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Abstract—One fundamental problem in temporal graph anal-
ysis is to count the occurrences of small connected subgraph
patterns (i.e., motifs), which benefits a broad range of real-world
applications, such as anomaly detection, structure prediction,
and network representation learning. However, existing works
focused on exacting temporal motif are not scalable to large-scale
temporal graph data, due to their heavy computational costs or
inherent inadequacy of parallelism. In this work, we propose
a scalable parallel framework for exactly counting temporal
motifs in large-scale temporal graphs. We first categorize the
temporal motifs based on their distinct properties, and then
design customized algorithms that offer efficient strategies to
exactly count the motif instances of each category. Moreover, our
compact data structures, namely triple and quadruple counters,
enable our algorithms to directly identify the temporal motif
instances of each category, according to edge information and
relationship between edges, therefore significantly improving the
counting efficiency. Based on the proposed counting algorithms,
we design a hierarchical parallel framework that featuring both
inter- and intra-node parallel strategies, and fully leverages
the multi-threading capacity of modern CPU to concurrently
count all temporal motifs. Extensive experiments on sixteen
real-world temporal graph datasets demonstrate the superiority
and capability of our proposed framework for temporal motif
counting, achieving up to 538× speedup compared to the state-
of-the-art methods. The source code of our method is available
at: https://github.com/steven-ccq/FAST-temporal-motif.

I. INTRODUCTION

Many real-world applications are naturally represented in
a graph data structure such as social networks, traffic net-
works, citation networks, biology networks, and knowledge
graphs, where objects and the relationships among them are
respectively represented by nodes and edges. In real-world
scenarios, many networks constantly evolve over time with
their structures dynamically evolving as new relationships
constantly emerges. Such dynamic networks are termed as
temporal graphs [1], [2] composed of a set of nodes and a
series of timestamped edges between nodes, or temporal edges.
Examples include email networks, communication networks,
financial transactions, and E-commercial networks.

*Authors contribute this work equally. Corresponding author: Yanwei Yu.

Counting patterns in graph data is one of fundamental
problems in graph data mining, widely used in a variety of
network analytical tasks such as anomaly detection [3], role
discovery [4], and community detection [5]. An especially
useful case is counting motifs (or graphlets) – a category of
frequent subgraph patterns, which are used in range of disci-
plines, including social network analysis [6], neuroscience [7]
and computational biology [8]. For example, social network
analysis often uses communication motifs mined from large
dynamic networks to understand how human communication
unfold [9]. Moreover, because motif is effective in capturing
local high-order network structures, recently leveraging motif
to improve the quality of network embedding has attracted
great attention [10]–[13].

In this work, we target on designing a scalable, parallel
solution to efficiently count temporal motifs from large-scale
dynamic graphs. The existing works that attempt to count
temporal motifs provide either exact results or approximations.
The existing exact algorithms can hardly handle large-scale
network, due to their heavy computation costs. Paranjape et
al. [1] formally define the notion of δ-temporal motifs, and
propose an exact algorithm (EX) for counting 2- and 3-node, 3-
edge, δ-temporal motifs by leveraging subgraph enumeration.
Kumar and Calders [14] present an efficient algorithm called
2SCENT to find all temporal cycles in a directed interaction
network. Mackey et al. [15] propose an efficient backtracking
(BT) algorithm for temporal subgraph isomorphism, which can
exactly count temporal motifs by enumerating all of them.
However, because they have to enumerate all edges and circles,
these works still suffer from high computation complexity,
hence not scalable to big graph. For example, when counting
temporal motifs on the RedditComments data with more than
600 million edges, it takes EX 7,968 seconds to find all 2-
and 3-node, 3-edge, δ-temporal motifs. This high response
time makes such methods insufficient in handling frequently
updated dynamic systems which are very popular in practice.

To reduce response time, several sampling-based algorithms
have been proposed to approximate the number of motifs [16],
[17]. However, these approximate algorithms, either only sup-
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porting certain types of motifs such as 2-node 3-edge motifs
or suffering from large approximate errors, do not meet the
requirements of many applications. Furthermore, the motifs
discovered by sampling fail to preserve the local structures
of a graph [13]. Therefore, they are not effective when used
in network embedding, which is one of the most important
emerging applications of motifs.

To address the aforementioned challenges, we propose a
scalable parallel framework called HARE for temporal motif
counting in large-scale temporal networks. First, based on
topological structure, we categorize all possible 2- and 3-
node, 3-edge, δ-temporal motifs into three types: pair temporal
motifs, star temporal motifs and triangle temporal motifs. Cus-
tomized to star/pair temporal motifs, our FAST-Star algorithm
uses a quadruple counter and a triple counter to compactly
encode the number of star motif instances and pair motif
instances, respectively. With the designed counters, FAST-
Star directly identifies the types of temporal motif instances
according to the information of edges and the relationship
between edges, therefore, significantly improving the counting
efficiency. Our algorithm FAST-Tri, customized to triangle
temporal motifs, uses another quadruple counter to record the
number of motif instances for the non-isomorphic temporal
motifs simultaneously. FAST (general term for FAST-Star and
FAST-Tri) recursively treats each node in the given temporal
graph as center node, and searches all motif instances in
the edge sequence of the center node, achieving a linear
time complexity in the number of temporal edges of input
graph. Furthermore, the recursive nature of FAST enables us to
leverage multi-threading of modern CPU to count the temporal
motifs in parallel. This is because in our parallel framework
HARE, if different threads pick different centers, each thread
will exactly count distinct motifs independently.

We conduct extensive experiments on 16 real-world large-
scale temporal graphs, and the experimental results demon-
strate that our HARE performs significantly faster than state-
of-the-art baselines for counting temporal motifs by up to two
orders of magnitudes.

We highlight the key contributions of this work as follows:
• We propose a fast exact algorithm for counting star/pair

temporal motifs. The proposed FAST-Star algorithm can
directly identify the types of motif instances according
to the edge information and relationship between edges,
improving the significant detection efficiency.

• We develop a fast algorithm for exactly counting motif in-
stances for triangle temporal motifs. The proposed FAST-
Tri algorithm can simultaneously count the number of
motif instances for all non-isomorphic triangle temporal
motifs with the designed quadruple counter.

• We propose a hierarchical parallel framework HARE for
our proposed two exact algorithms, which endows our
method with the capability of concurrently counting all
temporal motifs for large-scale temporal networks in an
efficient way.

• We perform extensive experiments on 16 real-world graph
datasets to demonstrate the superiority of our proposed

method compared with other baselines. Our proposed
HARE results in up to two orders of magnitude faster
than state-of-the-art techniques.

II. RELATED WORK

A. Motif Counting in Static Graphs

There have been rich studies on network motifs in static
graphs, where these works have proved crucial to under-
standing the mechanisms driving complex systems [18] and
characterizing classes of static graphs [19], [20]. In addition,
the motifs are very important for understanding the high-
order organization model in the graph [21], [22]. In terms of
algorithm, a variety of researches are only used to calculate
triangles in undirected static graphs [23]. Ahmed et al. [24]
propose a fast algorithm for counting motifs of 3, 4-node that
leverages a number of combinatorial arguments. It significantly
improves the scalability of motif counting. Santoso et al. [25]
propose an exact algorithm for enumerating 4-node motifs,
such as 4-cycles, 4-cliques and diamonds, by leveraging the
most efficient algorithm for triangle enumeration. Since many
graphs are not static as the links between nodes dynamically
change over time [26], the above methods fail to capture the
richness of the temporal information in the data.

B. Motif Counting in Temporal Graphs

Recently, the temporal motif is no longer limited by the
snapshot, but has been extended to the network motif with time
information [27]. Kovanen et al. [28] first present the definition
of temporal motif which is widely used in Wikipedia network.
Gurukar et al. [9] propose COMMIT based on subsequence
mining to identify the temporal motifs in the communication
network. In [1], Paranjape et al. formally define the notion of
δ-temporal motifs. They also propose exact fast algorithms
for counting 2- and 3-node, 3-edge, δ-temporal motifs by
leveraging subgraph enumeration in temporal graphs. Kumar
and Calders [14] focus on one such fundamental interaction
pattern, namely a temporal cycle, and present an efficient algo-
rithm called 2SCENT to find all temporal cycles in a directed
interaction network. Mackey et al. [15] propose an efficient
backtracking algorithm for temporal subgraph isomorphism,
which can count temporal motifs exactly by enumerating all
of them. Based on the definition of communication motif
in [9], Sun et al. [29] propose an algorithm called TM-Miner,
which can build a canonical labeling system that uses a new
lexicographic order and maps the temporal graph to the unique
minimum time first search code, to mining temporal motifs in
large temporal network.

C. Sampling Methods for Motif Counting

First of all, many sampling methods have been proposed
for approximate triangle counting in static graphs, such as sub-
graph sampling [30], edge sampling [31], wedge sampling [32]
and neighborhood sampling [33]. Bera et al. [34] propose a
sublinear algorithm in the random walk access model to count
triangles without seeing the whole static graph. Moreover,
sampling methods are also efficient to find more complex



motifs, e.g., 4-vertex motifs [35], 5-vertex motifs [36], and
k-cliques [37]. However, all above methods do not consider
the temporal information, and thus they can not process motif
counting in temporal graphs directly. Recently, some sampling
methods are proposed to approximately count motifs in tempo-
ral graphs. Liu et al. [16] develop a sampling framework that
sits as a layer on top of existing exact counting algorithms.
Wang et al. [17] propose an edge sampling algorithm for
any temporal motifs and hybridize edge sampling with wedge
sampling to count temporal motifs with 3 nodes and 3 edges.

III. PROBLEM DEFINITION

In this section, we first introduce key notations used in this
work and then formally define the studied problem.

Definition 1 (Temporal Graph). A temporal graph is a graph
G = {V, E , T }, where V is the collection of nodes, E is the
collection of edges between the nodes, and T is the collection
of timestamps. Each edge etij is a timestamped directed edge
from node vi to node vj , denoted by (vi, vj , t), where vi, vj ∈
V and t ∈ T . We term each edge as a temporal edge.

1s,18s11s
14s,21s

17s

9s

4s,8s,15s

6s𝜹 = 𝟏𝟎𝐬

10s

vb

va

vc ve

vd

Fig. 1: An example of a temporal graph.

Fig. 1 shows a toy example of a temporal graph with 5
nodes and 12 temporal edges, and each edge is directed and
has a timestamp in seconds.

Definition 2 (δ-temporal Motif). A k-node, l-edge, δ-
temporal motif is a sequence of l temporal edges in
chronological order within a δ time constraint, M =
〈(u1, v1, t1), (u2, v2, t2), . . . , (ul, vl, tl)〉, i.e., t1 ≤ t2 ≤ · · · ≤
tl and tl − t1 ≤ δ, such that the induced static graph from
these edges is connected and include k nodes.

Definition 3 (Motif Instance). A collection of temporal edges
selected from a given temporal graph is called a motif instance
of a δ-temporal motif M , if it matches the same edge pattern
(i.e., same direction and time order) and all of the edges occur
within δ time interval.

In this paper, we focus on 2- and 3-node, 3-edge, δ-temporal
motifs, which are considered as the most common types
of motifs [22]. As shown in Fig. 2, there are 32 kinds of
3-node, 3-edge, δ-temporal motifs and 4 kinds of 2-node,
3-edge, δ-temporal motifs. These 36 kinds of δ-temporal
motifs constitute the basic motifs in temporal graphs [1]. In
the toy example shown in Fig. 1, the edge sequence S =
〈(va, vc, 4s), (va, vc, 8s), (vd, va, 9s)〉 is a motif instance of
temporal motif M63, S = 〈(ve, vc, 6s), (vd, vc, 10s), (vd, ve,
14s)〉 is a motif instance of temporal motif M46, and S =

〈(vd, ve, 14s), (ve, vd, 18s), (vd, ve, 21s)〉 is a motif instance
of 2-node pair temporal motif M65.

And it also allows users to specify the types of motifs to
their interest in Def. 2

Problem 1 (δ-temporal Motif Counting). Give a temporal
graph G and a time interval δ, temporal motif counting is
to exactly count the number of motif instances for all 2-node
and 3-node, 3-edge, δ-temporal motifs in G.
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Fig. 2: All 2- and 3-node, 3-edge, δ-temporal motifs.

Key notations used in the paper are summarized in Table I.

TABLE I: Main notations and their definitions.
Notation Definition

G input temporal network
V, E, T node/edge/timestamp set of G
(vi, vj , t) an edge from vi to vj with timestamp t
Mij a δ-temporal motif
u center node

e = (t, v, dir) an edge w.r.t. current center node u
e.t, e.v, e.dir timestamp/node on the other side/direction of e

Su the edge sequence of center node u, sorted by time
Star[·, ·, ·, ·] the quadruple counter for star temporal motifs
Pair[·, ·, ·] the triple counter for pair temporal motifs
Tri[·, ·, ·, ·] the quadruple counter for triangle temporal motifs

δ the time constraint for δ-temporal motif
thrd the degree threshold for hierarchical parallel framework

IV. METHODOLOGY

In this section, we propose two fast algorithms for exactly
counting motif instances of all 2- and 3-node, 3 edge, δ-
temporal motifs in a given temporal graph. According to
topological structures, we first divide all 2- and 3-node, 3-
edge, δ-temporal motifs (in Fig. 2) into three categories:
pair temporal motifs (with green background), star temporal
motifs (with blue background) and triangle temporal motifs
(with yellow background). Pair temporal motifs only include
2 nodes with 3 temporal edges. Star and triangle temporal
motifs contain 3 nodes with 3 temporal edges forming star



structure and triangle structure respectively. Considering the
structural similarity between pair temporal motifs and star
temporal motifs, we use an unified fast exact algorithm to
count both of them.

A. Proposed Method for Star and Pair Temporal Motifs

In fact, there are 4 non-isomorphic pair temporal motifs
and 24 non-isomorphic star temporal motifs (in Fig. 2). We
first focus on the 24 non-isomorphic star temporal motifs. In
each kind of star temporal motif, we denote the node with
the largest degree (connected with 3 edges) as the center node
u. Each edge connected to center node u in graph G can be
defined by: (i) the timestamp t of the edge, (ii) another node v
linked to the edge, and (iii) the direction dir w.r.t. center node
u (outward from or inward to u). That is, each edge connected
to center node u can be expressed as e = (t, v, dir).

1) Three Types of Star Temporal Motifs: Star temporal
motifs are not centrosymmetric – 2 edges both connect to two
nodes while one isolated edge connects to another node. If
we ignore the directions of edges, but only consider the time
order of edges, we can divide these 24 kinds of star temporal
motifs into three types based on the time order of the isolated
edge (see Fig. 3):
• Star-I: The first edge in time order is isolated and

connects to one node. The second and third edges both
connect to another node.

• Star-II: The second edge in time order is isolated and
connects to one node. The first and third edges both
connect to another node.

• Star-III: The third edge in time order is isolated and
connects to one node. The second and third edges both
connect to another node.
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12 3 12 3 12 3 12 3

12 3
−direction

+direction
Star-Ⅰ
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−direction
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Fig. 3: Types of star temporal motifs.

2) Quadruple Counter for Star Temporal Motifs: We now
introduce a quadruple counter Star[Type, dir1, dir2, dir3] for
counting the number of motif instances of all star temporal

motifs, which considers both motif type and directions of three
edges. Specifically, the first dimension (i.e., Type) indicates
the type of star temporal motif (i.e., Star-I, Star-II, or Star-
III). The next three dimensions, i.e., dir1, dir2 and dir3,
represent the direction of first edge, second edge, and third
edge in each motif type, respectively. Notice that each edge
has two direction options: outward from or inward to its
center node u, which is denoted by o for outward or in
for inward respectively. Therefore, this quadruple counter can
record 3×2×2×2 = 24 kinds of motifs, which correspond to
24 non-isomorphic star temporal motifs in Fig. 2. For example,
Star[I, in, o, in] records the number of motif instances of
M24, because edge pattern of M24 follows that of Star-I, and
the first and third edges all link inward to the center node,
while the second edge moves outward from center node.

3) Fast Counting Algorithm for Star and Pair Temporal
Motifs: For counting all motif instances of all star and pair
temporal motifs, we treat each node in the given tempo-
ral graph as the center node u recursively. Specifically, for
each node u, we list its all linked edges in time order as
Su = 〈(t1, v1, dir1), (t2, v2, dir2), . . . , (ts, vs, dirs)〉, where
t1 ≤ t2 ≤ · · · ≤ ts. We aim to detect all motif instances
from the edge sequence Su w.r.t. center node u. Intuitively,
every edge in S − 〈(ts−1, vs−1, dirs−1), (ts, vs, dirs)〉 can be
regraded as the first edge of a star temporal motif. Suppose
that (ti, vi, diri) is currently selected as the first edge for a
star temporal motif, then (tj , vj , dirj) is selected as the third
edge one by one from ti until tj − ti ≥ δ. In each process, by
scanning all edges between the first edge and the third edge,
the type of star temporal motif can be determined, and the
corresponding number of motif instances can also be recorded.

Next, we elaborate the details of our proposed FAST-
Star algorithm for counting all star and pair temporal motifs.
Given an edge sequence Su w.r.t. the center node u, we now
choose e1 = (ti, v, diri) ∈ Su, e3 = (tj , w, dirj) ∈ Su
(tj − ti ≤ δ) as the first edge and third edge respectively.
Let e2 = (tk, x, dirk) (ti ≤ tk ≤ tj) be the second edge
candidate.

We first discuss the different cases for temporal motif
counting according to the choose of the second edge:

(a) If v 6= w (i.e., e1.v 6= e3.v), only the edges connected
to v or w can be selected as the second edge candidates
to form a star temporal motif. According to types of star
temporal motifs shown in Fig. 3, if x = w, then the formed
motif belongs to Star-I, and if x = v, it belongs to Star-
III. Specifically, the specific kind of star temporal motif
depends on the exact directions of the three edges. The
number of motif instances for each specific motif kind is
equal to the number of second edge candidates with same
x and dirk. As shown in Fig. 4 and Fig. 5, the number
of motif instances Star[I/III, diri, dirk, dirj ] is equal to the
number of the second edge candidates #(u,w/v, dirk)

tj
ti ,

where #(u,w/v, dirk)
tj
ti denotes the number of edges between

center node u and w/v with direction dirk w.r.t. u and
timestamp tk ∈ [ti, tj ].

(b) If v = w, all edges between the first edge and the third
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Fig. 4: Counting Star-I motifs by the second edge.
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Fig. 5: Counting Star-III motifs by the second edge.

edge can be chose as the second edge to form a temporal
motif. It is worth noting that when x = w = v, the currently
formed motif is a pair temporal motif. In other cases,
the formed motifs belong to Star-II. Similarly, the specific
kind of pair/star temporal motif depends on the directions
of the three edges, and the number of motif instances is
equal to the number of second edge candidates. Following the
counter Star[Type, dir1, dir2, dir3], we use a triple counter
Pair[dir1, dir2, dir3] to record the number of motif instances
for pair temporal motifs. As shown in Fig. 6, the number
of pair motif instances Pair[diri, dirk, dirj ] is equal to the
number of the second edge candidates #(u,w, dirk)

tj
ti , and

the number of star motif instances Star[II, diri, dirk, dirj ]
is equal to the number of the second edge candidates
#(u,¬w, dirk)

tj
ti , where #(u,¬w, dirk)

tj
ti denotes the num-

ber of edges between node u and other nodes except w with
direction dirk w.r.t. u and timestamp tk ∈ [ti, tj ].

Notice that there are only 4 kinds of non-isomorphic pair
temporal motifs, while here we count the number of motif
instances for 8 kinds of pair temporal motifs in counter
Pair[·, ·, ·]. This is because each pair of them are isomorphic,
i.e., Pair[in, in, in] ∼= Pair[o, o, o] ∼= M55, Pair[in, o, o] ∼=
Pair[o, in, in] ∼= M56, Pair[in, o, in] ∼= Pair[o, in, o] ∼=
M65, and Pair[in, o, in] ∼= Pair[o, in, o] ∼=M66.

Taking the temporal graph shown in Fig. 1 as an example,
suppose that δ = 10 seconds and node va is selected as
the center node u, the edge sequence of node va is Sa =
〈(4s, vc, o), (8s, vc, o), (9s, vd, in), (11s, vb, o), (15s, vc, o)〉.

First, let e1 = Sa[1] = (4s, vc, o) and e3 = Sa[3] =
(9s, vd, in). So the second edge candidate can only choose
Sa[2] = (8s, vc, o). Since e1.v 6= e3.v (i.e., vc 6= vd) and
e2.v = vc = e1.v, the currently formed motif is a Star-III
motif, hence Star[III, o, o, in] += 1. Next, e1 remains un-
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Fig. 6: Counting Star-II and Pair Temporal Motifs.

changed, and let e3 = Sa[4] = (11s, vb, o). Since e1.v 6= e3.v,
there is only one candidate for the second edge, i.e., (8s, vc, o).
This is because only the edges connected to e1.v (i.e., vc) or
e3.v (i.e., vb) can be selected as the second edge candidates
to form 3-node star motif. According to the second edge
((8s, vc, o)), the formed motif is also a Star-III motif, and
thus Star[III, o, o, o] += 1. Then, e1 remains unchanged, and
let e3 = Sa[5] = (15s, vc, o). Because 15s − 4s = 11s > δ,
(15s, vc, o) and the edges after it can no longer be chosen as
the third edge w.r.t. the current e1.

Therefore, we need to move the first edge e1 to Sa[2] =
(8s, vc, o), and select edge Sa[4] = (11s, vb, o) as the initial
third edge e3. The traversal process of the second edge is
the same as above. Since edge Sa[3] = (9s, vd, in) does not
meet the requirements of the node (i.e., vc or vb), it can not
constitute a motif with the current e1 and e3. Next, keep e1
unchanged, and move e3 to Sa[5] = (15s, vc, o). Since e1.v =
e3.v = vc, all edges between e1 and e3 can be selected as
the second edge. Thus, the formed motifs by (9s, vd, in) and
(11s, vb, o) are both Star-II motifs, and Star[II, o, in, o] += 1
and Star[II, o, o, o] += 1. So far, the star and pair temporal
motif counting w.r.t. the node va is over.

In this way, we treat each node as the center node in turn,
and then we can count all motif instances for all star temporal
motifs as well as pair temporal motifs.

4) Complexity Analysis: Algorithm 1 shows the pseudo-
code of the proposed FAST-Star for counting all kinds of star
and pair temporal motifs.

As depicted in lines 7-28 in Algorithm 1, instead of travers-
ing all edges between the first edge and the third edge for the
choice of the second edge, we leverage the traversal of the third
edge to realize the scan of the second edge, which significantly
reduces the computation cost. More specifically, in the process
of determining the third edge we use two HashMaps (i.e.,
min and mout) to simultaneously record the direction and the
number of all the second edge candidates, and thus we no
longer need to traverse all the edges again between the first
and the third edges. Since min and mout stores the number
of edges connecting different nodes between the first and
third edges (min and mout respectively records two different
directions relative to center node u), the number of the second
edge candidates (i.e., #(u, v, in/o)

tj
ti , #(u,w, in/o)

tj
ti ) can be

queried in min and mout only based on the first edge and the
third edge. Notice that min and mout) always are initialized
to be empty at the beginning of each iteration.



Algorithm 1 FAST algorithm for Star/Pair Temporal Motifs

Input: Temporal graph G = {V, E , T }, and time constraint δ.
Output: Star counter Star[·, ·, ·, ·], pair counter Pair[·, ·, ·].

1: for each node u ∈ V do
2: get Su = 〈(t1, v1, dir1), (t2, v2, dir2), . . . , (ts, vs, dirs)〉;

3: for i = 1 to s− 2 do
4: e1 ← Su[i];
5: #ein ← 0; #eout ← 0;
6: min,mout ← HashMap.Init();
7: for j = i+ 1 to s do
8: e3 ← Su[j];
9: if e3.t− e1.t > δ then

10: break;
11: end if
12: if e3.v == e1.v then
13: Pair[diri, in, dirj ] += min[e1.v];
14: Pair[diri, o, dirj ] += mout[e1.v];
15: Star[II, diri, in, dirj ] += #ein −min[e1.v];
16: Star[II, diri, o, dirj ] += #eout −mout[e1.v];
17: else
18: Star[I, diri, in, dirj ] += min[e3.v]);
19: Star[I, diri, o, dirj ] += mout[e3.v]);
20: Star[III, diri, in, dirj ] += min[e1.v]);
21: Star[III, diri, o, dirj ] += mout[e1.v]);
22: end if
23: if e3.dir == i then
24: min[e3.v] += 1; #ein += 1;
25: else
26: mout[e3.v] += 1; #eout += 1;
27: end if
28: end for
29: end for
30: end for
31: return Star[·, ·, ·, ·], Pair[·, ·, ·];

We now analyze the time complexity of our proposed FAST-
Star for counting star and pair temporal motifs. We suppose
that the degree of the i-th node in the temporal graph is di,
and the average number of edges connected to the i-th node
within time interval δ is dδi . For each node, the worst time
complexity of the counting process is O(d2). Therefore, the
worst time complexity for whole graph is O(

∑|V|
i=1(d

2
i )).

If we take time constraint δ into consideration, then the
traversal space of the third edge is reduced to dδi . There-
fore, the time complexity of counting process for i-th node
becomes O(did

δ
i ), and the worst time complexity for whole

graph is O(
∑|V|
i=1(did

δ
i )). Since dδi << di, assuming that

dδi of all nodes is approximately equal, denoted by dδ , thus
O(

∑|V|
i=1(did

δ
i )) ≈ O(dδ

∑|V|
i=1(di)) ≈ O(2dδ|E|), where |E|

is the number of temporal edges in graph G. Namely, our
FAST-Star algorithm achieves the time complexity linear in
the number of temporal edges of the input graph.

B. Proposed Method for Triangle Temporal Motifs

In this section, we present the details of our proposed exact
counting algorithm FAST-Tri for counting the number of motif
instances for all triangle temporal motifs.

1) Three Types of Triangle Temporal Motifs: To identify
potential triangle motifs, we first choose a node in graph G as
the center node u, and then determine two different temporal
edges connected to center node u such that the other two
connected nodes are different. We denote these two temporal
edges as ei = (ti, v, diri) and ej = (tj , w, dirj), where
tj − ti ≤ δ, and diri and dirj are the directions of ei and
ej w.r.t. center node u, respectively. Each edge between v
and w and the two edges above may form triangle temporal
motifs, depending on whether the time constraint δ is satisfied.
Therefore, we next consider each edge ek between nodes v and
w that satisfy the time constrain δ. Let tk be the timestamp
of edge ek and dirk be the direction of edge ek w.r.t. node
v (i.e., o indicates from v to w and in denotes from w to v).
Unlike FAST-Star, the order of three edges is determined by
their timestamps. Then according to the order of three edges,
we determine the types of triangle temporal motif and use
corresponding counter to count the triangle temporal motif.

According to the time order of three edges (i.e., tk, ti and
tj), we divide all kinds of triangle temporal motifs into three
types (see Fig. 7):
• Triangle-I: If tk < ti and tj − tk ≤ δ, then the formed

triangle temporal motif belongs to Triangle-I type motif.
• Triangle-II: If ti ≤ tk ≤ tj , then the formed triangle

temporal motif belongs to Triangle-II type motif.
• Triangle-III: If tj < tk and tk− ti ≤ δ, then the formed

triangle temporal motif belongs to Triangle-III type motif.
2) Fast Counting Algorithm for Triangle Temporal Motifs:

Considering the directions of the three edges for each type
of triangle temporal motifs, we also introduce a quadru-
ple counter Tri[Type, diri, dirj , dirk] for counting the num-
ber of motif instances for all types of triangle tempo-
ral motifs. Notice that there are 3 × 2 × 2 × 2 = 24
counters in Tri[Type, diri, dirj , dirk], while we have only
8 non-isomorphic triangle temporal motifs (see Fig. 2).
Namely, there exit some triangle temporal motifs recorded in
Tri[Type, diri, dirj , dirk] are isomorphic.

As shown in Fig. 8, the triangle temporal motifs corre-
sponding to every three counters in Tri[Type, diri, dirj , dirk]
are isomorphic. Therefore, we only need to merge these
isomorphic counters at the end for outputting the final result.

Next, we use a specific example to illustrate how our
algorithm counts triangle temporal motifs with time constraint
δ=10 seconds. Suppose that the current center node is node e in
the temporal graph shown in Fig. 1. We already have the edge
sequence Se = 〈(1s, vd, o), (6s, vc, o), (14s, vd, in), (18s, vd,
o), (21s, vd, in)〉 when counting the star/pair temporal motifs.

We first select Se[1] (i.e., (1s, vd, o)) as ei, thus edge ej
should meet two constraints: (i) tj − ti ≤ δ, and (ii) ej .v 6=
ei.v. Therefore, only Se[2] = (6s, vc, o) is qualified candidate
for ej . If Se[2] is selected as ej , we then get the edge set
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Fig. 8: Illustration of isomorphic triangle temporal motifs.

between vc and vd: E(vc,vd) = {(vd, vc, 10s), (vc, vd, 17s)}.
Since 10s − ti = 9s < δ and 17s − ti = 16s > δ, only
(vd, vc, 10s) can be selected as ek to form a Triangle-III motif,
and thus Tri[III, o, o, o] += 1.

Next, ei moves to Se[2], thus only Se[3] = (14s, vd, in) is
qualified candidate for ej . If ej = Se[3], only edge (vd, vc,
10s) ∈ E(vc,vd) can be chosen as ek to form a Triangle-II
motif, and thus Tri[II, o, in, o] += 1. Among the remaining
edges, no edge can be selected for ei, because there is no
qualified ej to be selected for each potential ei. Now we find
out all triangle temporal motifs with node ve as center node.

3) Complexity Analysis: Algorithm 2 shows the pseudo-
code of our proposed FAST-Tri for counting all triangle
temporal motifs.

Notice that each triangle temporal motif instance is counted
three times repeatedly, because each instance can form
three different types of triangle temporal motifs w.r.t. its
three vertices, respectively. For example, edge sequence
〈(va, vc, 8s), (vd, va, 9s), (vc, vd, 17s)〉 in Fig. 1 forms an
instance of triangle temporal motif M25. When va is se-
lected as the center node, this instance can be identified
as an instance recorded in Tri[III, o, in, o]. When vc is
selected as the center node, this instance will be detected
as an instance recorded in Tri[II, in, o, in]. When vd is
selected as the center node, this instance is recognized as
an instance recorded in Tri[I, o, in, o]. In fact, the counters
Tri[III, o, in, o], Tri[II, in, o, in] and Tri[I, o, in, o] are iso-
morphic. Therefore, as shown in Fig. 8, each triangle temporal
motif can be identified as three distinct triangle types based on
its three different vertices respectively. That is, each triangle
temporal motif is counted three times.

However, it is easy to handle this issue in a single thread.
That is, when the number of motif instances w.r.t. center
node u has been counted, center node u is removed from V ,
including all connected edges, to avoid redundant counting.
In this work, we target on a counting framework that is
natively parallel. To achieve this, we have to avoid any de-

Algorithm 2 FAST algorithm for Triangle Temporal Motifs

Input: Temporal graph G = {V, E , T }, and time constraint δ.
Output: Triangle counter Tri[·, ·, ·, ·].

1: for each node u ∈ V do
2: get Su = 〈(t1, v1, dir1), (t2, v2, dir2), . . . , (ts, vs, dirs)〉;

3: for i = 1 to s− 1 do
4: ei ← Su[i];
5: for j = i+ 1 to s do
6: ej ← Su[j];
7: if ej .t > ei.t+ δ then
8: break;
9: end if

10: if ej .v == ei.v then
11: continue;
12: end if
13: for each edge e ∈ E(ei.v,ej .v) do
14: if tj − δ ≤ e.t < ti then
15: Tri[I, diri, dirj , e.dir] + +;
16: else if ti ≤ e.t ≤ tj then
17: Tri[II, diri, dirj , e.dir] + +;
18: else if tj < e.t ≤ ti + δ then
19: Tri[III, diri, dirj , e.dir] + +;
20: else if e.t > ti + δ then
21: break;
22: end if
23: end for
24: end for
25: end for
26: V ← V−{u}; E ← E−{eu}; //Only for single threading
27: end for
28: return Tri[·, ·, ·, ·]

pendency among different processes/threads, while eliminating
the repeated counting will inevitably introduce dependency.
Therefore, in multi-threading environment, to avoid any de-
pendency among different processes/threads, we do not do any
processing, but repeatedly count and finally divide by three.

We then analyze the time complexity of FAST-Tri algo-
rithm. Similarly, we use di to denote the degree of the i-th
node and dδi to represent the average number of edges within
δ for the i-th node. For each center node, the worst time
complexity of searching two edges for constructing potential
triangle motifs is O(did

δ
i ). In the worst case, every combina-

tion of two edges can form a potential triangle motif. Hence,
the worst time complexity for one node is O(did

δ
i ξ), where ξ

denotes the average number of edges between two nodes. For



the whole graph, the worst time complexity is O(
∑|V|
i=1 did

δ
i ξ).

Using some implementation tricks, ξ can be reduced to the
number of edges between two nodes within δ time interval,
i.e., ξ ≤ dδi . Therefore, the worst time complexity for the
whole graph is less than O(

∑|V|
i=1 di(d

δ
i )

2).
Because dδi << di, we assume that dδi of all nodes is

approximately equal, denoted by dδ , thus O(
∑|V|
i=1 di(d

δ
i )

2) ≈
O((dδ)2

∑|V|
i=1(di)) ≈ O(2(dδ)2|E|). That is, our FAST-Tri

also achieves linear time complexity with the input graph.

C. Hierarchical Parallel Framework
As described in Algorithm 1 and Algorithm 2, our al-

gorithms recursively tread each node in temporal graph as
center node to detect all motif instances, which have no direct
data dependency. Therefore, our proposed FAST (general term
for FAST-Star and FAST-Tri) naturally has high parallelism,
namely, our FAST converts the temporal motif counting into
an embarrassingly parallel problem. Nevertheless, we find that
simply employing multi-threading do not achieve the desired
effect (e.g., approximately linear speedup) on same graph
datasets. This is because the degree distribution of the nodes in
most temporal graphs is extremely unbalanced, which leads to
the load unbalanced problem of multi-threading. Even if some
balanced load strategies are considered at the node level (e.g.,
dynamic schedule), the expected results cannot be achieved.
Fig. 9 shows the degree distribution of all nodes in WikiTalk
graph, and the average time consumption of counting all motif
instances required per node with corresponding degree. We
observe that although the degree distribution of the graph has
a typical long-tailed distribution, the few nodes with higher
degrees (e.g., top ten node) account for the dominant part
of the time consumption of whole graph. Fortunately, from
Algorithm 1 and Algorithm 2, it is not difficult to see that
temporal motif counting process inside the node in our FAST
also has high parallelism.
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Fig. 9: Data statistics on WikiTalk.
To address the above issue, we propose a Hierarchical

pArallel fRamEwork (HARE) for the proposed FAST to accel-
erate the counting of temporal motifs powerfully. Specifically,
our framework consists of two parallel strategies: inter-node
parallel and intra-node parallel mechanisms. More specifi-
cally, since our proposed FAST has inherent parallelism both
within and among nodes, we implement these two parallel
mechanisms for our HARE based on OpenMP.

Inter-node parallel: because the temporal motif counting of
different nodes are independent of each other, we can assign

TABLE II: Basic statistics of twelve temporal networks.

Dataset #nodes #temporal edges Time span (day)

Email-Eu 986 332,334 803
CollegeMsg 1,899 20,296 193
Bitcoinotc 5,881 35,592 1,903

Bitcoinalpha 3,783 24,186 1,901
Act-mooc 7,143 411,749 29
SMA-A 44,090 544,817 338

FBWALL 45,813 855,542 1,591
MathOverflow 24,818 506,550 2,350

AskUbuntu 159,316 964,437 2,613
SuperUser 194,085 1,443,339 2,773

Rec-MovieLens 283,228 27,753,444 1,128
WikiTalk 1,140,149 7,833,140 2,320

StackOverflow 2,601,977 63,497,050 2,774
IA-online-ads 15,336,555 15,995,634 2,461
Soc-bitcoin 24,575,382 122,948,162 2,584

RedditComments 8,036,164 613,289,746 3,686

one or more nodes to a thread, and assign all nodes to different
threads to realize parallel motif counting for all nodes. In
addition, we use the dynamic scheduling mode provided by
OpenMP to effectively solve the problem of load imbalance.

Intra-node parallel: inside each node, the motif counting
process can be divided into subtasks according to different
starting edges. In fact, data reading and writing operations
within the node are more vulnerable to multi-threading, which
can result in unpredictable results. To ensure parallelism within
the node, we use the reduction tool provided by OpenMP to
copy the variables within node, so that each thread keeps the
backup of these variables, and then reduce and output the final
result after all tasks are completed.

In particular, we set a degree threshold thrd for our hierar-
chical parallel framework. For the nodes with a degree greater
than thrd, we will enable intra-node parallel mode, otherwise,
perform inter-node parallel strategy.

It is worth noting that HARE is able to directly use OpenMP
tool to handle load imbalance in both inter-node and intra-
node parallel modes, because we design HARE to be natively
parallel. There is no any dependency among different threads.

V. EXPERIMENT

A. Datasets

We conduct extensive experiments on sixteen real-world
temporal networks, which are available publicly in [38] [39].

• Email-Eu is a collection of internal email records from a
European research institution. An edge (u, v, t) signifies
that person u sent person v an email at time t.

• CollegeMsg is a network of private messages sent on
an online social network at the University of California,
Irvine.

• Bitcoinotc and Bitcoinalpha are Bitcoin OTC and Bit-
coin Alpha web of trust network respectively. An edge
(u, v, t) in these datasets denotes that bitcoin was trans-
ferred from address u to address v at time t.

• Act-mooc is a collection of student actions on a pop-
ular MOOC platform. The actions are represented as a
directed, temporal network.
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3.7K 7.2K 2.3K 2.3K 0.6K 1.5K

EX

1.7K 3.1K 7.7K 1.9K 0.8K 0.7K
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25K 126K 124K 18.5K 2.9K 1.9K

59K 37K 30M 76K 8K 10.8K

22K 92K 66.9K 20.6K 11K 17K

68K 82K 64.9M 61K 5.6M 114K

31K 139K 189K 28.6K 142K 119K

EX
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(c) WikiTalk

197K 476K 739K 230K 127K 114K

1.08M 1.64M 475K 139K 55K 26K

339K 292K 492K 253K 65K 321K

1.07M 1.96M 343K 358K 183K 325K

312K 375K 682K 248K 1.01M 393K

657K 1.47M 360K 347K 63K 175K

EX

197K 476K 739K 230K 127K 114K

1.08M 1.64M 475K 139K 55K 26K
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FAST

(d) StackOverflow

Fig. 10: Counts of motif instances of all 2-node and 3-node, 3-edge δ-temporal motifs with δ = 600s. For each dataset, counts
in the i-th row and j-th column is the number of motif instances of Mij . The color for motif Mij indicates the fraction over
all Mij on a linear scale – darker blue/red means a higher count.

• SMS-A is a texting service provided on mobile phones.
In this dataset, an edge (u, v, t) means that person u sent
an SMS message to person v at time t.

• FBWALL is derived from the social network Facebook
located in the New Orleans region, where the edges are
wall posts between users.

• MathOverflow, Askubuntu, Superuser and StackOver-
flow are derived from user interactions on Stack Ex-
change question and answer forums. A temporal edge
represents a user replying to a question, replying to a
comment, or commenting on a question.

• Rec-MovieLens is a rating dataset from the MovieLens
website, where an edge (u, v, t) signifies that user u rated
the movie v at time t.

• WikiTalk is a network of Wikipedia users making edits
on each others’ “talk pages”. An edge (u, v, t) indicates
that user u edited user v′s talk page at time t.

• IA-online-ads contains information about the product re-
lated advertisements a user has clicked. An edge (u, v, t)
indicates that user u clicked on advertisement v at t.

• Soc-bitcoin is a large-scale bitcoin transaction network
where each edge (u, v, t) denotes that bitcoin was trans-
ferred from address u to address v at time t.

• RedditComments is constructed from a large collection
of comments made by users on a popular social media
platform https://www.reddit.com. An edge (u, v, t) indi-
cates that a comment from user u to user v at time t.

Specifically, we collect seven large-scale datasets with more

than one millions of temporal edges to better analyze the
performance of our framework, especially, Soc-bitcoin and
RedditComments have more than 100M temporal edges. The
detailed statistics of these datasets are summarized in Table II.
B. Baselines

We compare our algorithms against the following baselines:
• EX [1] – An exact algorithm for counting all 2-node and

3-node, 3 edge temporal motifs. This algorithm is most
relevant to our problem and is our main competitor in
some experiments.

• 2SCENT [14] – An algorithm for enumerating simple
temporal cycle, i.e., triangle temporal motifs.

• BT [15] – A backtracking algorithm for temporal sub-
graph isomorphism. Since there is no public code, we
use the BT algorithm implemented by [16] for counting
pair temporal motifs.

• BTS [16] – An approximate algorithm based on interval
sampling for temporal motif counting with exact algo-
rithm BT used as a subroutine.

• EWS [17] – An approximate algorithm based on edge
and wedge sampling for counting temporal motifs with 3
nodes and 3 edges.

Notice that we use *-Pair and *-Tri to denote the variants
of * for counting pair temporal motifs and triangle temporal
motifs, respectively.
C. Experimental Setting

All experiments are conducted on a server running Ubuntu
18.10 with 40-core 2.30GHz Intel Xeon E5-2650 v3 processor

https://www.reddit.com


TABLE III: Running time in seconds of all algorithms on all temporal networks. δ = 600s and #threads = 1.

Dataset
EX EWS FAST BT-Pair BTS-Pair FAST-Pair 2SCENT-Tri FAST-Tri

Time (s) Time (s) Time (s) speedup Time (s) Time (s) Time (s) speedup Time (s) Time (s) speedup

Email-Eu 0.4739 0.3685 0.4324 1.1x 0.6903 0.1754 0.0679 10.1x 11.2839 0.1885 59.8x

CollegeMsg 0.0847 0.0621 0.0560 1.5x 0.1604 0.0312 0.0186 8.6x 1.4527 0.0218 66x

Bitcoinotc 0.1147 0.0280 0.0170 6.5x 0.1108 0.0037 0.0054 20.5x 1.1021 0.0074 148x

Bitcoinalpha 0.0703 0.0195 0.0113 6.2x 0.0772 0.0106 0.0051 15.1x 0.75487 0.0046 164x

Act-mooc 2.9573 0.6978 1.4810 1.9x 0.6823 0.3587 0.2032 3.4x 3.5363 0.8942 3.9x

SMS-A 0.4060 0.5008 0.1956 2.1x 0.8308 0.1262 0.0925 8.9x 4.6176 0.0351 131x

FBWALL 1.2045 0.7607 0.1339 8.8x 1.0071 0.1173 0.0583 17.3x 6.2523 0.0578 108x

MathOverflow 2.5498 0.3468 0.1013 25x 1.2335 0.0952 0.0180 68.5x 3.2846 0.0426 77x

Askubuntu 3.0907 0.6341 0.2681 11x 2.4465 0.2393 0.0562 43.5x 5.9988 0.1750 34x

Superuser 5.6000 0.9960 0.4199 13x 3.7189 0.5203 0.0835 26.7x 8.3369 0.2808 29x

WikiTalk 27.1527 12.1908 23.0929 1.2x 18.8316 7.5769 4.5980 4.1x 61.8645 17.3112 3.5x

IA-online-ads 80.5552 48.9832 26.3587 2.6x 28.4565 13.3298 7.1345 3.9x 183.3022 2.1798 84.1x

StackOverflow 503.9162 57.2630 59.5124 8x 97.3559 26.8346 4.9405 19.7x 215.6287 49.9042 4.3x

Rec-MovieLens 1238.8557 149.399 136.2383 9.1x 83.6547 24.9987 20.6102 4x 484.9321 63.6283 7.6x

Soc-bitcoin 3491.3959 595.5708 802.7460 4.3x 698.2412 86.4989 98.8155 7.1x 1795.2359 198.9950 9x

RedditComments 7968.3687 1133.7942 1019.3465 7.8x 1605.1336 123.0630 158.9597 10.1x 2943.4058 360.0926 8.2x

and 128GB RAM. We download the codes of baselines
published by the authors and followed the compilation and
usage instructions. All algorithms are implemented in C++11
compiled by GCC v8.3.0 with -O3 optimizations. To run in
parallel, all baselines use the same OpenMP mode to our
method for parallel speedup.

For 2SCENT, we use the algorithm with bloom filter and
bundle to find the temporal cycles. For BTS, we use the same
parameter sampling probability qj provided in [16]. For EWS,
we set the edge sampling p = 0.01 and wedge sampling q = 1.

D. Accuracy Evaluation

First, we verify the accuracy of the proposed FAST on four
datasets with different degree distributions and different data
scales compared with the exact EX algorithm. We report the
counts of motif instances of all 2-node and 3-node, 3-edge
temporal motifs with δ = 600s detected by our method and
EX algorithm in Fig. 10.

As we can see, the color scale in blue figures and red figures
are identical, which means our FAST can find out the same
number of motif instances of all kinds of temporal motifs
as exact EX algorithm on four tested datasets. For example,
both FAST and EX count 302K motif instances of all star
temporal motifs on the small dataset CollegeMsg, and both
detect 1217K motif instances of all triangle temporal motifs
on the large dataset StackOverflow in all. In addition, our
FAST can detect accurate number of instances for specific
type of temporal motif, e.g., pair temporal motifs. Our FAST
detect 31.6K instances and 10.6K instances of pair motif M55

on CollegeMsg and Superuser datasets, which are the same
as those of EX. Furthermore, our FAST can detect accurate
results on extremely unbalanced dataset (i.e., WikiTalk). For
example, FAST find out exact 65.7M and 64.9M instances for

star temporal motifs M13 and M53 on WikiTalk compared to
EX algorithm. Lastly, this experiment also verifies that our
designed triple and quadruple counters for both star/pair and
triangle motifs all can accurately identify the kinds of different
temporal motifs.

E. Efficiency Evaluation

We next study the efficiency of our FAST in counting
temporal motifs on all datasets compared with both exact
and sampling baselines in a single-threaded environment. We
report the experimental results of all algorithms in Table III.
Notice that EX, BT-Pair, and 2SCENT-Tri are exact algo-
rithms, and EWS and BTS-Pair are sampling algorithms. Since
our FAST is an exact algorithm, the speedup is calculated by
the corresponding exact algorithm. 2SCENT can only detect
the triangle motif M26, while FAST-Tri can find out all kinds
of triangle temporal motifs.

As shown in Table III, our FAST (including FAST-Pair and
FAST-Tri) is significantly faster than all exact baselines on
all datasets in the single-threaded environment. In particular,
FAST achieves average 7× speedup against EX algorithm
across all datasets, reaching up to 25× speedup on Math-
Overflow. This is because FAST can directly identify the
kinds of temporal motifs according to edge information and
relationship between edges, and uses two quadruple counters
(i.e., Star[·, ·, ·, ·] and Tri[·, ·, ·, ·]) and one triple counter
(i.e., Pair[·, ·, ·]) to record the number of instances for all
kinds of temporal motifs simultaneously. Besides, our FAST
also employs the most efficient implementation strategies
to achieves the least edge traversal and counter updating
operation, which significantly reduces the computation cost.
Although EX algorithm also achieves linear time complexity,
it maintains more than ten triple and tuple counters and
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Fig. 11: Running time in seconds of parallel algorithms w.r.t. #threads.

requires multiple complex update operations for each temporal
edge. Our FAST-Pair and FAST-Tri also perform much better
than their corresponding exact algorithms (i.e., BT-Pair and
2SCENT-Tri). Specifically, FAST-Pair and FAST-Tri improve
average 18.2× and 65.7× efficiency against their counterparts
on all datasets, even if 2SCENT-Tri only count one kind of
triangle temporal motif. FAST-Pair achieves more than 100
speedup over 2SCENT-Tri on four datasets (i.e., Bitcoinotc,
Bitcoinalpha, SMS-A and FBWALL). The main reason is that
2SCENT-Tri detects the triangle motif M26 by enumerating all
circles, and thus the time complexity is very large. Our FAST-
Tri detects all triangle temporal motifs in the edge sequence
of each node recursively, which can achieve a running time
linear in the number of temporal edges in the graph.

Moreover, our FAST achieves the comparable performance
to state-of-the-art sampling algorithms (i.e., EWS and BTS).
On ten of fourteen datasets (e.g., SMS-A, Facebook-wall,
MathOverflow, Askubuntu, Superuser and Rec-MovieLens),
our FAST even significantly exceeds state-of-the-art sampling
algorithm EWS. For pair motif counting, our FAST-Pair also
significantly outperforms the sampling algorithm BTS-Pair on
almost all datasets, reaching 6.2× speedup on MathOverflow
dataset. The possible reason is that our propose algorithm not
only designs the ingenious counters, but also achieves the least

edge traversal without any redundancy in single threading,
so as to minimize computation cost. Due to the large time
complexity of the basic algorithms adopted by the sampling
methods, the time consumption of the sampling methods is still
relatively large. For example, on large-scale StackOverflow
and Rec-MovieLens datasets, the sampling methods no longer
has any time efficiency advantage in comparison to our FAST.

F. Scalable Evaluation
Next, we evaluate the scalability of our proposed hierar-

chical parallel framework HARE compared with the paral-
lel baselines. We report the experimental results on twelve
datasets in Fig. 11. Notice that HARE and EX algorithm refer
to left ordinate axis, and HARE-Pair and BTS-Pair refer to
right ordinate axis. For our hierarchical parallel framework,
we set thrd to the minimum value of degrees of top 20 nodes
in each dataset.

As shown in Fig. 11, our HARE consistently outperforms
EX algorithm in all tested cases on all tested datasets. As
the number of threads increases, the counting time of HARE
decreases, almost reaching a linear speedup. In particular,
HARE achieves 26.3× and 24× speedup on large-scale Stack-
Overflow and RedditComments datasets as the number of
threads increases from 1 to 32. But the time consumed by
Ex first decreases and then increases as the number of threads



increases. After more than 16 threads, the running time of EX
even exceeds the time of single thread on most datasets. This
is because our designed FAST realizes the divide and conquer
of the nodes in the network, and solves the problem of data
dependence, which is very suitable for parallel computing. At
the same time, the proposed hierarchical parallel framework
HARE achieves simultaneous inter-node and intra-node par-
allelism, which effectively solves the problem of unbalanced
load caused by nodes with a large degree consuming most
of the time. Although EX algorithm can be implemented in
parallel by dividing different time periods, its algorithm design
involves data dependence, such as the counting processing for
each edge depends on the situations of the previous edges.
According to this design, each thread cannot be completely
independent. When more threads are used, the time consump-
tion caused by data dependency would offset the improvement
brought by multi-threading. Specifically, our HARE achieves
538×, 203×, 148×, and 137× speedup against EX algorithm
when #threads = 32 on MathOverflow, RedditComments,
Rec-MovieLens, and SuperUser datasets, respectively.

Furthermore, our HARE-Pair also significantly performs
better than the sampling method BTS-Pair for counting pair
temporal motifs in multi-threaded environment. As the number
of threads increases, the time utilized by both HARE-Pair and
BTS-Pair decreases. However, the time consumed by BTS-
Pair begins to increase on some datasets (e.g., FBWALL and
WikiTalk), while our HARE-Pair is decreasing. In particular,
HARE-Pair is faster than BTS-Pair by 10.6 times on large-
scale IA-online-ads dataset when #threads = 32. The main
reason may be that BT algorithm employed by BTS has large
time complexity (i.e., O(|E|(dδ)|E|−1)), while our algorithm
for star/pair motifs is linear in the number of temporal edges
in the graph, i.e., O(2dδ|E|)).

In summary, this experiment effectively verifies the scalabil-
ity of our proposed hierarchical framework on multi-threaded
parallelism. Meanwhile, it also illustrates the huge advantages
and potential capabilities of our framework on large-scale
network datasets.

G. Parameter Sensitivity
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Fig. 12: Parameter sensitivity w.r.t. δ and thrd

We now investigate the sensitivity of our proposed frame-
work HARE w.r.t. two important parameters, i.e., time con-
straint δ and the degree threshold thrd. We report the running
time of HARE and EX with different δ values on SuperUser,

Askubuntu, and MathOverflow datasets when #threads = 32
in Fig. 12(a), and report the running time of HARE w.r.t.
different thrd varying #threads from 1 to 32 on WikiTalk
dataset in Fig. 12(b), where ‘dynamic’ denotes that dynamic
scheduling model of OpenMP is used, and ‘without thrd’
means that default (i.e., static) mode is used.

From the results in Fig. 12(a), we can see that the per-
formance of EX is almost unaffected by δ, and our HARE
increases slightly with the increase of δ. This is consistent
with the above time complexity analysis. However, our HARE
is still 37-138 times faster than EX algorithm on three
datasets when δ = 28.8K seconds. Fig. 12(b) illustrates
the performance of our parallel framework w.r.t. the values
of degree threshold thrd. As you can see, our HARE that
uses the hierarchical parallel strategy is significantly faster
than the parallel variations without it. Specifically, HARE
reaches the best performance when thrd = 20K among all
tested cases. When thrd = 20K and thrd = 25K, our
algorithm performance has some decline, but still performs
good. That is, our algorithm can obtain an expected speedup
when thrd falls in a large range. Additionally, we also verify
the effectiveness of dynamic scheduling model of OpenMP on
WikiTalk dataset. As shown in Fig. 12(b), dynamic scheduling
indeed significantly outperforms the version without it (i.e.,
dynamic vs. without thrd).

VI. CONCLUSION

In this paper, we propose a scalable solution for temporal
motif counting in large-scale temporal networks. Specifically,
we design two fast exact algorithms FAST-Star and FAST-Tri
for counting motif instances for star/pair temporal motifs and
triangle temporal motifs, respectively. Our customized FAST-
Star and FAST-Tri both achieve the time complexity linear in
the number of temporal edges of input graph. Based on the
natural parallelism of our designed two fast algorithms, we
eventually propose a hierarchical parallel framework HARE
that fully leverages the multi-threading capacity of modern
CPU to realize the most efficient temporal motif counting. We
perform extensive experiments on sixteen real-world temporal
graphs to demonstrate the superiority and scalability of our
proposed method compared with other baselines. Our proposed
framework HARE achieves up to 538 times faster than state-
of-the-art techniques. Although the proposed algorithms are
specially optimized for 2- and 3-node, 3-edge temporal motifs,
it will be able to efficiently count the higher-order (more
nodes) temporal motifs by expanding the number of center
nodes and slightly adapting the structure of the counters, which
will be our future work.
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