
Scalable Monitoring Analytics Architecture in
Software-Defined Infrastructure

Jieyu Lin
University of Toronto

Toronto, Ontario, Canada
jieyu.lin@utoronto.ca

Byungchul Park
University of Toronto

Toronto, Ontario, Canada
byungchul.park@utoronto.ca

Qi Zhang
University of Toronto

Toronto, Ontario, Canada
ql.zhang@utoronto.ca

Hadi Bannazadeh
University of Toronto

Toronto, Ontario, Canada
hadi.bannazadeh@utoronto.ca

Alberto Leon-Garcia
University of Toronto

Toronto, Ontario, Canada
alberto.leongarcia@utoronto.ca

ABSTRACT
Software-Defined Infrastructure provides a unified architec-
ture for integrated management of virtualized heterogeneous
resources in cloud infrastructures. Monitoring and measure-
ment is an important component in the Software-Defined
Infrastructure. In this paper, we describe the architecture
of Software-Defined Infrastructure focusing on its monitor-
ing and measurement manager. The monitoring and mea-
surement manager has been implemented in a system called
MonArch, which is capable of performing integrated mon-
itoring of heterogeneous resources. MonArch has been de-
ployed and operational in the SAVI Testbed. Flexible ana-
lytics capability and scalability of MonArch is demonstrated
through two use cases: virtual machine communication anal-
ysis and anomaly detection.

1. INTRODUCTION
Cloud computing and virtualization technology have

emerged and enable new types of service delivery over
the Internet by partitioning physical resources (e.g.,
computing and network resources) into one or more vir-
tual resources. With the rapid development of cloud
computing and virtualization technologies, today’s data
centers provide virtualization of diverse physical resources
including servers, switches, middleboxes, wireless access
points, GPUs, and FPGAs.

As types of supported virtual resources are increas-
ing, more sophisticated management systems are re-
quired for cloud service to provide efficiency, robust-
ness, and security. However, current cloud management
systems often use separate management tools for each
resource type and having separated monitoring or man-
agement systems increases the capital and operational
expenditures (CAPEX and OPEX).

Ideally, a cloud management system should able to
monitor heterogeneous resources while providing uni-
fied interface for accessing and analyzing entire cloud
system. Scalability and expandability are also required.

Given large number of virtual resources from a variety
of sources, the system should ensure that the incoming
monitoring data can be stored and processed in an ef-
ficient and timely manner and can handle new type of
resources that may be added to the infrastructure.

To this end, we have designed MonArch, a Monitoring
Architecture for Software Defined Infrastructure (SDI)
[2]. MonArch provides a flexible interface for collecting
unstructured and structured monitoring data, as well as
allowing the measurement data to be efficiently stored
and processed in the system.

In our demonstration, we will use MonArch for two
use cases: virtual machine communication analysis and
anomaly detection. The virtual machine communica-
tion analysis requires processing historical monitoring
data and correlating data that are from different re-
sources and different layers. For the anomaly detection
use case, we utilize MonArch’s stream processing capa-
bility to identify anomalies with short delay.

2. SOFTWARE DEFINED INFRASTRUCT-
URE (SDI)

Current control and management systems mainly fo-
cuses on having separated controllers for difference re-
sources. For example, in cloud environment, compute
and network resources often have separate controllers.
The cloud controller in OpenStack is responsible for
managing virtual machines and storages, whereas the
network is often managed by OpenFlow or other SDN
controller. This approach is not ideal for best deci-
sion making and optimization of performance and cost.
SDI [2, 1] presents an approach to integrate the manage-
ment of different resources into a logically centralized
point to provide more flexibility and intelligence.

Fig. 1 shows the high level architecture of the SDI Re-
source Management System (RMS). In a typical virtu-
alized infrastructure, we have converged heterogeneous
resources including both physical and virtual resources.

1
TRIDENTCOM 2015, June 24-25, Vancouver, Canada
Copyright © 2015 ICST
DOI 10.4108/icst.tridentcom.2015.260151



An example of the virtual resources is a VM. Different
types of resources are represented by different types of
shapes in Fig. 1. Physical resources are denoted by
shapes with solid line where as virtual resources are in-
dicated by shapes with dotted line .

Each type of resource connects to its type-specific re-
source controller for direct control and management. A
resource controller can be any traditional controller that
is designed to manage a specific kind of resource. The
use of these resource controllers allows us to leverage
results from other research and projects.

Different types of resources may have connections or
dependencies between each other, which gives rise to a
need for a topology manager. The topology manager is
responsible for communicating with different resource
controllers for obtaining and maintaining the topology
information of all the resources.

A monitoring and measurement manager is needed to
monitor the converged heterogeneous resources, and to
obtain real-time resource information and states. The
monitoring and measurement manager keeps a histor-
ical record of the monitoring data for future reference
and analysis. To meet monitoring and measurement
needs from users, the monitoring and measurement man-
ager has open API that allows user to access monitoring
data based on access control policy. Moreover, due to
the complex analytics requirement in today’s cloud en-
vironment, the monitoring and measurement manager
should also be capable of performing complex analy-
sis on the monitoring data. This requires the system
to support executing analytics job submitted by users.
Other requirements of the monitoring and measurement
manager include 1) scalability: the system should be
able to scale up to support more monitoring resources;
2) Cross layer monitoring support: the system should
be able to monitor resources in both the infrastructure
layer as well as the application layer.

The monitoring and measurement manager and the
topology manager together provide a multi-dimensional
view of the infrastructure that includes spatial (topol-
ogy), and temporal (resource states and information at
different times) information. The monitoring and mea-
surement manager can potentially construct a histori-
cal view of how the topology of the infrastructure has
changed in the past.

The SDI manager is the decision-making point in this
architecture. It is responsible for performing integrated
resource management for converged heterogeneous re-
sources. The SDI manager obtains the resource topol-
ogy information from the topology manager, and the
monitoring data and the analytics results from the mon-
itoring and measurement manager. Based on the col-
lected information, the SDI manager executes the inte-
grated management algorithms and communicates with
the resources controllers to realize various integrated re-

Figure 1: SDI Architecture

source management functions. Examples of integrated
resource management functions include resource allo-
cation and migration, real-time diagnosis, performance
optimization, green networking, and fault tolerance.

The SDI manager, topology manager, and monitor-
ing and measurement manager have open APIs for ex-
ternal entities. The open APIs allow external entities
to leverage the capabilities provided by SDI.

3. MONARCH SYSTEM
MonArch is the implementation of the monitoring

and measurement manager in SDI. it is a system de-
signed to tackle the challenges in monitoring and ana-
lytics in the cloud environment. MonArch has the fol-
lowing three highlights: 1) Integrated monitoring for
heterogeneous resources: MonArch is capable of mon-
itoring different types of resources in different layers,
such as physical servers and network equipments, vir-
tual machine, virtual network, web server, web applica-
tion, and etc.; 2) Support for flexible queries: MonArch
allows system administrators to execute and submit com-
plex analytics task. Some example of the analytics
tasks are: detection of security attack, performance di-
agnostics, network traffic classification, and resource
allocation; 3) Scalable and Efficient Data Analytics:
MonArch is capable of efficiently monitoring and pro-
cessing large amount of data. It uses Apache Spark
system for scalable stream and batch processing tasks.

The implementation of the MonArch system is shown
in figure 2. Since we are building MonArch to work
closely with OpenStack, and Ceilometer is the official
telemetry component in OpenStack, we integrate Ceilome-
ter as part of MonArch. The Agent and Super Agents
are responsible for collect monitoring data from Open-
Stack, OpenFlow, NetFlow, and user applications. Col-
lected monitoring data are sent to the Messaging Sys-
tem for queueing purpose. Historical monitoring data
are stored in the HDFS distributed file system to sup-
port batch processing job. We use Apache Spark for
both stream processing and batch processing. For batch
processing, Spark jobs read and process monitoring data

2



Figure 2: MonArch Detail

from HDFS to produce results. For stream processing,
monitoring data are read directly from the Messaging
System to reduce latency. In the current implementa-
tion, MonArch can collect, store and process monitoring
data from heterogeneous resources and perform flexible
data analysis to correlate data from different sources.
Each component in this architecture is scalable.

In this demo, we will demonstrate the flexible ana-
lytics capability of the MonArch system. MonArch is
currently deployed in the SAVI Testbed for monitoring
purpose. Administrators can submit analytic jobs that
process the production monitoring data. A dashboard
is provided for visualizing the results. Since MonArch is
capable of conducting both stream processing and batch
processing, we will divide our demo into two parts: 1)
batch processing; 2) stream processing.

3.1 Demo 1: Virtual machine communication
analysis

For this demo, we will submit an analytics job to
MonArch that create a VM communication graph by
processing the historical monitoring data (including VM
metrics, OpenFlow flow bandwidth usage, Application
level data). This communication graph shows the basic
interaction between VMs and the status of the applica-
tions that are running on the VMs. Figure 3 shows an
example of visualizing the communication graph in the
MonArch dashboard.

3.2 Demo 2: Anomaly detection.
Anomaly detection is another analytics capability of

the MonArch system. MonArch is continuously per-
forming stream processing on multi-layer monitoring
data and identify anomalies. For this demo, we will
launch an attack at an Apache web server running in
a virtual machine. We will show how MonArch can
detect an anomaly caused by the attack, and analyse
monitoring data to show the communication graph of
the abnormal VM cluster before and after the anomaly
is detected.

Figure 3: Virtual Machine Communication
Graph

4. CONCLUSIONS
In this demo paper, we presented the monitoring and

measurement manager in the SDI architecture and its
implementation called MonArch. Two use cases are
used to demonstrate MonArch flexible analytics capa-
bility and scalability. For our future work, we would like
to improve the table placement of the historical mon-
itoring data stored distributed file system to improve
the processing efficiency.

5. REFERENCES
[1] J.-M. Kang, H. Bannazadeh, and A. Leon-Garcia.

SAVI testbed: Control and management of
converged virtual ICT resources. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on, pages 664–667. IEEE,
2013.

[2] J.-M. Kang, T. Lin, H. Bannazadeh, and
A. Leon-Garcia. Software-Defined Infrastructure
and the SAVI testbed. In 9th International
Conference on Testbeds and Research
Infrastructures for the Development of Networks &
Communities (TRIDENTCOM 2014), 2014.

3


