safety verification algorithms. For example, ABC took a total of 217.2 seconds to prove one
of these harder properties. In this time span, ABC first did some preliminary simplification,
then it tried interpolation, BMC, simulation and PDR in parallel for a time budget of 20
seconds. But this attempt failed and it moved on to further simplification by reducing the
design using localization abstraction and speculation. It ran interpolation, BMC, simulation,
BDD-based reachability and PDR engines in parallel both after abstraction and speculation,
using an elevated time budget of 100 seconds and 49 seconds respectively. The iteration
after abstraction could not prove the property, but the iteration after speculation managed to
prove it with the PDR engine, which produced the final proof in 7 seconds.

33

Chapter 5

Efficient Proof Of Liveness

5.1 Introduction

Liveness properties offer a concise way of specifying reactive behaviors like something ‘good’
will eventually happen. They offer a way of writing end-to-end specifications without worrying
too much about the internal details of a design. Unfortunately, traditional model checking
algorithms for such specifications involve computationally expensive formulations and suffer
from scalability problems. Typically, these algorithms attempt to enumerate all strongly
connected components (SCC) of the state transition graph of the design. Thereby, they try
to rule out the existence of a counterexample to the liveness property, but end up being
unscalable for large designs.

However, it has been observed that real-life designs often carry intermediate hints that
may be used to construct deductive proofs of liveness without invoking SCC analysis. We
collectively call such alternative hint-based approaches as ranking-oriented approaches for
proving liveness. These proofs are usually much more scalable compared to their SCC-
oriented counterparts. They also reveal more information about the state-space, which may
act as certificates of liveness for a correct system. SCC-oriented algorithms can return coun-
terexamples, but these usually are not human-readable certificates of correctness. On the
down side, it is quite challenging to devise a completely automated proof engine that will
discover necessary hints and eventually construct a deductive proof of liveness for an arbi-
trary system. In this chapter, we address this challenge in the context of bit-level liveness
verification of communication fabrics.

We present four alternative ways of addressing the challenge. The first three ‘SCC-
analysis avoiding’ methods are heuristic in nature and tailored for the particular application
domain. They use moderate insights from designers as intermediate hints and efficiently
produce proofs of liveness for benchmarks that are challenging for SCC-oriented algorithms.
These three methods involve the following three techniques, respectively:

1. Breaking down a liveness property into intermediate safety properties (Section 5.4)

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 34

2. Discovering a well-founded characterization of the underlying state-space (Section 5.5)

3. Use of skeleton independent proof heuristics (Section 5.6)

A common thread of these three approaches is the use of safety verification technology for
liveness verification. In the previous chapter, we demonstrated how a liveness problem can be
translated into an equi-satisfiable safety problem on which safety tools can be used to prove
liveness. While this is a viable method, L2S translation incurs a blow up of the state-space
and stresses the underlying safety verification engines. This makes L2S practically ineffective
for proving liveness properties for large designs, though it remains effective for bug-hunting
through BMC or simulation. To mitigate this problem, we explore how to exploit specific
characterizations of the state-spaces. The three techniques mentioned deal with different
ways of expressing such characterizations as safety properties and then use a safety engine
to prove them.

While the safety properties, derived in the above three methods, can be proved efficiently,
the overall methods are heuristic in nature, work for a particular set of problems and re-
quire manual intervention. We end this chapter by presenting a fourth method based on
k-LIVENESS (Chapter 5.7). k-LIVENESS is a new algorithm proposed by Koen Claessen and
Niklas Sörensson in [Claessen and Sörensson, 2012]. It has outperformed all the existing
state-of-the-art liveness verification algorithms in the latest model checking competition. It
is a general proof technique that works for any ω-regular property on any sequential circuit.
We extend this technique by introducing some dedicated constructions, which enhance its
performance on our benchmarks, yet these are general and may be useful for other situations
as well. The k-LIVENESS approach also relies on the use of off-the-shelf safety verification
engine for liveness verification, but in a clever way.

As benchmarks, we have chosen a family of designs that work on credit-based flow-
control principle (see Section 5.2 for details). On the specification side, we focus on a
particular liveness property called response (see Section 5.3 for details). We begin with
detailed discussions on both the credit mechanism and the specification in the following two
sections, then present the four methods mentioned above in the subsequent sections.

5.2 Credit Mechanism and Buffer Relations

‘Credit-based flow-control’ is a switch-level flow-control technique, widely used in various
communication fabrics for avoiding deadlock, especially in wormhole switching systems (see
Chapter 13 of [Dally and Towles, 2003] for reference). We discussed the basic credit mech-
anism in Section 3.2.1 before. We refer to the same circuit in this section and reproduce
its structure in Figure 5.1 for convenience. It illustrates the basic credit-based flow-control
mechanism where a source (S1) wants to send flits to a sink (S2) through a buffer (B2) and
the flow of flits across B2 is controlled by the credit_logic sub-circuit. The main purpose of
credit_logic is to allow only a restricted number of flits to enter the system it is guarding (in

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 35

this case, the buffer B2). The particular synchronization achieved by forks and joins in Figure
5.1 gives rise to the following invariant:

num(B1) + num(B2) = num(B3)

where num(B) denotes the number of flits currently residing in buffer B. We will call this
relation BUFFER RELATION in the subsequent sections. While Figure 5.1 is a very simple
example of the credit-based flow-control mechanism, the same principle is used in complicated
industrial designs. We will consider two such families as case-studies, viz. virtual channels
and hardware scoreboards. These fabrics are often used as micro-architectural idioms in
complex hardware systems. We will demonstrate how the high-level knowledge that these
circuits use credit-based flow-control can be leveraged to produce a scalable proof of their
responsiveness. Section 5.4.1 and Section 5.4.2 are devoted to this discussion. Interestingly,
BUFFER RELATION with suitable modifications continues to hold on all such credit-based circuits.

S1

S2

credit logic

B3

B1

B2

❋✐❣✉r❡ ✺✳✶✿ ❈r❡❞✐t ♠❡❝❤❛♥✐s♠

We mention that these BUFFER RELATIONs, as first identified in [Chatterjee and Kishinevsky,
2010a], are very important for bit-level verification of safety properties of credit-based systems.
These seemingly intuitive relations are non-trivial to mine from a bit-level implementation
of a fabric, unless they are explicitly hinted by the architects. These relations were used to
expedite safety verification in [Chatterjee and Kishinevsky, 2010a]. In the context of response
verification, it was not immediately clear how BUFFER RELATIONS can be leveraged. Our main
contribution here is to demonstrate how other intermediate invariants can be deduced as
corollaries of BUFFER RELATION, eventually leading to a formal proof of response. We devote
the whole of Chapter 6 to discussing algorithms that mine BUFFER RELATIONs.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 36

5.3 Response Formulation

In this work, we focus on one particular formal specification of a deadlock property called
response. It captures an end-to-end progress behavior of the fabrics. The mathematical
formulation of the response property of interest is presented in this section. Instead of
introducing the formalism in an abstract set up, we illustrate it using an example of a virtual
channel as shown in Figure 5.2. 1 It is a reproduction of Figure 3.6, depicting the model
VC. See Section 3.2.2 for details on its working principle.

CL1

CL2

A1

A2

B1

B2

B3

B4

B5

B6

sink1

sink2

sink3

sink4

a1

b1

c1

d1

i1

f1

g1

h1

j1
k1 l1

m1

a2

b2

c2

d2

e

f2

g2

h2

j2k2 l2

m2

i2

arbiter switch

❋✐❣✉r❡ ✺✳✷✿ ❱✐rt✉❛❧ ❝❤❛♥♥❡❧

Recall that in the XMAS formalism, each channel c consists of three types of signals, viz.
request (c.req, a 1-bit signal), grant (c.gnt, a 1-bit signal) and data (c.data, a bit-vector
signal). In Figure 5.2, the sender at source A1 asserts signal a1.req when it wants to send a
flit. When the network is ready to accept the flit from A1, it asserts signal a1.gnt. A designer
needs to ensure that whenever source A1 makes a request to send a packet, it will be granted
eventually. This ensures that A1 will never be blocked forever. In LTL, this objective can
be written as G(a1.req ⇒ F(a1.gnt)). This is a well-known liveness property. While model
checking this property, one needs to make fairness assumptions on the sinks and on (some
of) the sources that they will never cease of work. Otherwise, a trivial buggy scenario can
come out where a request from A1 is never granted because a sink stops draining flits or
the credit source in CL1 (or CL2) stops supplying credits. For the virtual channel of Figure

1The formulation is uniform across the entire family of fabrics and has no particular relation to the virtual
channel design or implementation that we are considering; the same formulation applies to all fabrics considered
in this chapter.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 37

5.2, these necessary fairness assumptions may be written in LTL as GF(m1.gnt), GF(m2.gnt),
GF(j1.gnt) and GF(j2.gnt) for the sinks and GF(i1.req) and GF(i2.req) for the credit sources.
Hence, the overall proof objective φresponse (or φr in short) is,

φr := ((sink_fair ∧ source_fair)⇒ response)

where

sink_fair := GF(m1.gnt) ∧GF(m2.gnt) ∧GF(j1.gnt) ∧GF(j2.gnt)

source_fair := GF(i1.req) ∧GF(i2.req)

response := G(a1.req⇒ F(a1.gnt))

The same formulation applies to channel A2 as well. Note that the above formulation does
not refer to VC’s internal signals or topology. Therefore, by careful selection of fairness
constraints, the above generic formulation can be easily applied to any other XMAS design.

We will use the terms ‘deadlock freedom’, ‘progress’ and ‘response’ interchangeably in
this chapter, though our solution will strictly adhere to the formal specification φr presented
above.

Discussion 1. The above generic formulation is a popular way of expressing a response
property, mainly due to the concise way it captures designer’s intent. Unfortunately, the price
to pay comes from the complexity of the ensuing verification problem. Classical algorithms
for verifying the above property would use SCC-oriented approaches, like nested fixpoint
computation, or cycle detection. Both are prohibitively inefficient on real designs. Liveness-
to-safety conversion [Schuppan and Biere, 2004], as discussed in the last chapter, is an
alternative that promises more scalability. But it is also SCC-oriented and often fails to
converge on our experiments with real communication fabrics. As these existing approaches
fail to scale on industrially relevant designs, more fine-grained analyses become necessary.

All these existing approaches turn out to be grossly unscalable for our applications. This
motivated us to investigate more fine-grained ways of making liveness verification scalable
for communication fabrics.

5.4 Approach I : Breaking Into Safety Properties

In this section, we propose a more scalable method for proving response of bit-level imple-
mentations of a collection of communication fabrics. This is based on the principle of ‘proving
liveness using intermediate safety properties’. We will demonstrate that the end-to-end re-
sponse property of a fabric can be broken down into a collection of safety properties which are
potentially easy-to-verify obligations and once proved on the designs, these safety properties
collectively imply the overall response property.
Contributions: Our contributions in this section are summarized as follows:

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 38

1. We show how structural and functional safety properties of communication fabrics can
be derived and leveraged for verification of their liveness properties. This demonstrates
how to capture architect’s insights (why the fabric should not deadlock) and to use them
to prove response properties via safety model checkers. This approach offers a much
more scalable verification solution.

2. Our liveness verification framework is publicly available and works on models written
in industry standard languages like Verilog, or standard bit-level description formats
like AIGER. We believe that this provides a useful bit-level analysis technique for
communication fabrics, where high-level theorem provers and graph theoretic reasoning
have been the only proof techniques available so far.

This section is organized in the following sub-sections: Section 5.4.1 presents our method-
ology of proving liveness properties using intermediate safety invariants on virtual channels.
The same methodology is demonstrated on hardware scoreboards in Section 5.4.2. Section
5.4.3 discusses our experiments and Section 5.4.4 concludes the topic with an outline of
potential limitations of this approach.

5.4.1 Intermediate Safety Properties for Virtual Channels

We begin with the basic virtual channel VC shown in Figure 5.2. We will demonstrate how
BUFFER RELATIONs can be leveraged to derive auxiliary safety assertions for this design and
how satisfaction of these auxiliary safety assertions leads to a proof of φr . BUFFER RELATIONs
for VC are the following:

num(B1) + num(B3) = num(B2)

num(B4) + num(B5) = num(B6)

These relations and a careful analysis of VC lead to four safety properties as tabulated
in Table I as Lemmas 1 through Lemma 4. These properties should hold on the bit-level
implementation of the design and a safety verification engine should prove them on the bit-
level model. We will discuss our experiments and observations later in Section 5.4.3.

We now introduce another safety property called ‘non-blocking property of channel e’
(see Theorem 2 below). It is a non-trivial property, perhaps not apparent from the design
immediately and a consequence of carefully architecting the fabric using credit-based flow-
control (or to put in other words, it is a consequence of BUFFER RELATIONs). It contributes
significantly to the deadlock freedom of VC.

Theorem 2 (Non-blocking e). Whenever e.req is asserted, e.gnt is asserted in the same
cycle. In LTL, G(e.req⇒ e.gnt).

Justification: Suppose e.req is asserted in some cycle. Since it is coming from the arbiter,
e.req must correspond to either d1.req or d2.req. Assume that it corresponds to d1.req, which

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 39

Lemma Description

Lemma 1
Statement If both sink1 and sink2 are ready to drain a flit, then

either buffer B2 gets at least one empty slot in the next
cycle or sink1 and sink2 persist their states in the next
cycle

in LTL j1.gnt ∧m1.gnt ⇒ X(not_full(B2) ∨ (j1.gnt ∧m1.gnt))

Lemma 2
Statement If B2 has at least one empty slot, it implies that B1 also

has at least one empty slot
in LTL not_full(B2)⇒ not_full(B1)

Lemma 3
Statement For i = 1, 2, if Bi has an empty slot and the credit source

is not ready to push a flit, the empty slot is preserved in
the next cycle

in LTL not_full(Bi)∧!i1.req⇒ X (not_full(Bi))

Lemma 4
Statement If both B1 and B2 have empty slots and the credit source

is ready to push a flit, then in the next cycle b1.req must
be asserted

in LTL not_full(B1) ∧ not_full(B2) ∧ i1.req⇒ X (b1.req)

❚❛❜❧❡ ✺✳✶✿ ❆✉①✐❧✐❛r② s❛❢❡t② ❛ss❡rt✐♦♥s

implies both a1.req and b1.req are asserted in that cycle and buffer B1 has at least one flit
in it. Due to buffer relations num(B1) + num(B3) = num(B2) and Size(B2) = Size(B1) =
Size(B3), it is easy to see that buffer B3 has at least one slot free. Therefore, k1.gnt must
be asserted in that cycle and in turn, e.gnt gets asserted in the same cycle satisfying the
property e.req ⇒ e.gnt. The argument holds for every cycle irrespective of whether the
arbiter schedules d1 or d2, making G(e.req⇒ e.gnt) an invariant. �

We will show how this non-blocking property, in association with other safety properties,
can lead to a formal proof of φr . This non-blocking property of a credit-based virtual channel
is well-understood by an architect, but has not been leveraged for formal verification of a
response property so far. This non-blocking property alone, in spite of being the key behind
deadlock freedom of virtual channel, does not immediately lead to a formal proof of φr . In
order to bridge this gap we need additional invariants. We claim that Lemmas 1 through
4 form such a collection of auxiliary safety invariants that are sufficient to achieve a formal
proof of satisfaction of φr starting from Theorem 2. The following theorem justifies this claim.

Theorem 3. If VC satisfies Theorem 2 and Lemmas 1 through 4, then it also satisfies φr .

Proof: In order to show that φr holds on the fabric, it is sufficient to show that the signal
b1.req is asserted infinitely often. This is a sufficient condition since whenever a1.req is
asserted and if it is accompanied eventually by an assertion of b1.req, then d1.req will be
asserted. Since the arbiter is fair and every e.req is immediately granted (due to Theorem

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 40

2), d1.req will be scheduled eventually and d1.gnt will be asserted. Hence, a1.gnt will be
asserted in turn. This shows why every a1.gnt will be granted eventually if b1.req is asserted
infinitely often.

By the fairness assumptions, gnt signals of sink1 and sink2 will be asserted infinitely
often. Suppose the gnt signal of sink1 (i.e. j1.gnt) is asserted in time step t1 and that of
sink2 (i.e. m1.gnt) is asserted in time step t2. Without loss of generality, assume that t1 < t2.
Now, due to persistence of the signals and the logic of the fork, j1.gnt will remain asserted
until time step t2. Then due to Lemma 1, one empty slot will be created in B2 by cycle
t2 + 1. By Lemma 2, this creates an empty slot in B1. By Lemma 3, these empty slots will be
preserved if the credit source of CL1 does not push a credit. By fairness of the credit sources,
a credit will be pushed eventually and by Lemma 4, this will result in an assertion of b1.req.
Due to the nature of the fairness constraints, this chain of events will never cease to work.
Hence, b1.req will be asserted infinitely often. �

5.4.1.1 Variants of Virtual Channel

The same principles of BUFFER RELATION and intermediate safety assertions work for proving
φr for more complex virtual channels as well. For example, consider VCB and VCO from
Figures 3.7 and 3.8 respectively. We claim that all Lemmas 1 through 4 and Theorem 2 hold
on these designs. For Theorem 2, the channel of interest is the one that leaves the arbiter in
both Figures 3.7 and 3.8. We claim that theorems analogous to Theorem 2 can be formulated
(as presented below) and proved for these complex virtual channels. However, the formulation
of the BUFFER RELATIONs will change depending on the structures of the fabrics.

Theorem 4. If VCB satisfies Theorem 2 and Lemmas 1 through 4, then it also satisfies φr .

Theorem 5. If VCO satisfies Theorem 2 and Lemmas 1 through 4, then it also satisfies φr .

Justifications of these theorems are left to the reader as they are analogous to the case of
simple virtual channel. We include verification results of Theorem 2 and Lemmas 1 through 4
for these fabrics in Section 5.4.3.

5.4.1.2 A Virtual Channel That Actually Deadlocks

We conclude the discussion on virtual channels by presenting an example (Figure 5.3) where
the virtual channel actually deadlocks and does not satisfy φr . Interestingly, it does not
satisfy the non-blocking property (Theorem 2) and our framework will provide a counter-
example to this theorem. The example of the virtual channel shown in Figure 5.2 has a
feedback joining the upper fork with the lower source. This feedback channel goes through
a function (flip) that flips the bit of the flit that determines the output branch of the switch.
Note that the upper credit buffer B2 has three slots. Analysis reveals that this particular
buffer size for B2 is the cause of the violation of φr . The same fabric with two slots in B2

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 41

A1

B1

B2

B3

B4

B5

B6

flip

❋✐❣✉r❡ ✺✳✸✿ ❆ ❞❡❛❞❧♦❝❦✐♥❣ ✈✐rt✉❛❧ ❝❤❛♥♥❡❧

works without any deadlock. The fabric VCO can have a similar scenario if the capacity of B5

is less than the sum of capacities of B3 and B4. Then it would violate φr . It is quite common
to make such mistakes in the bit-level implementations and thereby result in deadlocks.

5.4.2 Hardware Scoreboard

Similar analysis can be performed for the hardware scoreboard from Figure 3.10. Theorem
2 and Lemmas 1 through 4 (with appropriate modifications) can be defined on this structure
due to the particular synchronization of credit logic. Theorem 2 is defined on the channel
between the join and the switch at the entry of the scoreboard. Lemmas 1 through 4 need to
include the role of the arbiter at the exit of the scoreboard. These are only cosmetic changes
to the structure of the lemmas. We can again define a theorem analogous to Theorem 3 for
the scoreboard and the role of Theorem 2 and Lemmas 1 through 4 in its proof would remain
the same even after the necessary cosmetic modifications.

5.4.3 Experimental Results

We developed Verilog implementations of the models of the virtual channels and scoreboards.
Our XMAS library implementation closely follows the logical specification provided in [Chat-
terjee et al., 2010] which makes our benchmarks easily reproducible. We have used ABC
[Mishchenko, 2013] as our safety verification engine. Our experiments were performed on a
laptop with 1.2 GHz Intel Celeron processor and 2 GB RAM.

We present in Table 5.3 run-times (in sec.) taken by ABC on the various models considered.
In all experiments, ABC conjuncted all safety properties (Theorem 2 and Lemma 1 though 4)
as a single proof obligation and tried to prove it. We present two sets of experiments. In

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 42

the first set, we enabled the BUFFER RELATIONs as assumptions and in the second set, these
assumptions were not used. From the experimental results, it is clear that BUFFER RELATIONs
play a crucial role in verification. For the virtual channel examples, BUFFER RELATIONs made
the proof obligation one-step inductive. For the scoreboard example, they sped up the proof.
It will be interesting to investigate invariants for scoreboards that would make their proofs
one-step inductive too; it is left as a future work. The fact that BUFFER RELATIONs make proofs
one-step inductive for many designs is the key factor that makes this approach scalable.
The designs that we considered are parameterizable and can serve as components of larger
designs. In order to ensure scalability, ideally we need a proof technique whose complexity
will be (almost) independent of the design size. One-step induction meets this goal. The
BUFFER RELATIONs for other virtual channels and scoreboards used in our proofs are shown in
Table 5.2. In those relations, numAi(B) represents the number of flits in buffer B that came
from source Ai, for i = 1, 2.

model BUFFER RELATIONs
buffered vc num(B1) + num(B3) + numA1

(Bch) = num(B2)
num(B5) + num(B4) + numA2

(Bch) = num(B6)
ordered num(B1) + num(B3) = num(B2)

vc num(B7) + num(B4) = num(B8)
num(B3) = numA1

(B5) + num(B6)
num(B4) = numA2

(B5)
num(B5) = numA1

(B5) + numA2
(B5)

scoreboard num(B1) +
9
∑

i=5

num(Bi) = num(B3)

num(B2) +

14
∑

i=10

num(Bi) = num(B4)

❚❛❜❧❡ ✺✳✷✿ ❆ss✉♠♣t✐♦♥s ✉s❡❞ ✐♥ t❤❡ ♣r♦♦❢s

In Table 5.3, a few things may be noted. The number of flip-flops and AND gates in the
circuit increases once the BUFFER RELATIONs are put in as assumptions. However from the run-
time of ABC, it is evident that this increase in logic only facilitates the proof. In all cases when
induction failed, interpolation using the default resource limits of ABC failed as well. However
in all cases, property directed reachability (PDR) [Bradley, 2011] succeeded. For the cases
where one-step induction succeeded, we have not listed the run-time for PDR. For all cases
where the assumptions were supplied, ABC independently proved the assumptions within the
time shown in the table. In Figure 3.7, size k of the channel buffer Bch is parameterizable
and we only provide run-times for k = 2 and 4.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 43

Proof with Assumption

model PI f/f AND One step
Induction

Other
(PDR)

virtual channel (VC) 8 213 4383 0.65 -
buffered VC (k = 2) 10 383 8089 1.7 -
buffered VC (k = 4) 12 385 8288 1.78 -

ordered VC 13 424 9253 2.26 -
scoreboard 47 1293 18596 failed 38.80

Proof without Assumption

model PI f/f AND One step
Induction

Other
(PDR)

virtual channel 8 211 3449 failed 0.73
buffered VC (k = 2) 10 315 4579 failed 99.2
buffered VC (k = 4) 12 317 4652 failed 68.81

ordered VC 13 350 5236 failed 26.94
scoreboard 47 1289 14942 failed 57.25

❚❛❜❧❡ ✺✳✸✿ ❊①♣❡r✐♠❡♥t ♦♥ ✈❛r✐♦✉s ❝♦♠♠✉♥✐❝❛t✐♦♥ ❢❛❜r✐❝s

5.4.4 Conclusion and Limitations

We presented a way of verifying response property of credit-based flow-control networks
by deriving and proving intermediate safety properties. These were derived by leveraging
the high-level structure of the network. A crucial set of invariants called BUFFER RELATIONs
were derived. These relations made the proof one-step inductive for many examples and
sped up the proof for others. We believe this work exposes new opportunities of research
in formal verification of communication fabrics. The current work-flow of our framework is to
prove Theorem 2 and Lemma 1-4 automatically using a safety verification engine and then
take refuge in Theorem 3 to conclude the satisfaction of φr . This leads to the question
whether we can automate the proof of Theorem 3 as well; this is left as a future work. Also,
necessity and adequacy issues of Lemmas 1 through 4 are yet to be studied. One important
question is whether these safety properties can be mined automatically and whether they
are effective for proving other kinds of progress properties. Finally, it needs to be studied
whether the approach presented could be utilized to prove a response property of a chip-wide
communication network. Compositional reasoning, along with our approach, may prove to be
useful in this context.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 44

5.5 Approach II: Well-founded Induction

The procedure of breaking down a liveness property into intermediate safety properties,
as presented in the previous section, poses two challenges. First, we need to derive the
intermediate safety properties and prove them on the design. Then we need to establish that
the proof of all these safety properties implies the target liveness property. In the last section,
Theorem 3 was devised to achieve the last goal. But these kinds of theorems are complicated
to devise and prove. In this section, we will demonstrate how the notion of well-founded
induction can simplify this task.

Theorems like Theorem 3 are rather ad-hoc in nature, but well-founded induction is a
structured way of reasoning about liveness. In fact, the classic framework of decomposing
liveness into intermediate safety properties, as proposed by Manna and Pnueli in the 1980’s
[Manna and Pnueli, 2010], relies on the notions of well-founded induction and ranking func-
tions. It is only very recently that this approach has been applied successfully to liveness
verification of non-trivial systems of practical importance. For example, success was reported
by Cook et al. in proving termination and other liveness properties of system codes using
the principle of well-founded induction [Cook et al., 2006], [Cook et al., 2007]. While this
approach seems to be promising way of proving liveness of complex systems efficiently, the
main hurdle lies in discovering the well-founded order hidden in the target system. In this
section, we address this challenge in the context of communication fabrics. We show that it is
possible to discover a well-founded order in reactive behaviors of communication fabrics and
that it leads to efficient verification of their liveness properties. We focus on the same fam-
ily of communication fabrics (i.e. credit-based flow-control systems) and the same response
property described in Section 5.3.

Our contributions in this section are summarized as follows:

• Our analyses of a group of credit-based flow-control systems expose well-founded or-
ders hidden in these designs. We show how these relations can simplify the liveness
proof process.

• We demonstrate rigorously how fairness assumptions interact with a system to ensure its
liveness. This offers insight into the mechanisms for satisfaction of liveness properties
for our target systems. Current liveness verification algorithms implemented in the
bit-level verification systems are not customized for this kind of mechanism. We hope
that this observation will be useful for designing more efficient and scalable liveness
verification tools in the future.

• Our well-founded order analyses demonstrate that the systems we considered constitute
a family of designs whose response verification problem is easier to solve compared to
the complexity of the problem in its fully general form. In the future, this may lead
to a possible hierarchy of problems based on how hard it is to solve their response
verification. But this is outside the scope of this dissertation and left as future work.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 45

Below in Section 5.5.1, we discuss how well-founded order works on different variants
of virtual channels and in the following section, we extend the same idea to more complex
systems. Section 5.7.5 presents our experimental results.

5.5.1 Well-Founded Structure for VC

A careful study of the RTL description of VC reveals the following logical relation:

a1.gnt = a1.req ∧ b1.req ∧ k1.gnt ∧ u

where u is the state element of the arbiter as mentioned in Section 3.1. Informally, it
means that when a1.req is asserted by source A1, a1.gnt will be available only when all
of the following three conditions are satisfied simultaneously: (i) buffer B1 is not empty, (ii)
buffer B3 is not full and (iii) the arbiter has parked its grant to source A1. When a1.req

arrives, if any one of these three conditions is not met, a1.gnt will be deferred until all
three are satisfied together (due to persistence property, a1.req will remain asserted until
a1.gnt is received). Our goal is to show that the basic virtual channel admits a well-founded
relation which guarantees that even if any one of the three conditions is not met when a1.req

arrives, all three will be eventually satisfied together at some point in time resulting in an
eventual assertion of a1.gnt. Figure 5.4 shows a diagrammatic representation of this well-
founded relation. We call this diagrammatic representation a well-founded structure (WFS).
A high-level explanation of this structure is presented next, followed by a detailed description
including its role in response verification.

a1.req a1.gnt

a1.gnt

a1.gnt

σ1

σ2 σ2

σ3σ3

σ′
2

σ′
3

σ′
3

σ′′
3

F
1

2

F1

3
F2

3

❋✐❣✉r❡ ✺✳✹✿ ❲❡❧❧✲❢♦✉♥❞❡❞ str✉❝t✉r❡ ❢♦r ✈✐rt✉❛❧ ❝❤❛♥♥❡❧

5.5.1.1 High-level Explanation

Figure 5.4 depicts that the basic virtual channel VC can be in any one of the three configura-
tions {σ1, σ2, σ3} when a1.req arrives. Depending on which configuration it is in, it will wait
for different rounds of fairness events F j

i . In response to each such fairness event, the system
will make ‘step-by-step’ progress toward the target configuration which satisfies a1.gnt. The
horizontal trajectories starting from a configuration σi and ending at a1.gnt represent various

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 46

paths along which the system might evolve. F1
2 ,F

1
3 ,F

2
3 ⊆ F denote the necessary fairness

events where F = {i1.req, i2.req, j1.gnt, j2.gnt,m1.gnt,m2.gnt} is the set of all fairness
signals associated with the model. In our notation, a fairness event F j

i = {f1, f2, . . . , fn} ⊆ F
essentially represents the conjunction f1 ∧ f2 ∧ . . . ∧ fn. We will use the set notation and
the conjunction notation interchangeably for fairness events. The main idea behind Figure
5.4 is that whichever path the system might evolve from the point of receiving a1.req, it will
eventually hit a1.gnt and this is guaranteed by its ‘step-by-step’ progress under the rounds
of fairness events. In Figure 5.4, a configuration σk with a superscript F j

i followed by another
configuration σ ′k denotes that the model stutters at σk and only upon the arrival of fairness
event F j

i makes a transition to σ ′k .

5.5.1.2 Detailed Explanation

A configuration σ is a state predicate which represents one or more concrete states of the
system. VC can be in any one of the three mutually disjoint configurations when a1.req

arrives. These configurations are represented by σ1, σ2 and σ3 with the following definitions:

σ1 = ¬Empty(B1) ∧ ¬Full(B3)

σ2 = Empty(B1) ∧ ¬Full(B3)

σ3 = Empty(B1) ∧ Full(B3)

Empty(B) and Full(B) are simple predicates defined on buffer B with the following obvious
semantics: Empty(B) = 1 iff buffer B contains no flit and Full(B) = 1 iff buffer B has
no slot free for any more flits. In terms of the RTL signals, Empty(B1) , ¬b1.req and
Full(B3) , ¬k1.gnt. Note that there is no configuration σ4 = ¬Empty(B1) ∧ Full(B3) that
the model can assume when a1.req arrives. This is an impossible scenario due to the BUFFER

RELATION num(B1) +num(B3) = num(B2) which precludes a situation where buffer B1 and B3

together have more than 2 flits (as stipulated by σ4). Hence, σ1∨σ2∨σ3 exhaustively captures
all possible scenarios.

Discussion 2. The above situation is an obvious one where we infer a (safety) property of
the system as a corollary of some of its known safety properties. It will influence the well-
founded structure as well as the overall proof of liveness. We will encounter similar situations
recurrently in subsequent arguments. To highlight this phenomenon where safety properties
influence satisfaction of liveness, we will mark the relevant corollaries with a superscript
symbol [safe]. �

From the above discussion, we see that three predicates σ1, σ2 and σ3 form mutually disjoint
but exhaustive partition of the collection of possible scenarios. This justifies the three-way
branching in Figure 5.4. We use solid lines to capture this case-split. We use two more types
of lines in a WFS, viz. broken lines and thick solid arrows. Broken lines denote eventuality,
i.e. passage of an indefinite number of time steps and thick solid arrows denote passage

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 47

of one or more, but a definite number of time steps. With these semantics of lines in mind,
we now focus on the individual branches of the structure of Figure 5.4. At the end of our
analysis, we will collect a set of safety properties of the form φ

j
i or ψlk (explained later) that

will substitute for the need of a traditional liveness proof of φr .

[Case 1: σ1 to a1.gnt] If the arbiter is ready to grant A1 (i.e. u = 1), then due to the non-
blocking property of e, a1.gnt is received in the same cycle [safe]. Otherwise, if the arbiter is
offering the grant to A2, again due to round-robin nature of the arbiter and the non-blocking
property of e, the arbiter will turn to A1 in the immediately next cycle [safe]. Hence a1.gnt

will be received within at most one cycle (in this context, note the use of thick solid arrow
in Figure 5.4). Therefore, we can check if a bit-level implementation of VC indeed behaves
in this way under Case 1 by formally verifying the following safety property on the bit-level
implementation:

φ1
1 , a1.req ∧ σ1 ⇒ a1.gnt ∨ X(a1.gnt)

[Case 2 : σ2 to a1.gnt] Note the following corollary: [safe]

ψ1
2 , Empty(B1) ∧ ¬Full(B3)⇒ ¬Full(B2)

Therefore, we need to wait for the credit source i1 to push a flit in buffer B1. As per our
fairness assumption GF(i1.req), we may need to wait to get i1.req, but its eventual arrival
is always guaranteed. This arrival is denoted by the fairness event F1

2 , {i1.req}. Once
F1

2 happens when the system is in σ2, it moves to configuration σ ′2. Incidentally, σ ′2 is same
as σ1. Hence the analysis of Case 1 follows. In order to check if a bit-level implementation
behaves in this way, we need to check the following safety properties φ1

2 and φ2
2 in addition

to φ1
1 and ψ1

2 .
φ1

2 , σ2 ∧ ¬F
1
2 ⇒ X(σ2), φ2

2 , σ2 ∧ F
1
2 ⇒ X(σ1)

[Case 3 : σ3 to a1.gnt] Note the following corollary: [safe]

ψ1
3 , Empty(B1) ∧ Full(B3)⇒ Full(B2)

Therefore, at least one empty slot needs to be created in buffer B2 before credit source
i1 can push a flit into B1 (as well as in B2). For this, we need the fairness event F1

3 ,

{j1.gnt,m1.gnt} to occur to remove a flit from each of B2 and B3. Then we need the fairness
event F2

3 , {i1.req} to push a flit into buffer B1. The system, initially stuttering on σ3, jumps
to σ ′3 = σ2 upon arrival of F1

3 . Henceforth from σ ′3, it follows the analysis of Case 2. In order
to check if a bit-level implementation satisfies these additional behaviors under Case 3, we
need to check, in addition to φ1

1 ∧ φ
1
2 ∧ φ

2
2 ∧ ψ

1
2 ∧ ψ

1
3 , the following safety properties.

φ1
3 , σ3 ∧ ¬F

1
3 ⇒ X(σ3), φ2

3 , σ3 ∧ F
1
3 ⇒ X(σ2)

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 48

Discussion 3. The final outcome of the well-foundedness analysis of a communication fabric
is a set of safety properties which ensures the validity of liveness of the model. In case of the
basic virtual channel, we derive the set of properties S = {σexhaust} ∪ {φ

1
1, φ

1
2, φ

2
2, φ

1
3, φ

2
3} ∪

{ψ1
2 , ψ

1
3}. σexhaust = a1.req ⇒ σ1 ∨ σ2 ∨ σ3 captures all the configurations that the system

can assume when a1.req arrives. While ψji are design invariants that restrict the state space
of the system, φji are invariants that are more closely related to the progress of the system.
Proof of the properties in S indirectly testify the validity of φr . Therefore, an efficient proof
of the properties in S may replace a separate rather inefficient proof attempt for φr . See
Section 5.7.5 for the relevant experimental results. �

5.5.1.3 Virtual Channel with Order VCO

We apply the same principle to the more complex structure VCO (Figure 3.8), and obtain a
WFS as shown in Figure 5.5.

a1.req

a1.gnt

a1.gnt

a1.gnt

a1.gnt

a1.gnt

a1.gnt
σ1

σ2 σ2

σ5 σ5

σ6 σ6

σ′
2

σ3σ3 σ′
3

σ′
3

σ′′
3

σ4
σ′
4

σ′
4

σ′′
4σ′′

4 σ′′′
4

σ′
5σ′

5 σ′′
5σ′′

5 σ′′′
5

σ′
6σ′

6 σ′′
6

σ′′
6

σ′′′
6

σ′′′
6

σ′′′′
6

F1

2

F1

3
F

2

3

F1

4
F2

4

F1
5 F

2

5 F3

5

F1

6
F2

6 F
3

6 F4

6

❋✐❣✉r❡ ✺✳✺✿ ❲❋❙ ❢♦r ✈✐rt✉❛❧ ❝❤❛♥♥❡❧ ✇✐t❤ ♦r❞❡r

The WFS of Figure 5.5 contains some intriguing scenarios which were not observed in the
WFS for the basic virtual channel. Here {σi : i = 1, 2, . . . , 6} is the set of mutually disjoint
configurations that the model can assume when a1.req arrives. Definitions of σi’s are the

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 49

a1.req

a1.gnt
σ1

σ2

σ2

σ5 σ5

σ6 σ6

σ3

σ3

σ4

F
1

2

F1

3

F1

5

F
1

6

❋✐❣✉r❡ ✺✳✻✿ ❆ ❢♦❧❞❡❞ r❡♣r❡s❡♥t❛t✐♦♥ t❤❡ s❛♠❡

following:

σ1 = ¬Empty(B1)

σ2 = Empty(B1) ∧ ¬Full(B3)

σ3 = Empty(B1) ∧ Full(B3) ∧ ¬Empty(B6)

σ4 = Empty(B1) ∧ Full(B3) ∧ Empty(B6) ∧ π0(B5)

σ5 = Empty(B1) ∧ Full(B3) ∧ Empty(B6) ∧ π1(B5)

σ6 = Empty(B1) ∧ Full(B3) ∧ Empty(B6) ∧ π2(B5)

While Empty(Bi) and Full(Bi) are predicates as defined before, π0(Bi), π1(Bi) and π2(Bi) are
three new, rather non-trivial, situation-specific predicates defined as follows:

• π0(Bi) = 1 iff the flit at the front of the buffer Bi is coming from source A1,

• π1(Bi) = 1 iff the flit at the front of the buffer Bi is coming from source A2 and the flit
at the second position from the front is coming from A1,

• π2(Bi) = 1 iff two consecutive flits at the front of the buffer Bi are coming from source
A2 and the third flit is coming from source A1.

The situations captured in π0, π1 and π2 are presented in Figure 5.7. Note that the buffer
slots which are ignored by each of πi’s are marked with ⊥ (for don’t care). The significance
of these predicates is discussed in the following sections.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 50

A1⊥⊥⊥

front

(a) π0(B5)

A1 A2⊥⊥

front

(b) π1(B5)

A1 A2 A2⊥

front

(c) π2(B5)

❋✐❣✉r❡ ✺✳✼✿ ❱❛r✐♦✉s ❝♦♥✜❣✉r❛t✐♦♥s ♦❢ B5 ✭❝❛♣t✉r❡❞ ✐♥ ♣r❡❞✐❝❛t❡s π1✱ π1✱ π2✮

Each of the paths of Figure 5.6 eventually leads to a configuration where a1.gnt holds.
Every such path to a1.gnt depends on a particular sequence of fairness events which are
defined below:

F = {i1.req, i2.req, j1.gnt, j2.gnt, j3.gnt,m1.gnt,m2.gnt}

F1
2 = {i1.req},F

1
3 = {j1.gnt,m1.gnt},F

2
3 = {i1.req}

F1
4 = {j1.gnt,m1.gnt},F

2
4 = {i1.req}

F1
5 = {j2.gnt, j3.gnt,m2.gnt}
F2

5 = {j1.gnt,m1.gnt},F
3
5 = {i1.req}

F1
6 = F2

6 = {j2.gnt, j3.gnt,m2.gnt}
F3

6 = {j1.gnt,m1.gnt},F
4
6 = {i1.req}

While analyses of the paths from configurations σ1, σ2 and σ3 are very similar to the three
paths shown in Figure 5.4, analyses of the paths from configurations σ4, σ5 and σ6 require
special attention. All three configurations σ4, σ5 and σ6 correspond to the situation where
buffer B1 is empty, B3 is full and B6 is empty, but they differ in the configuration of buffer
B5 (in particular, the ordering of different types of flits in B5). Among various ordering of
flits in B5, three relevant ones are captured in π0 (corresponding to configuration σ4), π1

(corresponding to σ5) and π2 (corresponding to σ6) as already defined. Configuration σ4

immediately jumps to configuration σ3 in the next time step ([safe]), hence it follows the same
analysis of configuration σ3. Under configuration σ5, we first need to remove the top-most
A2-flit from B5 and for this we need to wait for fairness event F1

5 . Then it becomes the same as
configuration σ4 and the same analysis follows. Similarly, under configuration σ6, we need to
wait for two consecutive fairness events F1

6 and F2
6 to get an A1-flit at the top. The analysis

for configuration σ4 follows (equivalently, we can say that configuration σ6 jumps to σ5 upon
arrival of fairness event F1

6 and follows the analysis of σ5 thereafter).
As before, we derive the set of safety properties S = {σexhaust} ∪ {φ

j
i} ∪ {ψk} where

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 51

σexhaust =
∨6
i=1 σi and {φji} and {ψk} contain the following properties:

φ1
1 , a1.req ∧ σ1 ⇒ a1.gnt ∨ X(a1.gnt)

φ1
4 , σ4 ⇒ X(σ3)

φ1
i , σi ∧ ¬F

1
i ⇒ X(σi), ∀i ∈ {2, 3, 5, 6}

φ2
i , σi ∧ ¬F

1
i ⇒ X(σi−1), ∀i ∈ {2, 3, 5, 6}

ψ1 , num(B1) + num(B3) = num(B2)

ψ2 , num(B7) + num(B4) = num(B8)

ψ3 , num(B3) = num(B6) + numA1
(B5)

ψ4 , num(B4) = numA2
(B5)

ψ5 , num(B5) = numA1
(B5) + numA2

(B5)

where numA1
(B) and numA2

(B) represent the number of flits in buffer B that come from source
A1 and A2 respectively.

Discussion 4. The path that follows from σ6 to a1.gnt is particularly interesting. It illustrates
how the ordering logic of this virtual channel can complicate the proof of liveness. The path
requires two consecutive fairness events F1

6 and F2
6 , which are essentially the same event. In

spite of their identity, the configurations σ ′6 and σ ′′6 , which are assumed by VCO upon arrival
of these events respectively, are different. In terms of progress, σ ′′6 should be considered
closer to the target state a1.gnt than σ ′6. Note that if the buffer sizes of the fabric change,
we may need more rounds of the same fairness events. Unfortunately, this progress-ensuring
insight is missing in the monolithic formulation of φr . A traditional liveness verifier may need
to learn this design behavior itself in an unguided way before it derives a proof for φr . We
suspect that this is the reason why a traditional model checker finds it challenging to prove
φr on a fabric with less than hundred flip-flops (see Section 5.7.5 for run-times). �

Discussion 5. Note that the ordering logic makes the analyses of well-foundedness of the
response property for source A1 and A2 asymmetric. The well-founded structures for the
response property for source A1 and A2 are the same, with the same event orderings (only
difference lies in the actual definitions of the fairness events F j

i ’s) for the basic virtual channel
and the virtual channel with channel buffer. But for the virtual channel with ordering, the
structures will be different for A1 and A2. The structure for source A2 would be simpler and
similar to that of Figure 5.4. We have analyzed the case of A1, which is more complex between
the two and leave the simpler one for the reader as an exercise. �

Discussion 6. As discussed, one path from a configuration σi to a1.gnt can use another path
from some other configuration σj as a subpath, both in the case of the basic virtual channel and
the virtual channel with order. This is due to various identities of intermediate configurations
(of the form σ ′i = σj) and identities of the fairness events (eg. F2

5 = F1
4 for virtual channel

with order). This allows folding the WFS into a more compact structure as shown in Figure

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 52

5.6. It is the folded version of the WFS shown in Figure 5.5 with the same semantics for
various lines. It demonstrates an interesting monotonicity among the various cases captured
in σi’s. We can draw a similar folded WFS for the basic virtual channel as well. �

5.5.1.4 Virtual Channel with Channel Buffer

Figure 3.7 shows another variant of the basic virtual channel. It has a buffer (Bch) of size k
along the shared channel and can be seen in network-on-chip applications. The particular
instance shown in the figure has a channel buffer with k = 4. In spite of having a different set
of design invariants due to the mixing of two types of flits in Bch, this virtual channel yields
the same well-founded structure as in Figure 5.4 with the same definitions for F and F j

i ’s. The
initial configurations σ1, σ2, and σ3 will have minor differences in their formulations because
the presence of Bch leads to a different set of design invariants. The new configurations are2:

σ1 = ¬Empty(B1) ∧ ¬Full(B2)

σ2 = Empty(B1) ∧ ¬Full(B2)

σ3 = Empty(B1) ∧ Full(B2)

Careful study shows that the structure is rather insensitive to the size of the channel buffer,
provided that the capacity of B3 and B4 are large enough to store the credit flits currently
circulating in the network. However, a traditional model checker may not be able to leverage
these insights automatically and may be choked even for a moderate size of the channel
buffers. See Section 5.7.5 for further details.

5.5.2 Complex Systems and Composition of WFS

Well-foundedness may be used for proving the response property of larger systems built on
the credit-based flow-control principle of virtual channels. We consider a family of mas-
ter/slave designs which have an overall similar topology, but they differ in the details of their
connectivities and operations. These details often make analysis of one much harder than
another. In Figure 3.9, we consider a simple master/slave design that uses virtual channels
for deadlock prevention. Note the structural back-to-back composition of two buffered virtual
channels of Figure 3.7 in this model and the acyclicity of data-flow in it. Leveraging these
two features we may compose the WFS of two buffered virtual channels together and derive
the same for the basic master/slave model. The resulting WFS is shown in Figure 5.8 in its
folded form. Here, the configurations have the following definitions:
σ1 = ¬E(B1), σ2 = E(B1) ∧ ¬E(B3),
σ3 = E(B1) ∧ E(B3) ∧ ¬F (B6)

2It is interesting to note that this set of configurations can be used for the basic virtual channel as well. In
fact, this set is equivalent to the set used in Section 5.5.1 for the basic virtual channel, but not for the virtual
channel with channel buffer

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 53

σ4.1 = E(B1) ∧ E(B3) ∧ F (B6) ∧ ¬E(C1)

σ4.2 = E(B1) ∧ E(B3) ∧ F (B6) ∧ E(C1) ∧ ¬E(C3)

σ4.3 = E(B1) ∧ E(B3) ∧ F (B6) ∧ E(C1) ∧ E(C3) ∧ ¬F (C6)

σ4.4 = E(B1) ∧ E(B3) ∧ F (B6) ∧ E(C1) ∧ E(C3) ∧ F (C6)

a1.req

a1.gnt
σ1

σ2

σ3

σ3

σ4.1

σ4.1

σ4.2

σ4.3

σ4.3

σ4.4 σ4.4

F1

3

F1

4

F3

4

F4

4

❋✐❣✉r❡ ✺✳✽✿ ❲❡❧❧✲❢♦✉♥❞❡❞ str✉❝t✉r❡ ❢♦r ▼❛st❡r✴❙❧❛✈❡ ❞❡s✐❣♥

5.5.2.1 Assume/Guarantee Reasoning

Figure 5.9 shows another approach to prove the response property for the master/slave design.
It leverages the acyclicity of the data-flow further and uses an assume/guarantee paradigm
to break the system into two parts along the break-line of Figure 5.9. This breaks the overall
proof obligation φr into two sub-obligations. Along the break-line, we introduce new sinks
and sources (highlighted by dark circles). It is assumed that a sink is fair, which is guaranteed
by proving another response property on the source. The advantage of this approach is that
we do not have to compose the WFS of two sub-blocks. A disadvantage is that most of the
networks may not be broken into parts so easily. For example, we considered some other
master/slave designs not easily decomposed and composition of WFS seemed to be the only
technique that we could use.

5.5.3 Experimental Results

We ran two sets of experiments: in one, we attempted to prove the native liveness property
φr without the help of the safety invariants. In the other experiment, we attempted to prove
the safety properties in S which aims to replace φr . For the first set, we used the liveness-to-
safety transformation to convert the liveness verification problem to an equi-satisfiable safety
verification problem (see Chapter 4 for details). In both experiments, we use interpolation,

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 54

2 2 2
2 2 2

kkkk

kk

k k

kkkk

B1 B2

B3 B4 B5

B6
B7 B8 B9

C1 C2

C3 C4 C5

C6 C7 C8 C9

x 7→ rsp

x 7→ rsp

req

req

(x == req)

(x == req)

router

router

agent P
agent P

agent Qagent Q

❋✐❣✉r❡ ✺✳✾✿ ❈♦♠♣♦s✐t✐♦♥❛❧ str✉❝t✉r❡ ❢♦r ▼❛st❡r✴❙❧❛✈❡ ❞❡s✐❣♥

property directed reachability (PDR) and induction as safety proof engines on the final single-
output safety property instance. Verification run-times of these experiments are shown in
Table 5.4. A ‘-’ symbol in place of run-time means the corresponding engine could not prove
the property within the default resource limit of ABC. In Table 5.4, we present run-times for
the basic virtual channel, virtual channel with channel buffer, virtual channel with ordering
and a few cases where several instances of virtual channels with ordering are coupled in
cascade (Vcoi stands for i instances of Virtual Channel with ordering are cascaded).

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 55

Native Liveness
Design #PI #flop proving φr after L2S

Interpolation PDR Induction
Virtual Channel 8 59 1.52 12.78 -

Virtual Channel with Buffer 8 77 - 1515.20 -
Virtual Channel with Order 9 104 - 126.44 -

Vco2 14 205 - - -
Vco3 19 278 - - -
Vco4 24 380 - - -

Liveness With Intermediate Safety
Design #PI #flop proving properties in S

Interpolation PDR Induction
Virtual Channel 8 59 0.17 0.13 0.03

Virtual Channel with Buffer 8 77 - 80.95 0.08
Virtual Channel with Order 9 104 - 3.91 -

Vco2 14 205 - 3.91 -
Vco3 19 278 - 54.80 -
Vco4 24 380 - 304.62 -

❚❛❜❧❡ ✺✳✹✿ ❱❡r✐✜❝❛t✐♦♥ r✉♥✲t✐♠❡s ❢♦r ✐♥t❡r♠❡❞✐❛t❡ ❛ss❡rt✐♦♥s ♦♥ ✇❡❧❧✲❢♦✉♥❞❡❞♥❡ss

5.6 Approach III : Skeleton Independent Proof Heuristics

In this approach, we show that a very natural subset of design signals of communication fabrics
may be treated as candidate hints and, given such a set of candidate hints, we demonstrate
how we can algorithmically construct a proof of a response property. Our contributions in
this section are the following:

• We propose a methodology and associated algorithms for proving response properties
of communication fabrics using a ranking-oriented approach. We make our algorithm
efficient and scalable by using a heuristic called skeleton independent proof [Bradley et
al., 2011]. The resulting algorithm is sound, and complete relative to a set of designer
provided hints. (Section 5.6.2, 5.6.3)

• We provide a novel characterization of the state-spaces of communication fabrics and
subsequently use it in our algorithm. We hope that this characterization will foster
further research, and promote design of even more powerful algorithms. (Section 5.6.2)

• Our algorithm can output a certificate of liveness for correct systems which can be
presented to a designer who should be able to analyze the certificate without much
effort, and conclude if the system is behaving in the intended way. No temporal logic

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 56

model checking background is necessary for the inspection of these certificates. (Section
5.6.2)

• In our proof scheme, fairness signals are interpreted more from a designer’s perspective,
rather than from the traditional perspective of automata-theoretic model checking.

• With reference to the temporal hierarchy [Manna and Pnueli, 1991], we extend the scope
of the skeleton independent proof technique by applying it to a recurrence property,
compared to a guarantee property on which the technique was originally applied. Fur-
ther, our benchmarks are more complex, both in size and in design complexity, than the
simple counter that was used in [Bradley et al., 2011]. This supports the strength and
effectiveness of this new heuristic for solving designs with more complex dynamics.

This section is organized in the following sub-sections: we overview terminologies and
notations next. In Section 5.6.2, we discuss our characterization of the state-space, the
specialized algorithms for ranking-oriented proof, and their efficient implementations using
system specific heuristics. In Section 5.6.3, we illustrate the concepts presented in Section
5.6.2 using our running example VC. Section 5.6.4 presents experimental results, and Section
5.6.5 summarizes and highlights possible future work.

5.6.1 Terminologies and Notations

5.6.1.1 Pending Graph, Goal Region, Pending Region

In the verification of a response property, it is helpful to focus on the pending graph of the
design which is defined as follows: The goal region of the state-space is a subset of states
of the state transition graph which can issue a grant without waiting for an external event
or input. For example, the goal region of the state-space of VC is the subset of states where
buffer B1 has at least one flit, and buffer B3 has at least one empty slot, and the arbiter is
offering the grant to side A1. The pending region, on the other hand, is the remaining part
of the state-space which cannot issue a grant itself, but needs to transit to the goal region
(eventually) with the help of external events. The pending graph is obtained by pruning all
transitions coming out of the goal region. If we can prove that any state in the pending
region cannot reach itself infinitely often without visiting the goal region, this essentially
proves that the given design satisfies the response property. It should be noted that in our
proof algorithms, pending graphs will not be constructed explicitly; rather the algorithm will
work symbolically with the And-Inverter graph (AIG) representation of the fabric models.

5.6.1.2 Notations

Let F : (x̄, ī, ✐♥✐t(x̄), T (x̄, ī, x̄ ′)) denote the finite state system underlying to a communication
fabric where x̄ is the vector of state variables, ī is the vector of primary inputs, ✐♥✐t(x̄) is
a propositional formula describing the initial states, and T (x̄, ī, x̄ ′) is propositional relation

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 57

describing the transition relation. Primed state variables x̄ ′ denote the next state. Let
post(x̄, ī) denote the next state x̄ ′ such that T (x̄, ī, x̄ ′) holds, and post(x̄) denote the set of
next states such that for all x̄ ′ ∈ post(x̄), there exists some input ī, such that T (x̄, ī, x̄ ′)
holds. Let SF denote the state-space of F. Let C0, C1, C2, . . . , Cn denote the maximal strongly
connected components (MSCC) of the pending graph of SF. Let us call each Ci a supernode
of states. It is well known that the transitions among supernodes {Ci} form a directed acyclic
graph (DAG). Since the states in the goal region have no outgoing transition, each forms
a singleton supernode with incoming transitions only (often called a sink supernode) in the
supernode DAG. Abusing notation a little, let us denote the union of sink supernodes of goal
states by C0. Henceforth, C0 serves as the goal region of the pending graph of SF (see Figure
5.14 for an illustration). For a state x̄, we define rank(x̄) as the minimum length of a path
from x̄ to any state in C0. For any x̄ ∈ C0, rank(x̄) = 0. For a state x̄ which has no path to
C0, rank(x̄) =∞. For a supernode Ci, we define ρi = rank(Ci) = max{rank(x̄) : x̄ ∈ Ci}.

5.6.2 State-Space Characterization and Verification Algorithm

Suppose we want to prove the response property φr on F, and also suppose that the state-
space of F has the following property:

1. The supernodes have unique ranks, i.e. for any two supernodes Ci, Cj , ρi 6= ρj for i 6= j .
Therefore, we assume that indices to any two supernodes Ci, Cj are so assigned that
ρi > ρj for i > j .

2. For any Ck in the pending region (i.e. for k > 0),

a) Ψ1 , ∀x̄ ∈ Ck · post(x̄) ⊆ Ck ∪ Ck−1

b) Ψ2 , ∀x̄ ∈ Ck · ∃̄i ∈ I · post(x̄, ī) ∈ Ck−1

In other words, Ψ1 means that each pending sub-region Ck has next states either in Ck or in
Ck−1, and Ψ2 means that each such Ck must have at least one next state in Ck−1. Obviously,
states in Ck cannot have any next state with rank greater than ρk . Ψ1 captures this criterion
too. If a system meets the above criteria, the pending graph of its state-space is linearly
graded. A schematic view of such a linearly graded pending graph is shown in Figure 5.10.

Given a pending graph, our objective is to verify that it is linearly graded. If we begin
with the goal region C0, we can recursively reverse engineer all Ck , k > 0, using the facts that
Ck is the maximal subset of S\∪k−1

t=0 Ct that satisfies Ψ1 and Ψ2. A pseudo-code is presented
in Algorithm 1 below:

5.6.2.1 A Simple Generalization

The above algorithm attempts to discover a linearly graded structure of the pending graph.
A pending graph can have other structures that are not linearly graded, but still guarantee

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 58

C0C1C2C3

pending region goal region

❋✐❣✉r❡ ✺✳✶✵✿ ❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❧✐♥❡❛r❧② ❣r❛❞❡❞ ♣❡♥❞✐♥❣ ❣r❛♣❤

Algorithm 1: Procedure for finding linear gradation

1 C0 ← goal_region;
2 k ← 0;
3 repeat
4 k ← k + 1;
5 Ck ← (∃̄i ∈ I · post(x̄, ī) ∈ Ck−1) ∩ (∀̄i ∈ I · post(x̄, ī) ∈ Ck ∪ Ck−1);
6 until Ck is empty;
7 if (S\ ∪kt=0 Ct) ∩R is not empty then
8 found a potential bug (deadlock, or livelock);
9 else

10 any pending state will eventually end up in the goal region;
11 end

eventual reachability to the goal region. Figure 5.11 represents an alternative structure
which guarantees eventual reachability to the goal region, but is not linearly graded, rather
topologically graded.

In Figure 5.11, C4 does not satisfy condition Ψ1 because post(C4) = C4∪C2∪C1. Therefore,
Algorithm 1 would not cover region C4, and upon termination, would declare that C4 can cause
a potential liveness bug. However, a simple modification of the criteria Ψ1 and Ψ2 can bridge
the gap and find that the pending graph of Figure 5.11 also guarantees eventual reachability
to the goal region. The new criteria are as follows:

Ψ̂1 , ∀x̄ ∈ Ck · post(x̄) ⊆ ∪ρt≤ρkCt

Ψ̂2 , ∀x̄ ∈ Ck · ∃̄i ∈ I · post(x̄, ī) ∈ ∪ρt<ρkCt

Algorithm 1 needs only a little modification to use Ψ̂1 and Ψ̂2 in its iteration as presented
in Algorithm 2 below.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 59

C0C1C2C3

C4

pending region goal region

❋✐❣✉r❡ ✺✳✶✶✿ ❙❝❤❡♠❛t✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ t♦♣♦❧♦❣✐❝❛❧❧② ❣r❛❞❡❞ ♣❡♥❞✐♥❣ ❣r❛♣❤

Algorithm 2: Procedure for finding topological gradation

1 C0 ← goalRegion;
2 k ← 0;
3 G ← C0;
4 repeat
5 k ← k + 1;
6 Ck ← (∃̄i ∈ I · post(x̄, ī) ∈ Ck−1) ∩ (∀̄i ∈ I · post(x̄, ī) ∈ Ck ∪ G);
7 G ← G ∪ Ck ;
8 until Ck is empty;
9 if (S\ ∪kt=0 Ct) ∩R is not empty then

10 found a potential bug (deadlock, or livelock);
11 else
12 any pending state will eventually end up in the goal region;
13 end

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 60

5.6.2.2 Two Levels of Heuristics

So far, we have discussed the characterizations of linearly graded and topologically graded
structures of SF, and have provided general algorithms for testing these properties. While the
algorithms discussed are linear in the size of SF, they depend on complex implementations
of fix-point algorithms. On the other hand, we observed that a careful extension of skeleton
independent proof heuristics of [Bradley et al., 2011] yields a surprisingly easy and intuitive
proof that SF is linearly graded for an important class of communication fabrics. The benefits
of this proof technique are:

• the proof procedure is simple, and very efficient,

• it involves very little implementation overhead,

• the final proof may be interpreted as a human readable certificate.

Heuristic 1, as presented below, is the core idea of the skeleton independent proof that we use
on our benchmarks. Heuristic 2 is a special heuristic that we developed for our benchmarks
to improve on Heuristic 1.

5.6.2.3 [Heuristic 1] Skeleton Independent Proof

Suppose we have a special Boolean signal b1 in our design which partitions the pending
region of the pending graph as shown in Figure 5.12. In the figure, A denotes the pending
region and G denotes the goal region (i.e. supernode C0). Suppose b1 partitions A into two
non-empty subsets A ∧ b1 and A ∧ ¬b1 such that (without any loss of generality) A ∧ b1

satisfies both conditions Ψ1, and Ψ2, and A ∧ ¬b1 satisfies condition Ψ2. Then A ∧ b1 may
be treated as supernode C1, and A ∧ ¬b1 as supernode C2. Hence, signal b1 partitions the
pending region completely into supernodes which expose the linearly graded structure of the
pending graph. In the figure, the dotted arrow labeled with Ψ1 indicates that existence of
any such back transition is precluded by Ψ1.

What if A ∧ ¬b1 does not satisfy Ψ2? It means A ∧ ¬b1 as a whole cannot be the next
partition C2. If we are lucky, and the design has another special Boolean signal b2 which
partitions A ∧ ¬b1 into A ∧ ¬b1 ∧ b2, and A ∧ ¬b1 ∧ ¬b2 such that A ∧ ¬b1 ∧ b2 satisfies
Ψ1 ∧ Ψ2, and A ∧ ¬b1 ∧ ¬b2 satisfies Ψ2. Then again we find a complete partition of the
pending graph viz. C0 = G,C1 = A ∧ b1, C2 = A ∧ ¬b1 ∧ b2, and C3 = A ∧ ¬b1 ∧ ¬b2. In this
way, an efficient algorithm can be devised that scans a set of designated Boolean signals
B = {b1, b2, . . . , bm} in the design, and attempts to reverse engineer the linear gradation of
the pending graph. The procedure is shown in Algorithm 3. On termination, it either returns
a linear gradation of the pending region using some of the Boolean signals in the given set
B; or declares that the given set B is not adequate to find a linear gradation even if such a
gradation exists. In that case, we have to fall back on Algorithm 1. A similar argument, using

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 61

Ψ̂1, and Ψ̂2 can be applied also to discover a topological gradation of the pending graph
using designated Boolean signals.

A

(Ψ2) (Ψ2)

(Ψ1)

G

b1

A ∧ ¬b1 A ∧ b1

❋✐❣✉r❡ ✺✳✶✷✿ ❉✐s❝♦✈❡r✐♥❣ ❧✐♥❡❛r ❣r❛❞❛t✐♦♥ ✉s✐♥❣ ❇♦♦❧❡❛♥ s✐❣♥❛❧s

5.6.2.4 [Heuristic 2] Simplification of first-order formulae

Note that reasoning about Ψ2, and Ψ∗2 requires either a model checker for first-order logic,
or a propositional reasoning engine with efficient quantifier elimination capability. However,
based on design insights, we may replace Ψ2, and Ψ∗2 with simpler propositional formulae
Φ2, and Φ∗2 respectively as shown below.

Φ2 , ∀x̄ ∈ (A ∧ λ) · post(x̄, 1|I|) ∈ ¬A

Φ∗2 , ∀x̄ ∈ (A ∧ ¬λ) · post(x̄, 1|I|) ∈ ¬A ∨ (A ∧ λ)

Here 1|I| represents the primary input vector where all input signals are assigned to 1.

5.6.2.5 Description of the Algorithm

Algorithm 3 scans a given list of Boolean signals B , and creates an ordered sublist that
exposes the linear gradation of the pending graph. It first eliminates (line 3-5) the signals
which do not divide the pending region A into two non-empty sub-regions. Inside the while
loop (line 6-21), it searches for a literal λ of some signal in the list B that can serve as an
inductive barrier (line 8-11). If such literal λ is found, then it checks if the side A∧λ satisfies
Ψ2 (line 12-14), and the side A ∧ ¬λ satisfies Ψ∗2 (line 15-21). If the test in line 12-14 fails,
it means λ is not a proper candidate for the barrier, and hence we look for another literal of
the same, or some other Boolean signal. On the other hand, if the test in line 15-21 fails, it
means that λ is possibly an intermediate inductive barrier of a growing partition. As the next
step, we need to try to divide A ∧ ¬λ further using other Boolean signal(s) to complete this
growing partition. At this stage, we shrink the current list of signals (line 19) and shrink the
current pending region (line 20) before looking for other literals.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 62

Algorithm 3: Partitioning using special Boolean Signals
input : Goal Predicate σg; special Boolean signals {b1, . . . , bn}

1 A← ¬σg;
2 B ← {b1, b2, . . . , bn};
3 forall the bi ∈ B do
4 if A ∧ bi or A ∧ ¬bi is empty then
5 B ← B\{bi};

6 barrierList ← ∅;
7 while B is not empty do
8 progress← 0;
9 forall the bi ∈ B do

10 for λ ∈ {bi,¬bi} do
11 Ψ1 ← A · X(A) ∧ λ⇒ X(λ);
12 if Ψ1 is not valid then
13 continue; //not a barrier

14 Ψ2 ← ∀x̄ ∈ (A ∧ λ) · ∃̄i ∈ I · post(x̄, ī) ∈ ¬A;
15 if Ψ2 is not valid then
16 continue; //cannot be the next barrier

17 Ψ∗2 ← ∀x̄ ∈ (A ∧ ¬λ) · ∃̄i ∈ I · post(x̄, ī) ∈ ¬A ∨ (A ∧ λ);
18 if Ψ∗2 is valid then
19 report barrierList as the complete partition, and terminate the

algorithm;

20 else
21 append λ to barrierList;
22 progress← 1;
23 B ← B\{bi};
24 A← A ∧ ¬λ;
25 continue;

26 if progress = 0 then
27 report that set B is inadequate, and complete partitioning is not possible, hence

terminate the algorithm;

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 63

Theorem 6. If B has n Boolean signals, Algorithm 3 makes at most 3n(n − 1) satisfiability
(or validity) checks.

5.6.2.6 Soundness and Completeness

It is easy to see that the algorithm is sound; if it exits from line 19, then the pending graph
is indeed linearly graded, and the list of Boolean signals barrierList contains a certificate
of proof that the state space indeed satisfies property φr; if the algorithm exits from line 27,
it means that the given set of Boolean signals is not informative enough to conclude about
the linear gradation of the pending graph, and hence no conclusion about φr can be drawn.
The heuristics of using special Boolean signals to partition the pending region, therefore,
makes Algorithm 3 an incomplete special case of Algorithm 1 in a sense that Algorithm 3
may not be able to prove that a pending graph is linearly graded even when it is (which
could have been established by Algorithm 1). Replacement of Ψ

(∗)
2 with Φ

(∗)
2 renders it even

more incomplete in general. But with these two soundness-preserving heuristics, Algorithm 3
becomes a simple, easy-to-implement procedure that needs only an off-the-shelf propositional
SAT solver to establish a proof of liveness. If the underlying state-space indeed admits these
special characteristics, we can get a quick and light-weight certificate of proof.

5.6.3 An Illustrative Example : Virtual Channel

We consider VC of Figure 3.5 to illustrate the notion of linearly graded pending graph for
communication fabrics. Any state in the pending graph of VC will satisfy one of the following
mutually disjoint propositional formulae

σ1 = ¬Empty(B1) ∧ ¬Full(B3)

σ2 = Empty(B1) ∧ ¬Full(B3)

σ3 = Empty(B1) ∧ Full(B3)

σ1, σ2, and σ3 are such that when a1.req arrives a grant cannot be produced immediately.
Empty(B) and Full(B) are simple predicates defined on buffer B with the following obvious
semantics: Empty(B) = 1 iff buffer B contains no flit, and Full(B) = 1 iff buffer B has no slot
free for any more flit. Note that any state satisfying ¬Empty(B1) ∧ Full(B3) is unreachable
in VC (see [Chatterjee and Kishinevsky, 2010a] for details), hence not considered.

When a1.req arrives to VC, it cannot produce a1.gnt in the same cycle if it is in σ2 or σ3;
it may produce a1.gnt in that same cycle if it is in σ1 depending on the state of the arbiter.
When VC is in σ3 and the fairness signals j1.gnt and m1.gnt are asserted together, the model
moves to σ2 in the next cycle. Otherwise, VC stays in σ3. Note that from σ2, VC cannot return
to σ3 in the next cycle. Similarly, when VC is in σ2 and the fairness signal i1.req is asserted,
it moves to σ1 in the next cycle, otherwise it stays in σ2. This behavior is depicted in Figure
5.13. Since σ1 is the goal region, Figure 5.13 certifies that all states in the pending region
will eventually reach the goal region. Hence, φr holds on VC.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 64

σ3 σ2 σ1 a1.gnt

F
1

3

F
1

2

¬σ1

¬a1.gnt

goal

❋✐❣✉r❡ ✺✳✶✸✿ ❆❜str❛❝t st❛t❡✲s♣❛❝❡ ❢♦r ✈✐rt✉❛❧ ❝❤❛♥♥❡❧

5.6.3.1 Proof using Algorithm 3

Figure 5.13 shows that the pending graph of the virtual channel is linearly graded. We may
use Algorithm 1 to discover σ2, and σ3 starting with σ1. In this section, we will demonstrate
the model can be instrumented with some additional Boolean signals, and leverage them as
barriers to derive a proof using Algorithm 3. Suppose we introduce six two-bit binary counters
{Zi : i = 1, . . . , 6} in the virtual channel such that the value of Zi denotes the number of
flits in buffer Bi at each time step, for all i = 1, . . . , 6. Let us denote the MSB and the LSB
of counter Zi with Boolean variables z1

i , and z0
i respectively. Since each of the buffers can

contain at most 2 flits, each counter Zi can assume values z1
i z

0
i = 00, z1

i z
0
i = 01, and z1

i z
0
i = 10

only. In terms of the counters Zi’s, we can characterize σ1, σ2, and σ3 as follows (Zi’s are in
decimal notation):

σ1 = (Z1 = 1, Z3 = 1) ∨ (Z1 = 1, Z3 = 0) ∨ (Z1 = 2, Z3 = 0)

σ2 = (Z1 = 0, Z3 = 0) ∨ (Z1 = 0, Z3 = 1)

σ3 = (Z1 = 0, Z3 = 2)

This new abstract state-space is shown in Figure 5.14. In terms of Boolean signals zji , it is
easy to see the pending region A = σ2 ∪ σ3 is partitioned by z1

3 into two non-empty regions
C1 = A∧¬z1

3 and C2 = A∧z1
3 . Note that C1, and C2 are two alternative, automatically derived

representations of σ2, and σ3 respectively. All states in C1 transit to C0 once input i1.req is
asserted, and C2 cannot be reached from C1 in one step (i.e. C1 satisfies both Ψ1, and Ψ2).
On the other hand, all states in C2 transit to C1 once inputs j1.gnt and m1.gnt are asserted
together (i.e. C2 satisfies Ψ2). C0 ∪ C1 ∪ C2 covers the whole reachable state-space. Hence,
Boolean signal z1

3 provides a basis for efficient proof of φr on VC. Experimental results are
provided in the following section.

5.6.4 Experimental Results

We ran two separate sets of experiments: in one, the proof of the native liveness property φr is
attempted without using the safety invariants. In the other experiment, the proof of the safety
properties in S are attempted, which aim to replace φr . For the first set, we used liveness-
to-safety transformation to convert the liveness verification problem to an equi-satisfiable

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 65

(0, 2)

(0, 1)

(0, 0)

(1, 1)

(1, 0) (2, 0)

F1

3

F1

3

F1

2

F1

2

F1

3
∪ F1

2
goal region (C0)

pending region

C1(¬z
1

3
)

C2(z
1

3
)

❋✐❣✉r❡ ✺✳✶✹✿ ❆❜str❛❝t st❛t❡✲s♣❛❝❡ ✭s♦♠❡ tr❛♥s✐t✐♦♥s ♣r✉♥❡❞✮ ❢♦r ✈✐rt✉❛❧ ❝❤❛♥♥❡❧

safety verification problem. In both experiments, we use property directed reachability (PDR)
as the safety proof engine on the final single-output safety property instance. Verification
run-times of these experiments are shown in Table 5.5. A ‘-’ symbol in place of run-time
means ABC could not prove the property within its default resource limits. In Table 5.5, we
present run-times for the basic virtual channel, virtual channel with channel buffer, virtual
channel with ordering, cascaded virtual channel, and master/slave design.

Design #PI #flop after L2S {Ψi}
Virtual Channel 8 59 12.78 0.19

Virtual Channel with Buffer 8 77 1515.20 3.01
Virtual Channel with Order 9 104 126.44 4.58

Cascaded Virtual Channel with Buffer(*) 12 182 > 1800 5.72
Simple Master/Slave Design 14 178 - 19.19

❚❛❜❧❡ ✺✳✺✿ ❱❡r✐✜❝❛t✐♦♥ r✉♥✲t✐♠❡s ❢♦r s❦❡❧❡t♦♥ ✐♥❞❡♣❡♥❞❡♥t ♣r♦♦❢

5.6.5 Conclusion and Future Work

We presented a way of verifying a response property of communication fabrics by using hints
from the design. Our proof technique is efficient and scalable. It computes implicit ranking
information about the design, thereby revealing interesting insights about the design. We
believe this technique exposes interesting avenues of further research.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 66

5.7 Approach IV : Proof based on k-LIVENESS

5.7.1 k-LIVENESS Algorithm

k-LIVENESS is a relatively new algorithm for liveness verification, proposed by Koen Claessen
and Niklas Sörensson in [Claessen and Sörensson, 2012]. It has out-performed other state-of-
the-art liveness algorithms in the most recent hardware model checking competition [HWM,
2012]. k-LIVENESS is designed to prove an LTL property of the form FGp on a finite state
system represented as a sequential circuit. Since model checking problem of any ω-regular
property can be transformed into an equi-satisfiable model checking problem of another ω-
regular property of the form FGp using a generalized Büchi automata construction [Wolper et
al., 1983], in principle k-LIVENESS serves as a proof technique for the whole family of ω-regular
properties. The algorithm works in two phases, a pre-processing phase and an iterative proof
phase. The iterative proof phase is the core proof engine of the algorithm. It is both sound
and complete (modulo absence of counterexample) even without the pre-processing phase.
However, in some cases the pre-processing phase significantly simplifies and expedites the
iterative proof phase. Below, we describe the iterative proof phase first, then describe the
pre-processing phase.

5.7.1.1 Iterative Proof Phase

Intuition 1. Suppose property FGp holds on a design for some design signal p. It means
that signal p may toggle initially, but after some (finite) time, it will assume logic value 1
and remain 1 forever. Figure 5.15 depicts the waveform of a typical signal p which satisfies
FGp. In other words, if FGp holds on the design, p assumes logic value 0 for at most a finite

FGp : p

becomes 1 and remains 1 forever

❋✐❣✉r❡ ✺✳✶✺✿ ❆ t②♣✐❝❛❧ ✇❛✈❡❢♦r♠ ❢♦r ❛ s✐❣♥❛❧ p t❤❛t s❛t✐s✜❡s ♣r♦♣❡rt② ❋●p

number kmax times. In the iterative proof phase, k-LIVENESS searches for this kmax iterating
over non-negative integers starting from 0. At the i-th iteration, for i ≥ 0, it verifies if signal
p can assume logic value 0 for no more than i times. It is a safety verification obligation. If a
safety verification tool proves this obligation, then kmax = i and FGp is proved on the design.
Otherwise k-LIVENESS moves to the next iteration and checks if p can assume logic value 0
for no more than i+ 1 times.

Proof Iterations. The above intuition is realized by k-LIVENESS with the help of an auxiliary
circuit called an absorber circuit as shown in Figure 5.16. Suppose we want to prove FGp

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 67

on a design. In the first iteration, k-LIVENESS attempts to prove (on the original design) that
signal p can assume logic value 0 no more than 0 times, i.e. p is a ‘constant 1’ signal. Any
safety engine can be discharged to prove this property. If the proof goes through, k-LIVENESS

terminates declaring that FGp holds on the design. If the proof fails, then either FGp does
not hold on the design, or there exists at least one computation where p assumes logic value
0 for one or more times. k-LIVENESS thus moves to the second iteration and attempts to prove
that p can assume logic value 0 for no more than once. For this, it attaches the absorber
circuit of Figure 5.16 at signal p on top of the original design. The absorber circuit, whose
functionality is described within the text-box on the next page, is designed so that the same
signal p is propagated to pout except for the first occurrence of logic value 0 on p (see Figure
5.17 for an example). Hence, if p assumes no more than one logic value 0, pout would behave
as a ‘constant 1’ signal. If k-LIVENESS can prove this claim with the help of a safety verification
engine, then again it proves that FGp holds on the design. Otherwise, no decision can be
made and the process moves to the next iteration adding another absorber circuit to the
output.

p

g1 D1
g2 pout

❋✐❣✉r❡ ✺✳✶✻✿ ❆❜s♦r❜❡r ▲♦❣✐❝ t❤❛t ❛❜s♦r❜s ♦♥❡ ❵❞r♦♣✬ ♦♥ p

Figure 5.16 shows one copy of absorber circuit which ‘absorbs’ the first logic value 0
from the input signal p. The register D1 is initialized to 0. If p becomes 0 for the first
time at time step t (i.e. the first ‘drop’ from logic value 1 in p’s waveform, see Figure
5.17), D1 gets set to 1 at time t + 1 and remains 1 forever. Note that D1 controls the
output of OR gate g2 until time t and forces pout to remain 1 so far. This value matches
with p up to time t− 1 as p becomes 0 for the first time at time t. At t, p drops to 0, but
pout remains 1 due to D1 = 0. This is how the circuit absorbs the first 0 from p. Form
t + 1 onwards, D1 loses control over g2 and p propagates to pout as it is. Clearly, if p
has k ≥ 1 drops in its waveform, the absorber circuit absorbs the first one and results
in k − 1 drops in the waveform of pout . As a corollary, if p has at most one drop in its
waveform, pout becomes a ‘constant 1’ signal.

Working Principle of Absorber Circuit

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 68

p

pout

t

❋✐❣✉r❡ ✺✳✶✼✿ ❆ t②♣✐❝❛❧ ✇❛✈❡❢♦r♠ ❢♦r s✐❣♥❛❧ p t❤❛t ❡♥t❡rs t❤❡ ❛❜s♦r❜❡r ❧♦❣✐❝ ♦❢ ❋✐❣✉r❡ ✺✳✶✻ ❛♥❞
t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✇❛✈❡❢♦r♠ ❢♦r pout

In the third iteration, k-LIVENESS attempts to prove that p can assume logic value 0 for no
more than twice. For this, it attaches two copies of absorber circuit at signal p of the original
design. The resulting cascade of absorber circuits is shown in Figure 5.18. The output signal
pout is now a ‘constant 1’ signal if and only if p assumes logic value 0 for no more than twice.
If a safety verification engine can prove the claim, we are done. Otherwise, another absorber
logic is added at the end of the cascade of Figure 5.18 and the process continues.

p

g1 D1
g2 g3 D2

g4

pout

❋✐❣✉r❡ ✺✳✶✽✿ ❈❛s❝❛❞❡ ♦❢ ❛❜s♦r❜❡r ❧♦❣✐❝ ❢♦r ❛❜s♦r❜✐♥❣ ✷ ❵❞r♦♣s✬ ♦♥ p

For example, let signal p from Figure 5.17 be fed to the two-level cascade of absorber
circuits as shown in Figure 5.18, the resulting waveform of pout takes the shape shown in
Figure 5.19. Here p drops to 0 for the first time at t ≥ 0 and for the second time at t′ > t.
Note in Figure 5.19 that p drops to 0 more than twice. Hence, pout is not a ‘constant 1’ signal
in this case.

General Case and Soundness: For the i-th iteration (i ≥ 2), k-LIVENESS adds a cascade of
i − 1 copies of the absorber logic as in Figure 5.18. If a safety verification engine proves
that pout of the resulting circuit is ‘constant 1’, then we know that p cannot assume logic
value 0 for more than i− 1 times. In other words, p will eventually be stuck at logic value 1.
k-LIVENESS can, therefore, declare that FGp holds on the design and terminate. This justifies
soundness of k-LIVENESS algorithm.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 69

p

pout

t t′

❋✐❣✉r❡ ✺✳✶✾✿ ❲❛✈❡❢♦r♠ ❢♦r p ❛♥❞ pout ♦❜t❛✐♥❡❞ ❢r♦♠ ❛ t✇♦✲❧❡✈❡❧ ❝❛s❝❛❞❡ ♦❢ ❛❜s♦r❜❡r ❝✐r❝✉✐t

5.7.1.2 Pre-processing Phase

Intuition 2. For a finite state system, an infinite computation is always resulted by a lasso
loop in the state transition graph. For FGp to hold on a finite state system, the latter cannot
contain a lasso loop starting from an initial state whose loop part has a state with p = 0.
We call such a lasso loop a ‘bad loop’ and we want to prove that such a bad loop does not
exist in the state space. Suppose there is another signal s in the design such that FGs is
known to hold. That means s will eventually get stuck at 1 along any computation. We claim
that for any lasso loop starting from an initial state, its loop part cannot contain a state with
s = 0. This is because a loop state with s = 0 means that it is possible to come back to
that state again and again, but since s will eventually get stuck at 1 along the computation,
visiting back a state with s = 0 is impossible after some finite time steps. Signal s, therefore,
acts as a constraint such that any reachable loop must remain confined in the s = 1 part of
the state space. This information can be used to constrain the original query if there is a
bad loop containing at least one p = 0 state. �

Intuition 2 is the key for the pre-processing phase of the k-LIVENESS algorithm. It calls
constraints of the form FGs stabilizing constraints and mines them automatically from a
design. For computational advantage, k-LIVENESS restricts its attention only to a syntactic
subset of candidate stabilizing constraints. It uses the following rules for identification of
stabilizing constraints:

When a is a design signal (i.e. either a gate output, or a register output of AIG S),

(R1) if S |= G(a ⇒ X(a)), or S |= FG(a ⇒ X(a)), then FG(a = X(a)) is a stabilizing
constraint,

(R2) suppose S |= FG(a ⇒ X(a)) and additionally S |= FG(a ⇒ p) holds where S |= FGp
is our original liveness proof obligation, then FG¬a is a stabilizing constraint,

(R3) dual to rule (R2), suppose S |= FG(a⇒ X(a)) and additionally S |= FG(¬a⇒ p), then
FGa is a stabilizing constraint,

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 70

a1 = 0

a1 = 1

C1

C2

C3

C4

✭❛✮ ❆r❡♥❛ ❝r❡❛t❡❞ ❜② a1

a1 = 0

a1 = 1

a2 = 0

a2 = 1

C3

C4

✭❜✮ ❆r❡♥❛ ❝r❡❛t❡❞ ❜② a1 ❛♥❞ a2

❋✐❣✉r❡ ✺✳✷✵✿ ❋♦r♠❛t✐♦♥ ♦❢ ❛r❡♥❛ ✇✐t❤ st❛❜✐❧✐③✐♥❣ ❝♦♥str❛✐♥ts ❛♥❞ t❤❡✐r r♦❧❡ ✐♥ ♣r❡❝❧✉❞✐♥❣ ✉♥r❡❛❝❤✲
❛❜❧❡ ❧♦♦♣s

Claessen and Sörensson proposed an induction based approach to quickly discover an under-
approximation of the set of all stabilizing constraints present in a design. IfWs = {w1, w2, . . . , wn}
is the set of stabilizing constraints identified by some algorithm based on the above three
rules, k-LIVENESS is invoked on AIG S to prove the constrained property FG(∧ni=1wi ⇒ p).
Referring to the connection between stabilizing properties, arenas and walls, predicate ∧ni=1wi
characterizes the only interesting stabilizing arena that may contain bad loops. Constrain-
ing the original query with this new predicate eliminates unnecessary search in the other
stabilizing arenas.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 71

Let the rectangles of Figure 5.20 represent the state space of a design and C1, C2, C3 and
C4 represent various loops in the underlying state transition graph. Now, suppose the
design has a signal a1 which is stabilizing. Moreover, suppose the predicates (a1 == 0)
and (a1 == 1) divide the state space in such a way that loop C1 belongs completely to the
partition (a1 == 0), loop C2 has states in both the partitions and loop C3 and C4 belong
completely to the partition (a1 == 1) (see Figure 5.20(a)). Since a1 is a stabilizing
signal, as per Intuition 2, loops C1 and C2 are either infeasible, or unreachable. Now,
suppose that the design has another stabilizing signal a2 such that loop C4 belongs
to the partition (a2 == 0). By Intuition 2 applied to a2, C4 becomes unreachable as
well, leaving C3 as the only possible candidate for reachable loops. The stabilizing
nature of a1 and a2, therefore focuses the search for bad loops only to the partition
(a1 == 1 ∧ a2 == 1). Bradley et al. coined the terms wall and arena in [Bradley et
al., 2011]. A wall is a Boolean predicate which defines a region in the state space such
that no loop can cross the region boundary. Clearly, a wall divides the state space into
two SCC-closed regions. IfW is a given set of walls, then it divides the state space into
2|W| SCC-closed regions, each of them is called an arena. Stabilizing constraints are
stronger in notion than walls. If Ws is a set of stabilizing constraints, we say that Ws

divides the state space into 2|Ws| stabilizing arenas. Interestingly, only one among them
will contain potentially reachable loops. No reachable loop can exist in the remaining
2|Ws| − 1 stabilizing arenas. As in Figure 5.20(b), signals a1 and a2 divide the state
space into four stabilizing arenas. The only interesting arena that can contain reachable
loops is (a1 == 1 ∧ a2 == 1). This way, a set of stabilizing constraints can trim away
significant parts of the search space, and help k-LIVENESS converge faster.

Wall, Arena and Stabilizing Constraints

5.7.2 Disjunctive Stabilizing Constraints

In order to prove response properties of communication fabrics, we extend the notion of sta-
bilizing constraints as used in [Claessen and Sörensson, 2012] by generalizing the domain
of its candidates. As proposed in rule (R1) above, k-LIVENESS scans over all signals present
in the design and checks which satisfy (R1); it tests all gate outputs and register outputs of
the AIG representing the design. We observe that some predicates (i.e. Boolean functions)
defined over some subset of design signals may also satisfy (R1) and may simplify the subse-
quent proof obligations significantly. These predicates can range over simple functions like
conjunction, implication, or complex, not-so-intuitive predicates. Unfortunately, if these pred-
icates were not present as signals in the AIG, the native pre-processing step of k-LIVENESS

as implemented in [Claessen and Sörensson, 2012] would not find them to leverage them in
the proof. With this insight, we propose to enrich the domain of candidate signals for the

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 72

test of rule (R1) such that the tester would also investigate some Boolean combinations of
existing signals.

Generally, knowing which combination of design signals to consider for their stabilizing
behavior is difficult; we neither know the definitions of the target Boolean functions, nor their
supports or support sizes. However, in the application domain of response verification of
communication fabrics, we can hypothesize a particular class of Boolean function that can
exhibit stabilizing behavior. This class has the following characterization: suppose a1 is a
design signal that satisfies S |= G(a1 ⇒ X(a1)). For such an a1, we would like to find
another signal a2 such that S 6|= G(a2 ⇒ X(a2)), but S |= G((a1 ∨a2)⇒ X(a1 ∨a2)). We call
signals that can qualify as a1 ‘level-1 stabilizing constraints’ and signals that can qualify as
a2 ‘level-2 stabilizing constraints w.r.t. a1’. In general, a level-τ stabilizing constraint can be
defined. It is defined recursively as follows:

1. A signal a is a level-1 stabilizing constraint iff S |= G(a1 ⇒ X(a1))

2. A signal aτ is a level-τ stabilizing constraint, for τ > 1, iff S |= G((a1∨a2∨ . . .∨aτ)⇒
X(a1 ∨ a2 ∨ . . . ∨ aτ)), but aτ is not a level-(τ − 1) stabilizing constraint.

In the original k-LIVENESS algorithm, only level-1 stabilizing constraints were considered
in the pre-processing step. In our pre-processor, our objective is to consider up to level-
τ for some τ > 1. We set τ as a parameter whose value would depend on the available
computational resource. Algorithm 4 presents a procedure for finding level-τ or less stabilizing
constraints.

Algorithm 4: Identification of stabilizing constraints

1 C : set of candidate signals;
2 L0 ← ∅;
3 τ ← 1;
4 repeat
5 τ ← τ + 1;
6 Mτ ← ∪

τ−1
i=0 {x|x appears in any one of the disjuncts in Li};

7 C ← C\Mτ ;
8 forall the a ∈ C do
9 forall the l ∈ Lτ−1 do

10 if S |= G((l ∨ a)⇒ X(l ∨ a)) then
11 Lτ ← Lτ ∪ 〈l, a〉;

12 until (τ > THRESHOLD) ∨ (C = ∅) ∨ (Lτ = ∅);

Note that for a level-τ stabilizing constraint aτ , signal a(τ) = a1 ∨ a2 ∨ . . .∨ aτ becomes
a level-1 stabilizing constraint, with a difference that a(τ) may not be present in the original

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 73

AIG, though signals a1 through aτ are present. Therefore, our augmented domain of candidate
signals is the disjunctive domain over existing signals with parameterized support size. We
specialize this disjunctive domain further by imposing the (recursive) restriction that aτ cannot
be a level-(τ − 1) stabilizing constraint. This restriction stems from an observation that in
communication fabrics, for a level-1 stabilizing constraint a1, there might exists a (level-2
stabilizing) signal a2, such that ¬a1 ⇒ a2 is a level-1 stabilizing signal. Similarly, there
might exist a (level-3 stabilizing) signal a3 such that ¬a1 ⇒ (¬a2 ⇒ a3) is again a level-
1 stabilizing signal. Note that the general form ¬a1 ⇒ (¬a2 ⇒ . . . (¬aτ−1 ⇒ aτ)) . . .) is
equivalent to a1 ∨ a2 ∨ . . . ∨ aτ . Apart from capturing this communication fabric specific
requirement, this restriction over the general disjunctive domain prevents a potential blow-up
associated with considering all possible disjunctions for some support size.

5.7.3 XMAS-specific predicates

For XMAS communication fabrics, we observe that the information whether some FIFO buffer
is empty or not, or whether some buffer is full or not, has a very natural connection to
how the fabric eventually issues a grant to a request. However, in a bit-blasted fabric this
information is not readily available. A specialized algorithm is required that would identify
appropriate register variables (associated with a particular FIFO buffer) and then synthesize
appropriate Boolean functions corresponding to a buffer being empty or not etc. Without any
prior hint, it would be challenging for a general purpose liveness algorithm, like k-LIVENESS,
to find such specialized information efficiently. Based on this observation, we propose to
introduce this information as explicit predicate signals in the design. In particular, for each
buffer B in the fabric, we introduce predicates is_empty(B) and is_full(B) in the AIG. The
predicates have the following obvious definitions: is_empty(B) = 1 iff buffer B is empty;
is_full(B) = 1 iff buffer B is full. During our experiments, before we invoke Algorithm 4 to
discover stabilizing constraints for a design, we initialize the set of candidate signals C as
{is_empty(B),¬is_empty(B), is_full(B),¬is_full(B)|B is a buffer in the fabric}.

5.7.4 k-LIVENESS algorithm for response verification

As an ω-regular property, model checking problem for φr can be transformed into another
model checking problem of a property of the form of FGp using a generalized Büchi automata
construction. However, we can use the core idea of k-LIVENESS to prove φr in a more direct
way that avoids such a translation. We illustrate this using the example of VC as follows:

If φr is to hold on VC, i.e. if every a1.req is eventually followed by a a1.gnt, the interval
for which VC waits for a1.gnt once a1.req is asserted (called the pending interval) can never
be infinite. Thus, the number of times the fairness signals are asserted during any pending
interval is finite also. So, k-LIVENESS algorithm can be used to prove that the number of times
the fairness signals are asserted during any pending interval is finite for VC.

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 74

A monitor that implements the above idea can be constructed as shown in Algorithm 5.
This monitor is attached to VC and k-LIVENESS is called to prove that signal allFairCount
can assume logic value 0 only finitely many times. Algorithm 5 is written in an imperative
pseudocode with standard semantics where all assignments are to be evaluated in parallel
at every clock. We adopt Verilog-style semantics for the data-types, namely, wire represents
combinational signals and reg represents sequential signals (i.e. registers). All reg variables
are initialized to logic value 0 and for a reg variable r, next(r) computes its next state value.

Algorithm 5: k-LIVENESS Monitor for proving φr on VC

1 wire pending, pendingInterval, allFair;
2 wire fair[6] = {i1.req, i2.req, j1.gnt, j2.gnt,m1.gnt,m2.gnt};
3 reg oracleSaved, gntSaved, fairFlop[6];
4 pending := a1.req ∧ ¬a1.gnt;
5 next(oracleSaved) := oracleSaved ∨ (oracle ∧ ¬oracleSaved ∧ pending);
6 next(gntSaved) := gntSaved ∨ (oracleSaved ∧ a1.gnt);
7 pendingInterval := oracleSaved ∧ ¬gntSaved;

8 allFair :=

6
∧

i=1

fairFlop[i];

9 for i ∈ {1, 2, . . . , 6} do
10 if allFair then
11 next(fairFlop[i]) := 0;

12 else
13 next(fairFlop[i]) := fairFlop[i] ∨ fair[i];

14 allFairCount := ¬(pendingInterval ∧ allFair);

Algorithm 5 demonstrates how the core idea of k-LIVENESS can be used to verify φr in
a direct way, without constructing a generalized Büchi automata for the whole property
φr . However, this basic monitor of Algorithm 5 does not leverage the stabilizing constraints
proposed in Section 5.7.2. Below, we show how Algorithm 6 modifies Algorithm 5 to include
the stabilizing constraints. In Algorithm 6, M stands for the set of all stabilizing constraints
mined in the pre-processing step. The roles of stabilizing constraints is captured in the
variable arenaViolation.

5.7.4.1 Working principle and correctness of the algorithms

In both Algorithm 5 and Algorithm 6, we use a primary input oracle to model the non-
deterministic choice for an arbitrary pending interval. It triggers the monitor at an arbitrary
time step when a1.req is asserted, but a1.gnt is not. Once this event occurs, register oracle-
Saved remembers the event and disables oracle forever. This event also opens the pending

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 75

Algorithm 6: Arena-aware k-LIVENESS monitor

1 wire pending, pendingInterval, allFair;
2 wire fair[6] = {i1.req, i2.req, j1.gnt, j2.gnt,m1.gnt,m2.gnt};
3 reg f1, f2, . . . , f|M|;
4 reg oracleSaved, gntSaved, fairFlop[6];
5 forall the m ∈ M do
6 if oracle ∧ ¬oracleSaved ∧ pending then
7 next(fm) := m;

8 else
9 next(fm) := fm;

10 arenaV iolation :=
∨

m∈M

(fm 6= m);

11 pending := a1.req ∧ ¬a1.gnt;
12 next(oracleSaved) := oracleSaved ∨ (oracle ∧ ¬oracleSaved ∧ pending);
13 next(gntSaved) := gntSaved ∨ (oracleSaved ∧ (a1.gnt ∨ arenaV iolation));
14 pendingInterval := oracleSaved ∧ ¬gntSaved;

15 allFair :=

6
∧

i=1

fairFlop[i];

16 for i ∈ {1, 2, . . . , 6} do
17 if allFair then
18 next(fairFlop[i]) := 0;

19 else
20 next(fairFlop[i]) := fairFlop[i] ∨ fair[i];

21 allFairCount := ¬(pendingInterval ∧ allFair);

interval under examination. This interval is closed in Algorithm 5 when a subsequent a1.gnt

arrives. Note that this construction works because there is no obligation of matching an
a1.gnt with a corresponding a1.req and a1.req has the persistence property [Chatterjee and
Kishinevsky, 2010a]. Algorithm 6 differs from Algorithm 5 in the way it closes the pending
interval. When it opens the pending interval, it takes a snap-shot of all signals of the form
a1 ∨ . . . ∨ aτ in registers {fm} where signals ai are level-i stabilizing constraints discov-
ered in the pre-processing phase. Then through variable arenaViolation, it keeps track of
whether any one such signal has changed its value (i.e. the check fm 6= m). Since each
such signal cannot flip its value within a potential counter-example to response property, a
scenario under which it changes its value cannot be a candidate for violation to φr . If any one
such signal has changed its value, then the algorithm closes the pending interval (through
a1.gnt ∨ arenaV iolation). Note that Algorithm 6 achieves an early closure of the pending

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 76

interval compared to Algorithm 5 due to the use of the disjunctive stabilizing constraints. This
helps to reduce the number of iterations in the proof phase. It is straight-forward to see that
these constructions work for the general situation of response verification as well.

5.7.5 Experimental Results

We use ABC [Mishchenko, 2013] as our environment for both safety and liveness verification.
We developed a Verilog implementation of XMAS library closely following the logical defi-
nitions given in [Chatterjee et al., 2010], and used this library to implement various models
of communication fabrics. We use an in-house tool VERIABC [Long et al., 2011] to bit-blast
these Verilog models. VERIABC uses Verific, a commercial Verilog front-end analyzer, to read
in the Verilog models. The benchmarks considered are industrially relevant, yet their designs
are available in the literature ([Chatterjee and Kishinevsky, 2010a], [Gotmanov et al., 2011],
[Chatterjee et al., 2010]). They represent the basic virtual channel (VC), the virtual channel
with channel buffer (VCB), the virtual channel with ordering (VCO) and the cascaded virtual
channel with ordering (CVCO). CVCO is a cascade of two VCO connected in series.

In [Claessen and Sörensson, 2012], the authors compared their technique with liveness-
to-safety conversion [Schuppan and Biere, 2004]. They demonstrated that the latter is a
close contender of the k-LIVENESS algorithm. The liveness-to-safety transformation converts
the liveness verification problem to an equi-satisfiable safety verification problem. It is a
promising liveness verification technique currently adopted in industry to solve challenging
verification problems of industrial importance [Baumgartner and Mony, 2009]. For comparison,
we ran our benchmarks with our own implementation of liveness-to-safety; results are shown
in Table 5.6. We used property directed reachability (PDR, a.k.a. IC3) [Bradley, 2011] as the
safety proof-engine on the final single-output safety property instance. Verification run-times
are shown in seconds in column ‘after L2S’. We used a time-out of 1800 seconds. The times
taken by liveness-to-safety engine to solve these benchmarks, in spite of their relatively
small register counts, demonstrate the inherent complexity of the liveness problems being
addressed.

Design #PI #flop after L2S
Virtual Channel (VC) 8 59 12.78

Virtual Channel with Buffer (VCB) 8 77 1515.20
Virtual Channel with Order (VCO) 9 104 126.44

Cascaded Virtual Channel with Order (CVCO) 12 182 > 1800

❚❛❜❧❡ ✺✳✻✿ ▲✐✈❡♥❡ss ♣r♦♣❡rt② ✈❡r✐✜❝❛t✐♦♥ r✉♥✲t✐♠❡ ✇✐t❤ ❧✐✈❡♥❡ss✲t♦✲s❛❢❡t② tr❛♥s❢♦r♠❛t✐♦♥

Performance of our extended k-LIVENESS algorithm on these benchmarks is presented in
Tables 5.7 and 5.8. Table 5.7 shows the experiments that use arenas, while Table 5.8 shows the
experiments that do not use arena violations. PI and #flop columns in both tables represent

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 77

the number of primary inputs and number of registers in the designs. Note that these numbers
are slightly different in Tables 5.6, 5.7 and 5.8 for the same design. This is due to property
specific logic simplification performed by VERIABC. Columns PPT, PT, k and #c of Table
5.7 represent respectively pre-processing times (i.e. time to generate stabilizing constraints),
proof time (i.e. time required to prove the final property), iterations performed by k-LIVENESS

in order to get the proof and the total number of stabilizing constraints generated in the
pre-processing phase. Times in columns PPT and PT are in seconds. Similarly, columns PT,
k ′ and #c of Table 5.8 represent respectively time required to get the final proof, number of
iterations performed by k-LIVENESS and the number of stabilizing constraints generated. Note
that #c columns of Table 5.7 and Table 5.8 are identical because the same set of stabilizing
constraints were used in both the experiments. For this reason, we have omitted the PPT
column from Table 5.8 because the same set of stabilizing constraints as in Table 5.7 were
re-used in Table 5.8 without re-generating them. The benefit of using disjunctive stabilizing
constraints is reflected in column k and k ′ of these two tables. Note that k < k ′ for every
designs considered, which shows the success of disjunctive monotone constraints in reducing
k , sometimes quite remarkably. This also reduces run-time (column PT) of the proof step,
sometimes quite significantly. As the use of disjunctive monotone constraints achieves the
proof with smaller k , it puts less stress on the safety verification engines and increases the
chance of convergence of the final proof for challenging benchmarks. For proving all safety
obligations, we use the property directed reachability (PDR) engine of ABC. In the pre-
processing phase, we discharge a number of verification obligations. We use PDR to prove
these one after another sequentially. We used only level-1 and level-2 stabilizing constraints
in our experiments.

Design PI #flop PPT PT k #c
VC 13 161 7.32 0.32 1 37

VCB 13 217 267.8 5.31 1 54
VCO 14 210 23.53 12.95 2 47

CVCO 21 386 638.28 230.36 3 82

❚❛❜❧❡ ✺✳✼✿ P❡r❢♦r♠❛♥❝❡ ♦❢ k✲LIVENESS ✇✐t❤ ❛r❡♥❛❱✐♦❧❛t✐♦♥

Design PI #flop PT k ′ #c
VC 13 124 0.55 2 37

VCB 13 163 12.54 2 54
VCO 15 163 15.74 4 47

CVCO 21 303 2711.71 6 82

❚❛❜❧❡ ✺✳✽✿ P❡r❢♦r♠❛♥❝❡ ♦❢ k✲LIVENESS ✇✐t❤♦✉t ❛r❡♥❛❱✐♦❧❛t✐♦♥

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 78

Note that the pre-processing step for discovery of level-1 and level-2 disjunctive stabilizing
constraints took significant time, as shown in column PPT of Table 5.7. We believe that further
improvements in implementation of this step can reduce this run-time. We used PDR as the
proof tool to check validity of rule (R1) in this phase. A more light-weight tool like induction
could be tried to improve this run-time. We used a set of known design invariants [Chatterjee
and Kishinevsky, 2010a] as constraints during PDR-based analysis in order to restrict the
state-space and find a proof faster. We believe that in some cases, these invariants were
very effective in reducing the state-space (for example, the VCO). Whereas in some other
case, the supplied invariants were not descriptive enough to help PDR find a proof faster
(for example, VCB). A direction for speeding up the pre-processing step might be to supply
as many helpful safety invariants as possible. However, we would like to emphasize that in
spite of room for further improvement in run-time of this pre-processing phase, our extended
k-LIVENESS algorithm managed to finish the whole proof process faster than the cases where
we did not use the stabilizing constraints (i.e. Table 5.8). For example, the total time of
solving benchmark CVCO with level-1 and level-2 stabilizing constraints (PPT+PT of Table
5.7) is less than the proof time alone of Table 5.8.

5.7.6 Related Work

Ranking-oriented proof of liveness is certainly not a new research topic. The underlying
core mathematical notions, viz. well-founded induction and ranking function, are fundamental
concepts in discrete mathematics. Based on these ideas, Zohar Manna and Amir Pnueli laid
the foundation of ranking-oriented proof of liveness of general reactive systems in the 1980’s
[Manna and Pnueli, 2010]. Recently, research interests in this area have been renewed,
particularly in the context of termination analysis of software ([Cook et al., 2006], [Cook et al.,
2007], [Ben-Amram, 2009], [Podelski and Rybalchenko, 2004]). To the best of our knowledge,
however, no prior work has addressed the problem of ranking-oriented proof of liveness for
communication fabrics.

Among recent work on liveness verification of communication fabrics, most closely related
to our problem are [Gotmanov et al., 2011] and [Verbeek and Schmaltz, 2011]. Both of these
two are based on XMAS formalism. In [Gotmanov et al., 2011], Gotmanov et. al. proposed
an efficient technique for proving deadlock freedom of communication fabrics by composing
sets of sufficient conditions for deadlock freedom of each individual XMAS component. This
system-wide condition is checked with a SAT solver for unsatisfiability. Our algorithm also
addresses the same problem, with a focus on verification of response properties. In [Verbeek
and Schmaltz, 2011], Schmaltz et al. proposed algorithms based on graph analysis that
detects deadlock freedom for network-on-chips represented using XMAS formalism. Their
algorithm does not address the problem of bit-level verification, rather it certifies designs at
the micro-architecture level.

Research on general algorithms for bit-level liveness verification has gained remarkable
momentum in recent times. In hardware model checking world, new algorithms and tools

CHAPTER 5. EFFICIENT PROOF OF LIVENESS 79

are being developed. Biere et al. showed how algorithms for safety verification can be re-
used for liveness verification through their liveness-to-safety conversion [Biere et al., 2002;
?]. Bradley et. al. proposed FAIR [Bradley et al., 2011], a scalable, incremental algorithm
for liveness verification based on their remarkably successful algorithm IC3 [Bradley, 2011]
for safety verification. k-LIVENESS is a recent addition to the arsenal of scalable liveness
algorithms. Both k-LIVENESS and our methodology have strong conceptual connection with
FAIR. The term (and the notion of) ‘arena’ used in Algorithm 6 is inspired by FAIR.

5.7.7 Conclusion and Future Work

We presented a generalization of the pre-processing phase of the new k-LIVENESS algorithm.
k-LIVENESS has established itself as the state-of-the-art of bit-level liveness verification al-
gorithm by out-performing existing algorithms in the liveness track of the recent hardware
model checking competition. By generalizing a key step, we improved its effectiveness further
on challenging benchmarks. Our generalization, called disjunctive stabilizing constraints, was
inspired by applications of liveness verification for communication fabrics. We experimented
on fabric designs of industrial relevance and demonstrated effectiveness of our approach. We
believe this is only a first step and opens up a new avenue of research. Disjunctive sta-
bilizing constraint is a general notion that could be effective outside communication fabric
application. Developing a well-engineered implementation of a mining algorithm for disjunc-
tive constraints is our next step. It would be interesting to investigate which other application
domains can benefit from this extended pre-processing step of the k-LIVENESS algorithm. In
our implementation, we used PDR to filter out signals that are not stabilizing. An induction
based approach could discover an adequate subset of all stabilizing signals up to level-τ
rather quickly. It needs further experimentation to decide which technique should be used for
challenging benchmarks. As a theoretical question, it would be interesting to investigate the
formal connection between level-τ stabilizing constraints and the classical notion of ranking
functions. In our extension of the k-LIVENESS algorithm, we only considered rule (R1). It
would be interesting to determine the roles of rules (R2) and (R3) in the definition of level-τ
stabilizing constraints.

80

Chapter 6

Structural Invariant Generation

6.1 Introduction

In [Chatterjee and Kishinevsky, 2010a] (and in its extended version [Chatterjee and Kishinevsky,
2012]), Chatterjee and Kishinevsky presented an algorithmic framework for generating flow
invariants from a collection of XMAS communication fabrics. For the sake of brevity, we
call them Chatterjee-Kishinevsky (CK) invariants. They were shown to be crucial for timely
convergence of safety verification experiments on the target XMAS communication fabrics.
We revisit the problem that Chatterjee et al. addressed and provide an alternative recipe to
generate similar invariants. The merit of our alternative lies in its rigorous algebraic anal-
ysis of the target systems which was not addressed in [Chatterjee and Kishinevsky, 2010a]
or in [Chatterjee and Kishinevsky, 2012]. Our analysis provides a novel link between the
discovered invariants and the network topology of the underlying communication fabrics and
hence enhances our understanding about the CK invariants. We motivate the utility of the
CK invariants with an example as follows:

CK Invariants and Property Verification: Consider the schematic diagram of a credit-based
flow-control unit shown in Figure 6.1. It is implemented as a sequential circuit with 4 primary
inputs and 18 flip-flops. To prove a simple safety property on it, we tried the bit-level hardware
verification tool ABC [Mishchenko, 2013]. ABC’s induction engine failed, but its interpolation
engine proved it in 4.89 seconds. The proof was quick, but considering the small size of the
design, it was slower than expected for ABC. However, when we provided an additional fact
about the design that num(B1)+num(B2) = num(B3), where num(B) is the number of flits in
finite FIFO buffer B ∈ {B1, B2, B3} at any given point in time, ABC ran 100 times faster. It’s
induction engine proved the property in 0.04 seconds - an order of speedup that we need in
practice for realistic problems. Such additional information about the system behavior, called
design invariants, is crucial for the timely convergence of formal verification tools. 1 In this

1see [Chatterjee and Kishinevsky, 2010a] for another case-study revealing similar experience that without
design invariants, verification took prohibitively long time even for trivial communication fabrics

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 81

chapter, we address the question of how to derive such design invariants automatically from
communication fabrics.

S1

S2

credit logic

B3

B1

B2

❋✐❣✉r❡ ✻✳✶✿ ❈r❡❞✐t ♠❡❝❤❛♥✐s♠

The invariant num(B1) + num(B2) = num(B3) mentioned above was discovered by a
high-level analysis algorithm proposed by Chatterjee and Kishinevsky in [Chatterjee and
Kishinevsky, 2010a]. It works at the micro-architecture level and discovers a set of non-trivial
linear relations among the number of flits that the buffers in the fabric can hold at any given
time. We refer to these relations as CK invariants. Since the seminal work on linear constraint
generation by Cousot et al. [Cousot and Halbwachs, 1978], numerous other works have been
published on generating linear invariants for various hardware and software systems. But to
the best of our knowledge, [Chatterjee and Kishinevsky, 2010a] is the first work that focuses
on a model of computation that is dedicated to hardware communication fabrics. However,
the CK algorithm does not reveal any topological property of the fabrics responsible for such
invariants and there was no insight given as to when their algorithm might yield interesting
invariants. 1. Thus the CK algorithm is fortified with our mathematical analysis. Our analysis
leads to an alternative algorithm for generating the same set of invariants. It is simple,
yet more rigorous. We provide experimental results that demonstrate the impact of these
invariants on both safety and liveness verification of communication fabrics.

A very effective new algorithm IC3 [Bradley, 2011], published after the CK algorithm,
constructs precise invariants necessary to prove a particular safety property on a design. We
show that the CK invariants complement those generated by IC3; the performance of IC3
can be enhanced by orders of magnitude, both for safety and liveness, if CK invariants are
provided in advance. This underscores the usefulness of these invariants even further.

The chapter is organized as follows: Section 6.2 discusses related works. Section 6.3
introduces necessary mathematical notions used in the analysis. Section 6.4 presents our

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 82

invariant generation algorithm and explains it with the help of an example. Experimental
results are provided in Section 6.5 and Section 6.6 concludes the chapter.

6.2 Related Works

Automatic invariant generation is a holy grail of research in formal verification. This has
been addressed from various perspectives and a huge volume of literature exists on this topic.
Mining linear invariants is a particularly interesting sub-topic that has attracted attention,
see for example [Cousot and Halbwachs, 1978], [Karr, 1976], [Gulwani and Necula, 2003]. Our
work is most closely related to invariant generation for communication fabrics by Chatterjee
et al. [Chatterjee and Kishinevsky, 2010a] and circuit theoretic analysis of marked graphs by
Murata [Murata, 1977].

6.2.1 Work of Chatterjee et al.

[Chatterjee and Kishinevsky, 2010a] is the first work to identify the significance of linear
invariants in formal verification of communication fabrics. However, it did not expose the
connection between the generated invariants and the fabric topology. 1 1

6.2.2 Work of Tadao Murata

Murata [Murata, 1977] studied the role of null-spaces of matrices in reachability analysis
of marked graphs. We expand on this in the following sense: our choice of the model of
computation (XMAS) is more expressive than marked graphs, so direct application of Murata’s
analysis is not possible. We propose a transformation, called type-specific sub-network
derivation, for the XMAS fabrics. It derives certain sub-networks from a given fabric. These
sub-networks, after another transformation, conform to Murata’s analysis and yield the same
invariants as produced by the CK algorithm. 1. Other relevant works are those that generate
linear or algebraic invariants for Petri nets [Sankaranarayanan et al., 2003] [Clarisó et al.,
2005]. Since Petri nets are closely related to XMAS, it might be worth exploring potential
synergy between our work and this body of Petri net research. This is left as a future work.

6.2.3 Relation with IC3-type invariant generation

A recent significant development in automatic invariant discovery is the algorithm IC3 by
Aaron Bradley [Bradley, 2011]. This new paradigm has been followed by additional improve-
ments [Een et al., 2011] and extensions [Vizel et al., 2012] [Hoder and Bjørner, 2012]. While
these algorithms have impressive performance on our benchmarks, we demonstrate that their
performances can be enhanced significantly if our structural invariants are provided as addi-
tional information. Bit-level analysis performed by IC3-type algorithms consume substantial

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 83

time to discover topological invariants for our benchmarks which our high-level algorithm can
discover in no time. 1

6.3 Preliminaries

6.3.1 Incidence Matrix and Fundamental Cycle matrix of a digraph

Below we review the concepts of the incidence matrix and the fundamental cycle matrix of a
digraph. A simple example illustrating these concepts is also provided. The definitions in this
section and the illustrative example at the end closely follow the exposition of [Deo, 1974].

Definition 5 (Cycle, Directed Cycle, Semicycle). In a digraph G, a directed cycle is a directed
closed path, i.e. an alternating sequence v1, e1, v2, e2, . . . , en−1, vn of vertices and edges such
that ei is a directed edge from vi to vi+1 for 1 ≤ i < n, v1 = vn and vi 6= vj for any other pair
of vertices on the path. A semi-cycle is a closed undirected path in G. It is an alternating
sequence v1, e1, v2, e2, . . . , en−1, vn where ei is an edge either from vi to vi+1 or vice versa and
no vertex is repeated except v1 = vn. A cycle is either a directed cycle or a semicycle.

Definition 6 (Incidence Matrix). The incidence matrix of a digraph with n vertices, e edges
and no self-loops is an n×e matrix A = [aij], whose rows correspond to vertices and columns
correspond to edges such that

aij = 1, if j-th edge is incident out of i-th vertex

= −1, if j-th edge is incident into i-th vertex

= 0, if j-th edge is not incident on i-th vertex

Note that Definition 6 allows parallel edges in a digraph.

Example 2. Consider the directed graph shown in Figure 6.2(a). Incidence matrix A for this
graph is the following:

a b c d e f g h

v1 0 0 0 −1 0 1 0 0
v2 0 0 0 0 1 −1 1 −1
v3 0 0 0 0 0 0 0 1
v4 −1 −1 −1 0 −0 1 0 0
v5 0 0 1 1 0 0 −1 0
v6 1 1 0 0 0 0 0 0

Definition 7 (Cycle Matrix). Let G be a directed graph with e edges and q cycles (directed
cycles or semicycles). An arbitrary orientation (clockwise or counterclockwise) is assigned to

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 84

v1

v2

v3

v4

v5

v6a

b

c

d

e

f
g

h

✭❛✮ ❆ t②♣✐❝❛❧ ❞✐r❡❝t❡❞ ❣r❛♣❤

v1

v2

v3

v4

v5

v6a

b

c

d

e

f g

h

✭❜✮ ❆ s♣❛♥♥✐♥❣ tr❡❡ ✭✐♥ ❜♦❧❞✮
♦❢ t❤❡ ❣r❛♣❤

❋✐❣✉r❡ ✻✳✷✿ ❆ ❞✐r❡❝t❡❞ ❣r❛♣❤ ❛♥❞ ♦♥❡ ♦❢ ✐ts s♣❛♥♥✐♥❣ tr❡❡

each of the q cycles. Then a cycle matrix B = [bij] of the digraph G is a q×e matrix defined
as

bij = 1, if i-th cycle includes the j-th edge and the orientations
of the edges and cycles coincide,

= −1, if i-th cycle includes the j-th edge,
but the orientations of the two are opposite,

= 0, if the i-th cycle does not include the j-th edge

Example 3. The cycle matrix B for the graph in Figure 6.2(a):

a b c d e f g h

q1 0 0 0 1 0 1 1 0
q2 0 0 1 0 −1 0 1 0
q3 0 0 1 −1 −1 −1 0 0
q4 −1 1 0 0 0 0 0 0

Here, the cycles are indexed by qi’s as follows:

q1 = v1, f, v2, g, v5, d, v1; q2 = v2, g, v5, c, v4, e, v2;

q3 = v1, f, v2, e, v4, c, v5, d, v1; q4 = v4, a, v6, b, v4;

q1 is a directed cycle, while q2, q3, and q4 are semicycles.

Theorem 7. [Deo, 1974] Let B and A be the circuit matrix and incidence matrix of a self-loop-
free digraph, such that the columns in B, and A are arranged using the same order of edges.
Then

A · BT = B · AT = 0

where superscript T denotes the transpose matrix.

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 85

Definition 8 (Fundamental Cycle). Consider a spanning tree T in a connected graph G.
Adding any one chord to T will create exactly one cycle. Such a cycle, formed by adding a
chord to a spanning tree, is called a fundamental cycle.

Example 4. The fundamental cycle matrix Bf for the same graph with respect to the spanning
tree shown in Figure 6.2(b):

b d g a c e f h

q4 1 0 0 −1 0 0 0 0
q3 0 1 0 0 −1 1 1 0
q2 0 0 1 0 1 −1 0 0

Since any spanning tree of G has n− 1 edges, the number of fundamental cycles of G is
µ = e−n+ 1. Note that G could be a directed graph, but the spanning tree T is constructed
disregarding the edge directions. Therefore, the fundamental cycles could be either directed
cycles or semicycles.

Definition 9 (Fundamental Cycle Matrix). A µ × e cycle matrix Bf of a digraph G, for µ =
e − n + 1, is called a fundamental cycle matrix if each of the µ rows corresponds to a
fundamental cycle made by a chord (with respect to some specified spanning tree).

Corollary 1. A · BTf = Bf · A
T = 0

We use a few basic concepts from linear algebra, namely linear independence, null space
of a matrix and reduced row-echelon form of a matrix and apply them to fundamental cycle
matrices of digraphs. See e.g. [Strang, 2006] for more detail.

6.3.2 Marked Graphs, Reachability, Null Space Analysis

A Marked graph [Murata, 1977] is a well-studied formalism for modeling concurrent systems.
Although XMAS fabrics are strictly more expressive than marked graphs, they may be ab-
stracted as marked graphs under special circumstances. This allows the existing results on
marked graphs to be applied to XMAS fabrics. We review some definitions and properties of
marked graphs from [Murata, 1977].

Definition 10 (Simple Marked Graph). A simple marked graph is a digraph with a non-
negative number of flits assigned to each edge.

A vertex is firable if each of its incoming edges has at least one flit. The firing of a firable
vertex consists of removing one flit from each of its incoming edges, and adding one flit to
each of its outgoing edges. A vertex with no incoming edge is a source and a vertex with no
outgoing edges is a sink.

Suppose G is a marked graph with p edges and t vertices. A marking or a state vector Mk

of G is a p× 1 column vector of non-negative integers, the j-th entry denoting the number of

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 86

flits on edge j immediately after the k-th firing. M0 denotes the initial marking (or the initial
condition). The elementary firing vector Uk is a t × 1 Boolean column vector containing a 1
in the positions corresponding to the vertices fired at the k-th firing.

Consider a sequence of firing vectors Ū = U1, U2, . . . and suppose a fabric starts from an
initial state M0 and the sequence of states M1,M2, . . . is such that the transition from state
Mt−1 to state Mt is the result of activity Ut . For t ≥ 1, we may write

Mt = Mt−1 + ATUt, t = 1, 2, . . . (6.1)

where AT is the transpose of the incidence matrix. For the first n activities Ū [1, n] =
U1, U2, . . . , Un, we may add n instances of (6.1) to get:

Mn = M0 + AT .

(

n
∑

t=1

Ut

)

(6.2)

We use the abbreviation ∆n(M) = ATΣn to denote the above equation where ∆n(M) = Mn−M0

and Σn =
n
∑

t=1

Ut . Using Corollary 1, we obtain:

Bf .∆n(M) = Bf .(A
T .Σn) = (Bf .A

T).Σn = 0.

In other words, vector ∆n(M) belongs to the null-space of Bf . Therefore, if Mn is reachable
from M0 for any possible activity sequence Ū , the vector Mn−M0 necessarily belongs to the
null-space of Bf . Since M0 = 0 in our application, then Mn belongs to the null-space of Bf
for any n > 0. Hence the following theorem holds:

Theorem 8. The null-space of Bf is an over-approximation of the reachable state space.

Any marked graph of interest would have one or more non-zero reachable states. Thus
the null space of Bf subsumes {0} properly and hence the column vectors of Bf cannot be
linearly independent. The linear dependence of the column vectors of Bf can be obtained by
analyzing the reduced row-echelon form of Bf .

Theorem 9. The dependence relationships obtained by the reduced row-echelon analysis of
Bf yields a set of reachability invariants for marked graph G.

6.4 Invariant Mining For XMAS fabrics

As a model of computation, XMAS is different from a simple marked graph. It can represent
many design idioms effectively and succinctly. Unfortunately, the simple relation of Equation
(6.1) is not sufficient to capture the transition relation of an arbitrary XMAS fabric. As a
result, we cannot apply Theorem 9 directly to XMAS. While there are compelling structural
similarities between XMAS and simple marked graphs, their fundamental semantic differences
are the following:

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 87

• The firing of a vertex of a marked graph only requires the presence of flit on all its
incoming edges; a marked graph has no notion of conditional firing based on the type
of flits on the edges. In contrast, XMAS has components (switches, arbiters) whose
firing depends on the type of flits at their incoming channels.

• In a marked graph, the firing of a vertex does not depend on the presence or absence
of flits on its outgoing edges, but in XMAS, a component cannot fire if a buffer on its
output channel(s) is not ready to accept a new flit.

However, for generating structural invariants, we might assume that the buffers are of un-
bounded capacity. Under this assumption, the following important family of XMAS fabrics
can be expressed as simple marked graphs:

Proposition 1. The behavior of an XMAS fabric with unbounded buffers, that has no switch,
or arbiter, can be modeled as a marked graph.

1 We illustrate the notions of type-specific sub-networks, derivation of simple marked
graphs, and other intermediate steps to generate invariants in the following sections using
the example of VCO.

6.4.1 Type-specific sub-network derivation

Different types of flits can travel across XMAS fabrics. These fabrics are so designed that a
particular sub-network (i.e. a subset of buffers, channels and some other XMAS components)
are responsible for steering flits of one particular type from their sources to their destinations.
These sub-networks, each steering one type of flit, need not be structurally disjoint. They
can share buffers, channels, or other structural components with sub-networks handling other
types of flits. A flit can traverse different sub-networks designated for different types of flits
because its own type may change enroute to its destination. Below we illustrate this notion
of type-specific sub-network with the help of VCO.

Example 5. Consider the fabric VCO shown in Figure 6.3. It models a virtual channel that
enforces ordering among flits. Here we identify the type-specific sub-networks of VCO as
follows: VCO carries two types of flits, viz. type(A1) and type(A2) coming from sources
A1 and A2 respectively. Buffers B3, B5 and B6 host type(A1)-flits as they move to their
destination, while B1 and B2 act as auxiliary buffers controlling their flow. These five buffers,
along with other components, form the sub-network for type(A1)-flits in VCO. Figure 6.4
depicts this sub-network. Similarly, Figure 6.5 depicts the sub-network that steers type(A2)-
flits. We use the un-ordered triplet notation (x, y, z) to denote various three-terminal XMAS

components of VCO, where x, y, z are names of the channels associated with the component.
We see that arbiter (d1, d2, e), fork (e, k1, k2), switches (k1, k3, k4) and (r1, r2, r3), buffer B5 and
channels e, k1, k2, r1 are shared between these two sub-networks. Note in Figures 6.4 and
6.5 how switches and arbiters are structurally broken according to their roles in steering flits

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 88

a1

b1

c1

d1

h1

i1

j1

k1

m1

a2

b2 c2

d2

h2

i2

j2

k2

m2

k3

k4

p1

p2

p3

j3
h3

r1

l1

l2
e

B1

B2

B3

B4

B5
B6

B7

B8

A1

A2

❋✐❣✉r❡ ✻✳✸✿ VCO✿ ❆ ✈✐rt✉❛❧ ❝❤❛♥♥❡❧ ✇✐t❤ ♦r❞❡r✐♥❣

associated with the corresponding sub-networks. A simple graph crawling algorithm, starting
from the sources and traveling towards the sinks, may discover these sub-networks easily.
We leave the problem of designing details of such a graph-crawling algorithm for the future.

B1

B2

B3

B5
B6

A1

a1

b1

c1

d1

h1

i1

j1

k1

m1

k2

k3
p1

p3

r1

l1

e

❋✐❣✉r❡ ✻✳✹✿ ❙✉❜✲♥❡t✇♦r❦ t❤❛t st❡❡rs type(A1)✲✢✐t

Removal of broken components: During the construction of these sub-networks, we only
break switches, and arbiters by selectively disconnecting some of their outgoing or incom-
ing channels. With such channel disconnections, these XMAS components cease to work
as conditional decision-makers; rather they behave simply as a direct connection between
their (remaining) input channels and (remaining) output channels. We can, therefore, short
these broken switches and arbiters in the resulting sub-networks, and eliminate them. Such

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 89

B4

B5

B7

B8

A2

k1

a2

b2 c2

d2

h2

i2

j2

k2

m2

k4

p2

p3

j3
h3

r1

l2
e

❋✐❣✉r❡ ✻✳✺✿ ❙✉❜✲♥❡t✇♦r❦ t❤❛t st❡❡rs type(A2)✲✢✐t

modified sub-networks, with the broken components shorted, are shown in Figure 6.6 and
Figure 6.7 respectively. Therefore, a type-specific sub-network does not contain switches
and arbiters.

B1

B2

B3

B5
B6

A1

C1

a1

b1

c1
c3

d1

h1

i1

j1

k2

p1

p3

r1

l1

e

❋✐❣✉r❡ ✻✳✻✿ ❙✉❜✲♥❡t✇♦r❦ ♦❢ ❋✐❣✉r❡ ✻✳✹ s✐♠♣❧✐✜❡❞ ❜② ❵s❤♦rt✐♥❣✬ ❛r❜✐t❡rs ❛♥❞ s✇✐t❝❤❡s

6.4.2 Sub-networks as marked graphs, Derivation of Invariants

The ability to make conditional decisions using switches and arbiters creates XMAS networks
more expressive than simple marked graphs. However, the type-specific sub-networks do not
contain switches and arbiters so their behavior can be modeled as marked graphs. Figures
6.8(a) and 6.8(b) denote the marked graphs for the sub-networks of Figures 6.6 and Figure
6.7 respectively. These two graphs are similar in structure, but their vertices and transitions
represent different components and activities of VCO as discussed in Table 6.1 and 6.2.

Since both the marked graphs have the same cyclic core induced by the vertices {v1, v2, v3}
and {u1, u2, u3} respectively, we consider (without any loss of generality) that they have the

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 90

B4

B5

B7

B8

A2

C2

S2

S4

S5

k1

a2

b2 c2

c4

d2 h2

i2

j2

k2

m2

n2

p2

j3

h3r3

l2

❋✐❣✉r❡ ✻✳✼✿ ❙✉❜✲♥❡t✇♦r❦ ♦❢ ❋✐❣✉r❡ ✻✳✺ s✐♠♣❧✐✜❡❞ ❜② ❵s❤♦rt✐♥❣✬ ❛r❜✐t❡rs ❛♥❞ s✇✐t❝❤❡s

Marked Graph Vertex Corresponding logic in sub-network
v0 source C1

v1 fork (i1, c1, c3)
v2 fork (l1, p1, h1), join (h1, m1, n1), join (p1, p3, j1)
v3 join (a1, b1, d1), fork (e, k1, k2)
v4 source A1

v5 sink S1

v6 sink S3

❚❛❜❧❡ ✻✳✶✿ ❈♦rr❡s♣♦♥❞❡♥❝❡ ❜❡t✇❡❡♥ ✈❡rt✐❝❡s ♦❢ ♠❛r❦❡❞ ❣r❛♣❤ ✐♥ ❋✐❣✉r❡ ✻✳✽✭❛✮ ❛♥❞ ①▼❆❙ ❝♦♠✲
♣♦♥❡♥ts ♦❢ ❋✐❣✉r❡ ✻✳✻

Marked Graph Vertex Corresponding logic in sub-network
u0 source C2

u1 fork (i2, c2, c4)
u2 fork (l2, p2, h2), fork (p2, h3, j2), join (h2, m2, n2),

join (h3, r3, j3)
u3 join (a2, b2, d2), fork (e, k1, k2)
u4 source A2

u5 sink S2

u6 sink S5

u7 sink S4

❚❛❜❧❡ ✻✳✷✿ ❈♦rr❡s♣♦♥❞❡♥❝❡ ❜❡t✇❡❡♥ ✈❡rt✐❝❡s ♦❢ ♠❛r❦❡❞ ❣r❛♣❤ ✐♥ ❋✐❣✉r❡ ✻✳✽✭❜✮ ❛♥❞ ①▼❆❙ ❝♦♠✲
♣♦♥❡♥ts ♦❢ ❋✐❣✉r❡ ✻✳✼

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 91

v0

v1

v2v3

v4

v5

v6

num(B1) num(B2)

num(B3)

numA1
(B5) + num(B6)

✭❛✮ ▼❛r❦❡❞ ●r❛♣❤ ❢♦r ❋✐❣✉r❡ ✻✳✻

u0

u1

u2

u3

u4

u5

u6

u7
num(B7) num(B8)

num(B4)

numA2
(B5)

✭❜✮ ▼❛r❦❡❞ ●r❛♣❤ ❢♦r ❋✐❣✉r❡ ✻✳✼

❋✐❣✉r❡ ✻✳✽✿ ▼❛r❦❡❞ ❣r❛♣❤s ❢♦r t❤❡ s✉❜✲♥❡t✇♦r❦s ♦❢ VCO

same fundamental cycle matrix Bf , as well as the same reduced row-echelon form rref(Bf)
as follows:

Bf =

(

a b c d

1 1 −1 0
0 1 0 −1

)

, rref(Bf) =

(

a b c d

1 0 −1 1
0 1 0 −1

)

Columns of Bf and rref(Bf) are labeled with a, b, c and d and their correspondence to the
edges of the marked graphs of Figures 6.8(a) and 6.8(b) are shown in Table 6.3. The other
vertices and edges of the marked graphs have no contribution to Bf and rref(Bf); hence are
omitted from the matrices. rref(Bf) is derived from Bf using a standard algorithm implemented
in an off-the-shelf linear algebra package.

Edge Label Edge in Fig. 6.8(a) Edge in Fig. 6.8(b)
a (v1, v3) (u1, u3)
b (v3, v2)upper (u3, u2)upper
c (v2, v1) (u2, u1)
d (v3, v2)lower (u3, u2)lower

❚❛❜❧❡ ✻✳✸✿ ❊❞❣❡ ✐❞❡♥t✐✜❡rs ❢♦r t❤❡ ♠❛r❦❡❞ ❣r❛♣❤s

As mentioned in the last section, the null space of Bf (and hence of rref(Bf)) is not just a
singleton {0}. This makes the column vectors of Bf as well as of rref(Bf) linearly dependent.
This underlying linear dependence relation among the columns is evident from rref(Bf) and

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 92

it may be expressed using the following relations

a− c + d = 0

b− d = 0

where a and b are treated as pivot variables; c and d as free variables. We may replace the
column labels a, b, c and d in the above relations with the edge markings from Figure 6.8(a)
and 6.8(b). After suitable rearrangement, we get the following relations:

Fig. 6.8(a)

{

num(B2) = num(B1) + numA1
(B5) + num(B6)

num(B3) = numA1
(B5) + num(B6)

Fig. 6.8(b)

{

num(B8) = num(B7) + numA2
(B5)

num(B4) = numA2
(B5)

The above relations serve as invariants to the reachable state space of VCO. We discuss
their roles in model checking of properties of VCO in detail in the next section.

We applied this technique of type-specific sub-network derivation on the other benchmarks
like VC, VCB etc. and generated invariants from them. This way, we managed to generate
all invariants that were generated by the original CK algorithm as reported in [Chatterjee
and Kishinevsky, 2010a]. The generated invariants are tabulated in Table 6.4.

6.5 Experimental Results

We used ABC [Mishchenko, 2013] as our safety verification environment. Experiments were
performed on a laptop with 1.2 GHz Intel Celeron processor and 2 GB RAM. We present in
Table 6.5 run-times (in seconds) taken by ABC on various models considered.

The results in Table 6.5 pertain to three experiments, each involving three different veri-
fication engines (hence, a total of nine columns of run-times). The first three columns show
the name of the design, number of primary inputs (#pi) and number of flip-flops (#ff) re-
spectively. The results of the first experiment span columns 4, 5 and 6. Here we used three
different engines, induction [van Eijk, 2000], interpolation [McMillan, 2003] and property di-
rected reachability (PDR in short) [Bradley, 2011] to demonstrate the effectiveness of the
invariants of Table 6.4 on the respective designs. We used ABC’s implementations of the
algorithms which are available as commands ❞♣r♦✈❡, ✐♥t, and ♣❞r respectively and used
ABC’s default resource limits. Note that command ❞♣r♦✈❡ applies sequential simplification
on the underlying circuit before calling the verification engines. This is often a key step to
make the proof converge. The runs which could not decide validity of a property within the
default resource limits of ABC are marked with ‘-’. It turns out that the interpolation engine
(as applied to un-simplified designs through the command ✐♥t) times out most of the time.
We believe that ineffectiveness of interpolation, which is a powerful proof engine otherwise,
on our benchmarks demonstrates the inherent difficulty of verification for these apparently
small designs. A similar observation was reported in [Chatterjee and Kishinevsky, 2010a]

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 93

model BUFFER RELATIONs
buffered vc num(B1) + num(B3) + numA1

(Bch) = num(B2)
num(B5) + num(B4) + numA2

(Bch) = num(B6)
ordered num(B1) + num(B3) = num(B2)

vc num(B7) + num(B4) = num(B8)
num(B3) = numA1

(B5) + num(B6)
num(B4) = numA2

(B5)
num(B5) = numA1

(B5) + numA2
(B5)

scoreboard num(B1) +

9
∑

i=5

num(Bi) = num(B3)

num(B2) +
14
∑

i=10

num(Bi) = num(B4)

❚❛❜❧❡ ✻✳✹✿ ❆ss✉♠♣t✐♦♥s ✉s❡❞ ✐♥ t❤❡ ♣r♦♦❢s

too. PDR has been demonstrated over a wide variety of designs to be the strongest proof
engine and here it proves all the properties quite fast. But the remarkable observation is
that in many cases, the properties can be proved using one-step induction (under ❞♣r♦✈❡),
sometimes beating PDR by a large margin.

Column 7, 8 and 9 show the run-times of ❞♣r♦✈❡, ✐♥t and ♣❞r when we try to prove a
candidate safety property φnb using the invariants of Table 6.4 as constraints. Property φnb
specifies that channel e (see Figure 6.3) is non-blocking. In LTL, φnb := G(e.irdy⇒ e.trdy).
We simply asked the proof engines to prove all the invariants and φnb together. Columns
10, 11 and 12 report run-times when the same engines are used to prove φnb alone, without
the invariants. In this round of experiments, induction and interpolation failed most of the
time, while PDR managed to derive all the proofs. For each design, we mark a cell with ‘*’
to indicate which engine provided the best run-time. The overall table and the cells with
‘*’ show a clear advantage when invariants are used. In some cases, run-times are rather
counter-intuitive. For example, PDR took longer for VCB and Master/Slave to prove φnb
when the invariants were enabled. Interestingly, induction (column 7) did remarkably well
for those cases. This underscores the benefit of our high-level null space analysis. PDR
possibly infers equivalent invariants with its bit-precise state-space analysis, but at a cost
of extra run-time.

It may be noted that in the cases of time-outs, we used ABC’s default resource limits only.
We provide the actual times for which those engines ran in Table 6.6. These show that the
corresponding resource limits were reached by ABC quite early; one could possibly make
those runs successful by increasing ABC resources. Since some other engine succeeded even
under default resource limits on those cases, we did not pursue any further tuning of ABC’s
resource limits in those experiments.

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 94

de
si

gn
#

pi
#

ff
P

ro
vi

ng
In

va
ri

an
ts

O
nl

y
P

ro
vi

ng
Ta

rg
et

P
ro

pe
rt

y
w

it
h

In
va

ri
an

ts
P

ro
vi

ng
Ta

rg
et

P
ro

pe
rt

y
w

it
ho

ut
In

va
ri

an
t

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
V

C
11

82
0.

03
3.

72
0.

10
0
.0

4
∗

9.
15

0.
10

0.
89

(i
nt

)
4.

01
0.

23
V

C
B

12
93

0.
06

-
10

6.
45

0
.0

5
∗

-
50

.9
1

-
-

33
.4

6
V

C
O

13
10

1
0.

11
-

0.
34

0
.1

0
∗

-
0.

35
-

-
8.

28
V

C
O

-V
C

O
19

19
2

-
-

1.
65

-
-

2
.0

7
∗

-
-

39
2.

94
M

as
te

r/
S

la
ve

16
15

2
0.

16
-

7.
23

0
.1

8
∗

-
42

5.
74

-
-

48
.3

9
sc

or
eb

oa
rd

23
13

3
-

-
5.

70
-

-
7
.2

8
∗

-
-

30
.1

9

❚
❛❜

❧❡
✻✳
✺✿

❊
①♣

❡r
✐♠

❡♥
t
♦♥

✈❛
r✐
♦✉

s
❝♦

♠
♠
✉♥

✐❝
❛t
✐♦
♥
❢❛
❜r
✐❝
s
✭✶
✮

de
si

gn
#

pi
#

ff
P

ro
vi

ng
In

va
ri

an
ts

O
nl

y
P

ro
vi

ng
Ta

rg
et

P
ro

pe
rt

y
w

it
h

In
va

ri
an

ts
P

ro
vi

ng
Ta

rg
et

P
ro

pe
rt

y
w

it
ho

ut
In

va
ri

an
t

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

in
du

ct
io

n
in

te
rp

ol
at

io
n

pd
r

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
(s

ec
.)

(s
ec

.)
V

C
11

82
0.

03
3.

72
0.

10
0
.0

4
∗

9.
15

0.
10

0.
89

(i
nt

)
4.

01
0.

23
V

C
B

12
93

0.
06

TO
(2

6.
48

)
10

6.
45

0
.0

5
∗

TO
(1

5.
28

)
50

.9
1

TO
(1

2.
90

)
TO

(2
6.

88
)

33
.4

6
V

C
O

13
10

1
0.

11
TO

(3
0.

40
)

0.
34

0
.1

0
∗

TO
(3

6.
21

)
0.

35
TO

(2
6.

60
)

TO
(2

0.
68

)
8.

28
V

C
O

-V
C

O
19

19
2

TO
(8

.2
7)

TO
(1

0.
93

)
1.

65
TO

(9
.8

3)
TO

(1
0.

56
)

2
.0

7
∗

TO
(6

.8
0)

TO
(3

2.
09

)
39

2.
94

M
as

te
r/

S
la

ve
16

15
2

0.
16

TO
(2

1.
32

)
7.

23
0
.1

8
∗

TO
(1

6.
54

)
42

5.
74

TO
(6

.1
6)

TO
(8

.7
5)

48
.3

9
sc

or
eb

oa
rd

23
13

3
TO

(1
8.

78
)

TO
(1

3.
48

)
5.

70
TO

(4
4.

79
)

TO
(1

2.
3)

7
.2

8
∗

TO
(1

3.
54

)
TO

(1
3.

16
)

30
.1

9

❚
❛❜

❧❡
✻✳
✻✿

❊
①♣

❡r
✐♠

❡♥
t
♦♥

✈❛
r✐
♦✉

s
❝♦

♠
♠
✉♥

✐❝
❛t
✐♦
♥
❢❛
❜r
✐❝
s
✭✷
✮

CHAPTER 6. STRUCTURAL INVARIANT GENERATION 95

6.6 Conclusion

1. The latter essentially applies Kirchhoff’s voltage law (KVL) on the loops of communication
fabrics. This demonstrates the influence of feedback connections on the invariants which
was not revealed by the original version of the CK algorithm. Our observation that the CK
invariants are feedback-induced invariants highlights the fact that they are only one particular
kind of invariant that strengthens inductive proofs. We have observed that there are other
invariants that can improve verification speed even further. For example, one such helpful
invariant for VCB of Figure 3.7 is 0 ≤ num(Bch) ≤ 1 for the given buffer sizes. However, our
KVL based analysis cannot find such invariants because they are not directly dependent on
the feedback structure of the fabric. Since implementation or pseudocode of the original CK
algorithm is not publicly available, it is hard to predict whether it can find such invariants.
An interesting research topic, therefore, would be to find techniques that can discover such
invariants beyond the feedback-induced ones.

96

Chapter 7

Conclusion and Future Work

7.1 Conclusion

We have developed a bit-level liveness verification framework for sequential hardware systems.
Our framework has a proof engine and a bug finder. While in theory our framework is
capable of solving general liveness obligations, we found that it is mostly an intractable
problem in practice. We targeted a particular liveness property called response property,
and a family of industrially relevant communication fabric designs. We demonstrated that
monolithic liveness verification algorithms can easily fail to converge on such designs. To
mitigate this scalability problem, we proposed various heuristics. As part of this scheme,
we discovered a general pattern in the behavior of communication fabrics. We called this
pattern as ranking structure and demonstrated its influence in scalable liveness verification.
In the course of this research, we have identified several interesting questions that need be
answered to bring further scalability and automation in liveness verification. Some of them
are outlined below as topics for future investigation.

7.2 Future Work

• In our case studies, we have focussed mainly on credit-based flow-control systems. The
logical pattern associated with the ranking structures of such systems indicates that
such ranking structures may be inferred from other communication fabrics as well as from
other general hardware designs. However, we have kept the scope of our experiments
limited to our benchmarks. Further generalization of the discovered ranking structures
is left as future work.

• We have chosen the k-LIVENESS algorithm as our vehicle of experimentation with the
idea of disjunctive stabilizing assertion. We believe that stabilizing assertions can
accelerate other off-the-shelf liveness verification algorithms, for example algorithms

CHAPTER 7. CONCLUSION AND FUTURE WORK 97

based on BDD construction or liveness-to-safety transformation. Whether the ranking
structures (of communication fabrics) can accelerate these other algorithms and which
algorithm would be the most effective one are interesting research questions. We leave
these studies as future work.

• We observed that impressive run-time has resulted from using the most relevant stabiliz-
ing assertions obtained from the ranking structures derived manually from the fabrics. It
might be possible to construct a high-level algorithm that can leverage the if-then-else
reasoning structure associated with a fabric and produce a concise ranking structure
automatically. We believe that it is an interesting and important open problem and
leave this for future exploration.

• Fabrics are often constructed by composing two or more smaller fabrics. We observed
that in some cases the ranking structures of the smaller fabrics can be composed to
generate the ranking structure of the larger fabric. We believe that some interesting
compositional reasoning algorithm can be designed in this space and the topic should
be investigated further. As an example, we note that Holcomb et al. proposed a SAT-
based compositional technique for solving bounded liveness problem for communication
fabrics [Holcomb et al., 2012]. It would be interesting to generalize such approaches
and unify them with the idea of ranking structure.

• We believe that our work on response verification has subtle conceptual connections to
the deadlock verification approaches of [Verbeek and Schmaltz, 2011] and [Gotmanov et
al., 2011], but we leave any further exploration of this connection as future work.

98

Bibliography

[Abrahamson, 1980] K. Abrahamson. Decidability and expressiveness of logics of processes.
In PhD Thesis, University of Washington, 1980.

[Arvind and Culler, 1986] Arvind and David E. Culler. Annual review of computer science vol.
1, 1986. chapter Dataflow architectures, pages 225–253. Annual Reviews Inc., Palo Alto,
CA, USA, 1986.

[Baier and Katoen, 2008] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing (Representation and Mind Series). The MIT Press, 2008.

[Baumgartner and Mony, 2009] Jason Baumgartner and Hari Mony. Scalable liveness check-
ing via property-preserving transformations. In DATE, pages 1680–1685, 2009.

[Ben-Amram, 2009] Amir M. Ben-Amram. Size-change termination, monotonicity constraints
and ranking functions. In Proceedings of the 21st International Conference on Computer
Aided Verification, CAV ’09, pages 109–123, Berlin, Heidelberg, 2009. Springer-Verlag.

[Benveniste et al., 2003] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert De Simone. The synchronous languages twelve years
later. In Proceedings of the IEEE, pages 64–83, 2003.

[Biere et al., 2002] Armin Biere, Cyrille Artho, and Viktor Schuppan. Liveness checking as
safety checking. In In FMICSŠ02: Formal Methods for Industrial Critical Systems, volume
66(2) of ENTCS. Elsevier, 2002.

[Bilsen et al., 1995] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static
data flow. In IEEE Intl. Conf. Acoustics, Speech, and Signal Processing, volume 5, pages
3255–3258, Los Alamitos, CA, USA, 1995. IEEE Computer Society.

[Bloem et al., 2006] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm
for strongly connected component analysis in n log n symbolic steps. Form. Methods Syst.
Des., 28(1):37–56, January 2006.

BIBLIOGRAPHY 99

[Bradley et al., 2011] Aaron Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An
incremental approach to model checking progress properties. In FMCAD, Austin, TX, USA,
2011.

[Bradley, 2011] A. Bradley. Sat-based model checking without unrolling. In VMCAI. Springer
Verlag, 2011.

[Bryant, 1992] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

[Buck, 1993] J. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
the Token Flow Model. PhD thesis, University of California, Berkeley, 1993.

[Chatterjee and Kishinevsky, 2010a] Satrajit Chatterjee and Michael Kishinevsky. Automatic
generation of inductive invariants from high-level microarchitectural models of communica-
tion fabrics. In CAV. Springer Verlag, 2010.

[Chatterjee and Kishinevsky, 2010b] Satrajit Chatterjee and Michael Kishinevsky. Automatic
generation of inductive invariants from high-level microarchitectural models of communica-
tion fabrics. In CAV, pages 321–338, 2010.

[Chatterjee and Kishinevsky, 2012] Satrajit Chatterjee and Michael Kishinevsky. Automatic
generation of inductive invariants from high-level microarchitectural models of communica-
tion fabrics. Form. Methods Syst. Des., 40(2):147–169, April 2012.

[Chatterjee et al., 2010] Satrajit Chatterjee, Mike Kishinevsky, and Umit Ogras. Quick formal
modeling of communication fabrics to enable verification. In HLDVT, pages 42–49, 2010.

[Claessen and Sörensson, 2012] Koen Claessen and Niklas Sörensson. A liveness checking
algorithm that counts. In FMCAD, pages 52–59, 2012.

[Clarisó et al., 2005] Robert Clarisó, Enric Rodríguez-Carbonell, and Jordi Cortadella.
Derivation of non-structural invariants of petri nets using abstract interpretation. In Pro-
ceedings of the 26th international conference on Applications and Theory of Petri Nets,
ICATPN’05, pages 188–207, Berlin, Heidelberg, 2005. Springer-Verlag.

[Clarke et al., 1999] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[Cook et al., 2006] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
proofs for systems code. SIGPLAN Not., 41:415–426, June 2006.

[Cook et al., 2007] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko,
and Moshe Y. Vardi. Proving that programs eventually do something good. SIGPLAN Not.,
42:265–276, January 2007.

BIBLIOGRAPHY 100

[Cook et al., 2011] B. Cook, J. Fisher, E. Krepska, and N. Piterman. Proving stabilization of
biological systems. In VMCAI. Springer Verlag, 2011.

[Cormen et al., 2009] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[Cousot and Halbwachs, 1978] Patrick Cousot and Nicolas Halbwachs. Automatic discovery
of linear restraints among variables of a program. In Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, POPL ’78, pages 84–96,
New York, NY, USA, 1978. ACM.

[Dally and Towles, 2003] William Dally and Brian Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

[Deo, 1974] Narsingh Deo. Graph Theory with Applications to Engineering and Computer
Science (Prentice Hall Series in Automatic Computation). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1974.

[Duato et al., 2002] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Net-
works: An Engineering Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[Eén and Sörensson, 2003] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In
SAT, pages 502–518, 2003.

[Een et al., 2011] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementa-
tion of property directed reachability. In Proceedings of the International Conference on
Formal Methods in Computer-Aided Design, FMCAD ’11, pages 125–134, Austin, TX, 2011.
FMCAD Inc.

[Emerson and Lei, 1986] E. Allen Emerson and Chin-Laung Lei. Efficient model checking in
fragments of the propositional mu-calculus (extended abstract). In LICS, pages 267–278,
1986.

[Emerson and Lei, 1987] E. Allen Emerson and Chin-Laung Lei. Modalities for model check-
ing: branching time logic strikes back. Sci. Comput. Program., 8:275–306, June 1987.

[Emerson, 1990] E. Allen Emerson. Handbook of theoretical computer science (vol. b). chapter
Temporal and modal logic, pages 995–1072. MIT Press, Cambridge, MA, USA, 1990.

[Francez and Kozen, 1984] Nissim Francez and Dexter Kozen. Generalized fair termination. In
Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL ’84, pages 46–53, New York, NY, USA, 1984. ACM.

BIBLIOGRAPHY 101

[Gotmanov et al., 2011] A. Gotmanov, S. Chatterjee, and M. Kishinevsky. Verifying deadlock-
freedom of communication fabrics. In VMCAI. Springer Verlag, 2011.

[Gulwani and Necula, 2003] Sumit Gulwani and George C. Necula. Discovering affine equal-
ities using random interpretation. In Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’03, pages 74–84, New York,
NY, USA, 2003. ACM.

[Hardin et al., 2001] R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. Vardi. A new
heuristic for bad cycle detection using bdds. Form. Methods Syst. Des., 18(2):131–140,
March 2001.

[Hoder and Bjørner, 2012] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed
reachability. In Proceedings of the 15th international conference on Theory and Applica-
tions of Satisfiability Testing, SAT’12, pages 157–171, Berlin, Heidelberg, 2012. Springer-
Verlag.

[Hojati et al., 1993a] Ramin Hojati, Robert K. Brayton, and Robert P. Kurshan. Bdd-based
debugging of design using language containment and fair ctl. In Proceedings of the 5th
International Conference on Computer Aided Verification, CAV ’93, pages 41–58, London,
UK, 1993. Springer-Verlag.

[Hojati et al., 1993b] Ramin Hojati, Hervé J. Touati, Robert P. Kurshan, and Robert K. Bray-
ton. Efficient omega-regular language containment. In Proceedings of the Fourth Inter-
national Workshop on Computer Aided Verification, CAV ’92, pages 396–409, London, UK,
UK, 1993. Springer-Verlag.

[Holcomb et al., 2012] Daniel Holcomb, Alexander Gotmanov, Michael Kishinevsky, and San-
jit A. Seshia. Compositional performance verification of noc designs. In Proceedings of the
10th ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), July 2012.

[HWM, 2012] Hardware model checking competition, 2012: http://fmv.jku.at/hwmcc11/. 2012.

[Karr, 1976] Michael Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

[Kesten et al., 1998] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification of
linear temporal logic specifications. In Proceedings of the 25th International Colloquium
on Automata, Languages and Programming, ICALP ’98, pages 1–16, London, UK, UK, 1998.
Springer-Verlag.

[Kupferman and Vardi, 2005] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In
Proc. 46th IEEE Symp. on Foundations of Computer Science, pages 531–540, Pittsburgh,
October 2005.

BIBLIOGRAPHY 102

[Lamport, 1980] Leslie Lamport. “sometime" is sometimes “not never": on the temporal logic
of programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’80, pages 174–185, New York, NY, USA, 1980. ACM.

[Lee and Messerschmitt, 1987] Edward A. Lee and David G. Messerschmitt. Synchronous
data flow: Describing signal processing algorithm for parallel computation. In COMPCON,
pages 310–315, 1987.

[Lehmann et al., 1981] Daniel J. Lehmann, Amir Pnueli, and Jonathan Stavi. Impartiality,
justice and fairness: The ethics of concurrent termination. In Proceedings of the 8th Col-
loquium on Automata, Languages and Programming, pages 264–277, London, UK, 1981.
Springer-Verlag.

[Long et al., 2011] J. Long, S. Ray, B. Sterin, A. Mishchenko, and R Brayton. Enhancing abc
for stabilization verification of systemverilog/vhdl models. In DIFTS, 2011.

[Manna and Pnueli, 1991] Zohar Manna and Amir Pnueli. Completing the temporal picture.
Theor. Comput. Sci., 83:97–130, June 1991.

[Manna and Pnueli, 2010] Zohar Manna and Amir Pnueli. Time for verification. chapter
Temporal verification of reactive systems: response, pages 279–361. Springer-Verlag, Berlin,
Heidelberg, 2010.

[McMillan, 2003] Kenneth L. McMillan. Interpolation and sat-based model checking. In CAV,
pages 1–13, 2003.

[Mishchenko, 2013] Alan Mishchenko. Abc verification system:
http://www.eecs.berkeley.edu/~alanmi/abc/. 2013.

[Murata, 1977] Tadao Murata. Circuit theoretic analysis and synthesis of marked graphs. In
IEEE Transactions on Circuits and Systems, volume 24, pages 400–405, 1977.

[Murata, 1989] Tadao Murata. Petri nets: Properties, analysis and applications. In Proceed-
ings of the IEEE, pages 541–580, April 1989.

[Pnueli, 1983] Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, STOC ’83,
pages 278–290, New York, NY, USA, 1983. ACM.

[Podelski and Rybalchenko, 2004] Andreas Podelski and Andrey Rybalchenko. Transition in-
variants. Logic in Computer Science, Symposium on, 0:32–41, 2004.

[Queille and Sifakis, 1983] J. P. Queille and J. Sifakis. Fairness and related properties in
transition systems Ů a temporal logic to deal with fairness. In Acta Informat, pages 195–
220, 1983.

BIBLIOGRAPHY 103

[Ravi et al., 2000] Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative study of
symbolic algorithms for the computation of fair cycles. In Proceedings of the Third Inter-
national Conference on Formal Methods in Computer-Aided Design, FMCAD ’00, pages
143–160, London, UK, UK, 2000. Springer-Verlag.

[Sankaranarayanan et al., 2003] Sriram Sankaranarayanan, Henny Sipma, and Zohar
Manna. Petri net analysis using invariant generation. In Verification: Theory and Practice,
LNCS 2772:682Ű701, pages 682–701. Springer Verlag, 2003.

[Schuppan and Biere, 2004] Viktor Schuppan and Armin Biere. Efficient reduction of finite
state model checking to reachability analysis. Int. J. Softw. Tools Technol. Transf., 5(2):185–
204, 2004.

[Somenzi et al., 2002] Fabio Somenzi, Kavita Ravi, and Roderick Bloem. Analysis of symbolic
scc hull algorithms. In Proceedings of the 4th International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’02, pages 88–105, London, UK, UK, 2002. Springer-
Verlag.

[Strang, 2006] Gilbert Strang. Linear ALgebra and Its Applications, Fourth Edition. Thomson
Brooks/Cole, Inc., 2006.

[Tarjan, 1972] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972.

[Thomas, 1990] Wolfgang Thomas. Handbook of theoretical computer science (vol. b). chapter
Automata on infinite objects, pages 133–191. MIT Press, Cambridge, MA, USA, 1990.

[van Eijk, 2000] C. A. J. van Eijk. Sequential equivalence checking based on structural simi-
larities. IEEE Trans. on CAD of Integrated Circuits and Systems, 19(7):814–819, 2000.

[Vardi and Wolper, 1984] Moshe Y. Vardi and Pierre Wolper. Automata theoretic techniques
for modal logics of programs: (extended abstract). In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, STOC ’84, pages 446–456, New York, NY, USA,
1984. ACM.

[Verbeek and Schmaltz, 2011] F. Verbeek and J. Schmaltz. Huntng deadlock efficiently in
micro-architectural models of communication fabrics. In FMCAD, 2011.

[Vizel et al., 2012] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and
sat-based reachability for hardware model checking. In Proceedings of the International
Conference on Formal Methods in Computer-Aided Design, FMCAD’12, Austin, TX, 2012.
FMCAD Inc.

BIBLIOGRAPHY 104

[Wolper et al., 1983] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Proceedings of the 24th Annual Symposium on Foundations of
Computer Science, SFCS ’83, pages 185–194, Washington, DC, USA, 1983. IEEE Computer
Society.

[Xie and Beerel, 1999] Aiguo Xie and Peter A. Beerel. Implicit enumeration of strongly con-
nected components. In Proceedings of the 1999 IEEE/ACM international conference on
Computer-aided design, ICCAD ’99, pages 37–40, Piscataway, NJ, USA, 1999. IEEE Press.

[Zhang and Malik, 2002] Lintao Zhang and Sharad Malik. The quest for efficient boolean
satisfiability solvers. In CAV, pages 17–36, 2002.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Organization

	Algorithmics for Liveness
	Safety vs. Liveness
	LTL Model Checking
	Algorithms for Liveness Verification

	Formal Model for Communication Fabrics
	Executable Micro-Architecture Specification (xMAS)
	Benchmarks
	xMAS in Perspective

	Bug Hunting for Liveness
	Introduction
	Preliminaries
	L2S Conversion for Stabilization Properties
	Experimental Results

	Efficient Proof Of Liveness
	Introduction
	Credit Mechanism and Buffer Relations
	Response Formulation
	Approach I : Breaking Into Safety Properties
	Approach II: Well-founded Induction
	Approach III : Skeleton Independent Proof Heuristics
	Approach IV : Proof based on k-liveness

	Structural Invariant Generation
	Introduction
	Related Works
	Preliminaries
	Invariant Mining For xMAS fabrics
	Experimental Results
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

