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Abstract—In recent years multi-core processors have seen
broad adoption in application domains ranging from embedded
systems through general-purpose computing to large-scale data
centres. Simulation technology for multi-core systems, however,
lags behind and does not provide the simulation speed required to
effectively support design space exploration and parallel software
development. While state-of-the-art instruction set simulators
(ISS) for single-core machines reach or exceed the performance
levels of speed-optimised silicon implementations of embedded
processors, the same does not hold for multi-core simulators
where large performance penalties are to be paid. In this paper
we develop a fast and scalable simulation methodology for
multi-core platforms based on parallel and just-in-time (JIT)
dynamic binary translation (DBT). Our approach can model
large-scale multi-core configurations, does not rely on prior
profiling, instrumentation, or compilation, and works for all bi-
naries targeting a state-of-the-art embedded multi-core platform
implementing the ARCompact instruction set architecture (ISA).
We have evaluated our parallel simulation methodology against
the industry standard SPLASH-2 and EEMBC MULTIBENCH

benchmarks and demonstrate simulation speeds up to 25,307
MIPS on a 32-core x86 host machine for as many as 2048 target
processors whilst exhibiting minimal and near constant overhead.

I. INTRODUCTION

With the proliferation of multi-core processor implemen-

tations in virtually all computing domains ranging from em-

bedded systems through general-purpose desktop machines to

large-scale data centres, the need is growing for scalable and

multi-core enabled instruction set simulators (ISS). Software

and hardware developers alike rely on efficient ISS technology

for design space exploration, convenient software development

in the early design stages of a new system, hardware and soft-

ware performance optimisation, and debugging. Unfortunately,

development of scalable multi-core ISS technology has not

kept pace with the rapid advances in multi-core architecture

design. Ever-increasing numbers of cores contained in future

computing systems challenge today’s simulation technology

and pose serious performance and scalability bottlenecks.

Unlike multi-core simulators, simulation technology for

single-processor systems is mature and provides high sim-

ulation rates for complex, superscalar, out-of-order architec-

tures [1]. For some embedded processors, simulators even

exceed the native execution performance of speed-optimised

silicon implementations of the target processor [2] whilst, at

the same time, providing architectural observability. These

remarkable performance levels for single-core instruction set

simulation have been enabled by Just-in-Time (JIT) Dynamic

Binary Translators (DBT), which rely on advanced compiling

techniques for efficient on-the-fly translation of binary code,

and powerful simulation hosts providing the necessary CPU

performance for efficient native code execution. However, due

to its inherent complexity, up until now JIT DBT technology

has not been available for multi-core simulation.

In this paper we develop novel technology for execution-

driven, JIT DBT based multi-core simulation enabling faster-

than-FPGA simulation speeds [3]. Our approach scales up to

2048 target processors whilst exhibiting minimal and near

constant overhead. We extend single-core JIT DBT to enable

multi-core simulation and effectively exploit the parallelism

offered by the simulation host for both parallel JIT compilation

and native execution. In fact, multi-core JIT DBT is not just

a single method, but a combination of several techniques. It

is a widely held view that “we need a 1,000 to 10,000 MIPS

simulator to support effective hardware and software research

of a 1,000-way multiprocessor system” [4]. In this paper,

we present the first-ever simulator – implemented entirely in

software – to reach and exceed this performance level.

Our main contribution is to demonstrate how to effectively

apply JIT DBT in the context of multi-core target platforms.

The key idea is to model each simulated processor core

in a separate thread, each of which feeds work items for

native code translation to a parallel JIT compilation task farm

shared among all CPU threads. Combined with private first-

level caches and a shared second-level cache for recently

translated and executed native code, detection and elimination

of duplicate work items in the translation work queue, and

an efficient low-level implementation for atomic exchange

operations we construct a highly scalable multi-core simulator

that provides faster-than-FPGA simulation speeds and scales

favourably up to 2048 simulated cores.

We have evaluated our simulation methodology against

the MULTIBENCH and SPLASH-2 benchmark suites. Our

functional ISS models homogeneous multi-core configura-

tions composed of ENCORE [5] cores, which implement

the ARCOMPACT ISA [6]. On a 32-core x86 host machine

we demonstrate simulation rates up to 25,307 MIPS for as

many as 2048 target processors. Across all benchmarks our

JIT DBT simulation approach achieves an average simulation

performance of 11,797 MIPS (for 64 simulated cores) and

outperforms an equivalent system implemented in FPGA.
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Fig. 1. Full-system simulation of SPLASH-2 LU benchmark - comparison of 1� simulation rate in MIPS, 2� speedup over single core simulation, and 3�
interpreted vs. natively executed instructions in %, for the simulation of 1 to 2048 ENCORE cores on a 32-core x86 simulation host.

A. Motivating Example

Consider the full-system simulation of the SPLASH-2 LU

program built for the ENCORE processor. On a 32-core Intel

Xeon machine we simulate the application with varying num-

bers of simulated cores, where each simulated core is modelled

as a thread. The LU program is a parallel benchmark that

factors a dense matrix into the product of a lower triangular

and an upper triangular matrix. The dense n× n matrix A is

divided into an N×N array of B×B blocks (n=NB) to exploit

temporal locality on submatrix elements [7].

Our trace based dynamic binary translator speeds up the

simulation by identifying and translating hot traces to native

x86 code during simulation using the sequence of steps

illustrated in Box 1�, Figure 3. Simulated target cores perform

simulation as well as hot trace discovery and dispatch in

parallel to each other. A light-weight decoupled JIT DBT task

farm runs in parallel to this simulation (see Box 6�, Figure 3)

compiling dispatched hot traces to speed up simulation. To

ensure that the most profitable traces are compiled first, we

use a work scheduling strategy that dynamically prioritises

compilation tasks according to their heat and recency [8].

For the purpose of this motivating example we look at the

scalability of our ISS with increasing numbers of simulated

target cores. In Chart 1� of Figure 1 we compare the overall

simulation rate in MIPS starting with a single-core simulation

and scaling up to a multi-core configuration comprising a total

of 2048 target cores. Our simulator scales almost perfectly –

doubling the simulation rate each time the number of simulated

processors is doubled – until the number of simulated target

cores equals simulation host cores. Simulating 32 ENCORE

cores on a 32-core x86 machine results in an overall simula-

tion rate of 10,500 MIPS for the LU benchmark. Scaling the

number of simulated target cores beyond 32 results in a more

modest improvement between 10,800 MIPS for 64 simulated

cores and the maximum simulation rate of 13,000 MIPS for

1024 cores. For a total of 2048 simulated cores we still achieve

a simulation rate of 11,982 MIPS.

Application speedup over single-core simulation is shown

in Chart 2� of Figure 1. The maximum speedup of 4.4× is

reached when simulating 16 target cores and even with 64

simulated cores the application shows a speedup of 1.7×.

Chart 3� of Figure 1 illustrates the ratio of interpreted to

natively executed instructions, demonstrating the performance

of our parallel JIT DBT. For all configurations up to 2048

simulated target cores the JIT DBT achieves >99.1% natively

executed instructions.

B. Contributions

Among the contributions of this paper are:

1) The development of a scalable multi-core instruction set

simulation methodology extending established single-

core JIT DBT approaches to effectively exploit the

available hardware parallelism of the simulation host,

2) the use of an innovative parallel task farm strategy to

achieve truly concurrent JIT compilation of hot traces,

3) the combination of a multi-level cache hierarchy for

JIT-compiled code, detection and elimination of dupli-

cate work items in the translation work queue, and an

efficient low-level implementation for atomic exchange

operations, and

4) an extensive evaluation of our LLVM-based DBT target-

ing a multi-core platform implementing the ARCOM-

PACT ISA and using two benchmark suites: EEMBC

MULTIBENCH and SPLASH-2.

Currently, ARCSIM supports cycle-accurate simulation of

each processor core [2]. However, faithful performance mod-

elling of the overall multi-core system including its memory

hierarchy and interconnect is beyond the scope of this paper

and subject of our future work.

C. Overview

The remainder of this paper is structured as follows. In

section II we present details of the ENCORE processor and

provide an overview of the target system architecture. This is

followed by an extensive coverage of our proposed parallel

simulation methodology in section III. In section IV we

present the results of our empirical evaluation before we

discuss related work in section V. Finally, we summarise our

findings and give an outlook to our future work in section VI.
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Fig. 2. Multi-core hardware architecture of target system.

II. BACKGROUND

A. EnCore Processor

Our simulator models a state-of-the-art embedded proces-

sor implementing the ARCOMPACT ISA, namely the EN-

CORE [5]. Its micro-architecture is based on a 5-stage in-

terlocked pipeline with forwarding logic, supporting zero

overhead loops, freely intermixable 16- and 32-bit instruction

encodings, static branch prediction, branch delay slots, and

predicated instructions.

Although the above configuration was used for this work,

the processor is highly configurable. Pipeline depth, cache

sizes, associativity, and block replacement policies as well as

byte order (i.e. big endian, little endian), bus widths, register-

file size, and instruction set specific options such as instruction

set extensions are configurable.

B. Target System Architecture

As a physical reference system we used a 12-core imple-

mentation of the multi-core system, synthesised for a Xil-

inx X6VLX240T FPGA. The system architecture is shown

in Figure 2. The twelve processor cores ( 1� in Figure 2)

are connected through a 32-bit hierarchical, switched, non-

buffered AXI interconnect fabric ( 2� in Figure 2) to RAM

and I/O devices ( 3� in Figure 2). An ASIP implementation

of the same ENCORE processor, implemented in a generic

90 nm technology node, is currently running in our laboratory

at frequencies up to 600 MHz. The processor cores can attain

a 50 MHz core clock using this FPGA fabric, while the

interconnect is clocked asynchronously to the cores at 75 MHz.

JTAG accessible utility functions and event counters were

inserted to be able to record data from the cores. Recorded

data for each core includes total clock cycles when not halted,

total committed instructions, total I/O operations, and total

clock cycles spent on I/O operations. From these counters

we calculate the MIPS of each core at 50 MHz (FPGA) and

600 MHz (ASIP), respectively.

C. Just-in-Time Dynamic Binary Translation

Efficient DBT relies heavily on Just-in-Time (JIT) compila-

tion for the translation of target machine instructions to host

machine instructions. Although JIT compiled code generally

runs much faster than interpreted code, JIT compilation in-

curs an additional overhead. For this reason, only the most

frequently executed code regions are translated to native code

whereas less frequently executed code is still interpreted (see

Box 1� in Figure 3). In a single-threaded execution model,

the interpreter pauses until the JIT compiler has translated its

assigned code block and the generated native code is executed

directly. However, it has been noted earlier [9] that program

execution does not need to be paused to permit compilation, as

a JIT compiler can operate in a separate thread while the pro-

gram executes concurrently. This decoupled or asynchronous

execution of the JIT compiler increases complexity of the

DBT, but is very effective in hiding the compilation latency –

especially if the JIT compiler can run on a separate processor.

In section III-B we extend this concept and introduce a parallel

JIT task farm (see Box 6� in Figure 3) to further reduce

compilation overhead and cope with the increased pressure

on the JIT compiler.

III. METHODOLOGY

In this section, we discuss the implementation of the ARC-

SIM simulator, highlighting a number of key contributions

which lead to high performance in a multi-core context. These

include a carefully designed software architecture, sharing of

translations between cores to benefit data-parallel applications,

lightweight multi-threading support and an efficient mapping

of atomic exchange operations to benefit synchronisation.

A. Simulator Architecture

Figure 3 shows the architectural design of our simulator.

Every simulated core runs within its own interpreter as an
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Fig. 3. Software architecture of our multi-core simulation capable ISS using
parallel trace-based JIT DBT.

individual thread with its own set of CPU state variables. The

operation of the interpreter is shown in Box 1�, Figure 3. As

this is a functional simulation and is not yet required to be

cycle-accurate, these threads are then allowed to simulate the

program without restraint. The host operating system is relied

upon for scheduling of the cores if more cores are simulated

than are available on the host system. Simulated devices, such

as screen and terminal I/O, are run in separate threads from the

main simulation. Finally, JIT compilation workers also execute

in separate threads in a task farm approach where all workers

obtain work from a single queue, which all cores dispatch tasks

to – see Box 6�, Figure 3. The operation of the JIT workers

is discussed further in the following paragraph.

B. Parallel Just-in-Time Dynamic Binary Translation

Our method for JIT DBT begins with the recording of hot

traces as the binary is interpreted. Interpreted simulation time

is partitioned into trace intervals. After each trace interval

every core dispatches the hottest recorded traces, packaged as

work units, to a priority queue for JIT compilation before its

simulation loop continues. Decoupled from these simulation

loops, JIT compilation workers dequeue and compile the

dispatched work units, as shown in Box 5�, Figure 3. A

priority queue, shown in Box 4�, Figure 3, is used to ensure

that the most important traces are scheduled for compilation

first. Important traces are determined from a combination

of a trace’s execution frequency (=heat) and time since last

execution (=recency). The main benefit of this approach is that

compilation latency is hidden by performing it in parallel with

the main simulation loops of the cores. Trace granularity can

be adjusted from the level of single basic blocks to as large

as an 8 KB page of memory. We use a light-weight tracing

scheme and only record basic block entry points as nodes, and

pairs of source and target entry points as edges to construct a

CFG.

C. Caching of Translated Code

Data parallel applications may run the same code across

different cores. To avoid repeated translation of identical traces

we employ a multi-level translation cache in our simulator.

As translations are generated for traces by the workers, they

must be registered with their associated entry points within

the simulator’s internal representation of the simulated code.

When the simulation reaches any basic block entry point, a

lookup must be made to see if a translation exists for this

physical address, returning a function pointer which can be

called to execute this section of code natively. A direct-mapped

translation cache was implemented which associates physical

addresses with their translations, to avoid costly lookup. This

cache is checked before consulting the simulator’s internal

representation, improving performance within the critical path

of simulation. Each core has its own private translation cache,

shown within Box 3�, Figure 3.

This cache also inspired a method for sharing translations

between cores. By adding a second level translation cache,

shown within Box 6�, Figure 3, which only the JIT compi-

lation workers can access, the workers can check this cache

when handling a work unit. Every time a JIT worker completes

a task, it loads the generated translations into the second level

translation cache. Whereas for the private first level cache the

JIT worker had to always generate the code itself to be able

to register the translation with the requesting core, the worker

can now check the second level cache to see if any other



workers have recently produced this translation. If it finds the

translation in the cache, it can immediately register it with

the requesting core, without having to generate the translation

itself, saving time.

Depending on the chosen granularity of the translation

units, determining if a translation is in the cache may be

more complicated than only checking if the physical addresses

match. When our translation units are page-sized, two cores

may trace different paths through the page from the same

initial physical address, and in this case it would be incorrect

to try and use the translation of the first trace to simulate the

second trace. For this reason, we also associate a signature

with each work unit. The generation of this signature will be

discussed in Section III-D. For now, it is enough to say that

if the physical address and signature of a JIT task matches

those of a translation in the second level cache, it is possible

to reuse that translation.

D. Detection and Elimination of Duplicate Work Items

The architecture of our multi-core JIT compilation system

presents another opportunity to prevent redundant translation

work. As multiple cores add tasks to the queue from which JIT

workers receive their work, it would be beneficial to identify

when a core attempts to dispatch a task which has already

been added by another core. Once identified, we can prevent

the task from being added to the queue, and instead register

that the requesting core would also like to be updated once

the queued task has been handled by a worker.

In order to identify whether two tasks are for the same

trace, we generate signatures for each task as it is created. The

signature is the result of a hash function applied to the physical

addresses of all the basic blocks that are to be translated.

This provides us with a means to quickly determine if traces

starting at the same address are different. While this may lead

to false negatives, the error rate is diminished and is negligible

in practice. The hash function is simple in our implementation

to maximise performance, but any hash function which accepts

32-bit integers with more robust collision-avoidance could

replace it.

A hash table stores lists of all tasks that have a particular

key as their signature. Upon attempting to dispatch a new task

to the queue, the table is checked for the task’s signature.

If found, the task is considered a duplicate, and is added to

the corresponding list. If not, the task is new, and a new list

containing it is added to the hash table, while the task is

additionally added to the queue. The JIT compilation workers

continue to take tasks from the queue as previously described,

and, upon completing a task, check the hash table to see

if any other tasks were added to the JIT system while this

one was waiting or being processed. If any exist, the cores

which created these tasks are also notified about the generated

translations.

This technique, in addition to the shared caching of trans-

lations described in Section III-C, has the dual effect of

reducing the waiting period between the dispatch of a task and

the receipt of its translation for many cores. It also reduces

the amount of similar tasks in the work queue, resulting in

a greater percentage of the simulated code being translated

earlier.

E. Atomic Exchange Operations

The atomic exchange instructions in the ARCOMPACT

instruction set are the way in which the ISA exposes explicit

multi-core synchronisation. In ARCSIM, this is implemented

using a global lock for all atomic exchange instructions. Whilst

potentially expensive, this enables the use of the underlying

x86 hardware synchronisation instructions to directly imple-

ment the atomic exchange instruction; in practice, it maps to

a single x86 instruction.

IV. EMPIRICAL EVALUATION

We have evaluated our parallel JIT DBT multi-core sim-

ulator on over 20 benchmarks from the MULTIBENCH and

SPLASH-2 benchmark suites. In this section we describe our

experimental approach and present and evaluate our results for

the speed and scalability of our simulator.

A. Experimental Setup and Methodology

We have evaluated our simulator using the MULTI-

BENCH 1.0 benchmark suite [10], which comprises a total

of 14 application kernels from the networking and consumer

domains which can be combined in various ways to reflect

typical application workloads of embedded systems. We run

each application kernel separately with a varying number of

worker threads. Some of the kernels are not multi-threaded,

so in these cases we run a separate instance of the kernel on

each of the simulated cores.

The SPLASH-2 benchmark suite [7] comprises 12 bench-

marks which cover a number of common complex calculations

in areas such as linear algebra, complex fluid dynamics, and

graphics rendering. Each benchmark is designed to partition

its work using threads1.

Our results are reported in terms of MIPS achieved by

the simulator. Each core can calculate its own MIPS rate,

where the number of instructions the core has executed is

divided by the length of time between when the core itself

starts to execute instructions, and when the core is halted.

These individual MIPS rates are summed to provide the total

simulation rate. Each benchmark and core configuration was

run 5 times, with the arithmetic mean taken from these runs

to present our results.

The system used to run the simulator was a x86 host with

4 Intel Xeon L7555 1.87 GHz (8-core) processors with hyper-

threading disabled, resulting in 32 cores being made available

to the openSUSE 11.3 Linux operating system. The system

also had 64GB of RAM available, and all experiments were

run under conditions of low system load.

1We were unable to build versions of fmm and water-nsquared which
could run on 64 cores, so these are excluded from our results. In the case
where contiguous and non-contiguous versions of the same benchmark were
available, we have built the contiguous version.
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Fig. 4. Simulation rate in MIPS (left chart) and throughput relative to single-core execution (right chart) using the SPLASH-2 benchmark suite for varying
multi-core configurations of our ISS.

B. Bare-Metal POSIX Multi-Threading Support

We use a light-weight library that provides the essentials

of operating system functionality to run the benchmarks on

bare-metal hardware and within the simulator. This library

provides features such as startup code, I/O device manage-

ment, memory management primitives, and in particular basic

multi-threading support in the form of a pthreads API.

We restrict the number of threads to one per core – which

is permitted by the pthreads specification – since the

implementation of a full preemptive scheduler would have ex-

ceeded the scope of this work. Mutexes are implemented using

spin locks based around the ARCOMPACT atomic exchange

instruction. Our implementation also fully supports condition

variables, semaphores, and thread joining.

This approach differs from that taken for instance by

UNISIM [11] where threading support is emulated by the

simulator. This requires applications to be linked against a

pthreads emulation library which re-routes pthreads

API calls to trigger simulator intervention such as suspending

or waking up of simulated cores. Our approach, in contrast,

produces binaries that can be run both on real hardware and

in the simulation environment without modification.

C. Summary of Key Results

Our results shown in Figures 4 and 5 demonstrate that the

initial target of "1,000 to 10,000 MIPS" [4] was easily attained,

with seven of our benchmarks exceeding 20,000 MIPS when

simulating a 32-core target. This is better than the performance

of a theoretical 600 MHz 32-core ASIP. For the SPLASH-2

fft benchmark we achieve a maximum overall simulation

rate of 25,307 MIPS for a 64-core simulation target, whilst on

average we still provide 11,797 MIPS for the same simulation

target. For large-scale configurations of up to 2048 cores

our results shown in Figure 6 demonstrate the ability of our

simulator to scale with the number of processors and to sustain

its simulation rate beyond the point at which the number of

simulated cores exceeds those of the host system.

D. Simulation Speed

All of the MULTIBENCH baseline three-core simulations

exceed 1,000 MIPS, with rgbhpg03 reaching 3,100 MIPS.

Due to their higher complexity the single-core performance of

the SPLASH-2 benchmarks ranges between 100 to 225 MIPS.

On the other hand, they exhibit far greater scalability (see

Section IV-E).

Simulating 64 target cores we achieve simulation rates

in excess of 20,000 MIPS for fft and volrend from

SPLASH-2, and for md5, rgbcmyk, mpeg2, rgbyiq03,

and rgbhpg03 from MULTIBENCH. Only 5 out of 24 ap-

plications fail to deliver more than 3,200 MIPS (equivalent

to 100 MIPS simulation rate per host core) while the average

performance across all benchmarks for this configuration is

close to 12,000 MIPS.

Not all benchmarks maintain this simulation rate as the

number of cores increases, showing that simulation perfor-

mance is application-specific. For instance, the MULTIBENCH

networking benchmarks (ippktcheck, ipres, tcp) show

little, if any, improvement over the baseline for higher numbers

of simulated cores. The profile of the instructions executed

by these benchmarks indicates a very high rate of memory

accesses and memory-dependent branches which quickly satu-

rate the available memory bandwidth of the host system. These

findings are in line with the data sheets provided by EEMBC

[10].

E. Scalability

It is important to evaluate how the simulator scales beyond

the number of host processor cores for simulating tomorrow’s

many-core systems on today’s commodity hardware. Most
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Fig. 5. Simulation rate in MIPS (left chart) and throughput relative to three-core execution (right chart) using the EEMBC MULTIBENCH benchmark suite
for varying multi-core configurations of our ISS. Note that the minimum MULTIBENCH core configuration is three due to the test harness infrastructure.

benchmarks demonstrate that the simulator scales well up

to the number of physical cores on the host. Beyond this

point we occasionally see modest further improvements (e.g.

cholesky, lu, and md5) as shown in Figure 6.

For the same seven benchmarks that deliver the highest

simulation rates, we observe linear scalability as we increase

the number of target cores up to 32. Other benchmarks such

as ocean, lu, cholesky, barnes, raytrace, and x264

do not achieve such high aggregate simulation rates, but still

scale favourably.

For six representative benchmarks (three from each bench-

mark suite) we show scalability up to 2048 simulated target

cores in Figure 6. Chart 1� in Figure 6 shows the best result,

with cholesky continuing to scale from 9,767 MIPS for 32

cores, to 17,549 MIPS for 2048 cores, with the performance

always increasing. Chart 4� in Figure 6 shows a similar result

for md5.

In Figure 4 we see super-linear scalability for a number of

benchmarks (e.g. fft, ocean, volrend, cholesky). This

is due to excessive synchronisation in the benchmarks beyond

64 cores, and the fact that our simulator can execute tight

spin-lock loops at near native speed. It is a well-known fact

that the SPLASH-2 benchmarks attract high synchronisation

costs for large-scale hardware configurations, as shown by

other research [12]. The MULTIBENCH results are not affected

in the same way due to less synchronisation.

F. Comparison to Native Execution on Real Hardware

Chart 1� of Figure 7 shows a comparison between our

simulator and two hardware platforms (FPGA and ASIP, see

Section II-B) in terms of MIPS. The application is a paral-

lelised fractal drawing algorithm, executed across 12 cores. We

chose this application because of its low memory footprint and

its embarrassingly parallel nature, thus avoiding application

scalability issues.
Actual FPGA performance is 249 MIPS. We also show

the performance of a 600 MHz ASIP implementation which

achieves an execution rate of 2,985 MIPS. On the other hand,

our instruction set simulator reaches a simulation rate of 6,752

MIPS, thus surpassing a silicon implementation by more than

a factor of 2 for this application.
For equivalent configurations, our simulator consistently

outperforms the theoretical maximum of the FPGA on a per-

core basis. Our 12-core FPGA implementation of the multi-

core system is capable of 50 MIPS per core. On the contrary,

across all benchmarks, the lowest per-core simulation rate

for a 16-core target was 105 MIPS, attained in the SPLASH-

2 radiosity benchmark. These results show that even in

the worst case the simulator maintains more than twice the

theoretical maximum execution rate of the FPGA. Compared

to the average simulation rate of 11,797 MIPS across all

benchmarks, the theoretical maximum of 600 MIPS for a 12-

core FPGA implementation is an order of magnitude slower.

V. RELATED WORK

Due to the wealth of related research work we restrict our

discussion to the most relevant approaches in software and

FPGA based multi-core simulation.

A. Software Based Multi-Core Simulation Approaches

Early work on efficient simulation of parallel computer

systems dates back to the 1990s [13] and examples of

conventional sequential simulators/emulators include SIM-

PLESCALAR [14] , RSIM [15], SIMOS [16], SIMICS [17], and

QEMU [18]. Some of these are capable of simulating parallel

target architectures but all of them execute sequentially on the

host machine.
Over the last two decades a large number of parallel

simulators of parallel target architectures have been developed:
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Fig. 6. Results for selected benchmarks from SPLASH-2 1� 2� 3� and EEMBC MULTIBENCH 4� 5� 6� demonstrating the scalability with the number of
simulated target cores.

SIMFLEX [19], GEMS [20], COTSON [21], BIGSIM [22],

FASTMP [23], SLACKSIM [24], PCASIM [25], Wisconsin

Wind Tunnel (WWT) [26], Wisconsin Wind Tunnel II (WWT

II) [27], and those described by Chidester and George [28],

and Penry et al. [29]. SIMFLEX and GEMS both use an off-the-

shelf sequential emulator (SIMICS) for functional modeling

plus their own models for memory systems and core inter-

actions. GEMS uses their timing model to drive SIMICS one

instruction at a time, but results in low performance. SIM-

FLEX avoids this problem by using statistical sampling of the

application, but therefore does not observe its entire behaviour.

COTSON [21] uses AMD’s SIMNOW! for functional modeling

and suffers from some of the same problems as SIMFLEX [19]

and GEMS [20].

BIGSIM [22] and FASTMP [23] assume distributed memory

in their target architectures and do not provide coherent shared

memory between the parallel portions of their simulators.

WWT [26] is one of the earliest parallel simulators but requires

applications to use an explicit interface for shared memory.

WWT II [27] does not model anything other than the target

memory system and requires applications to be modified

to explicitly allocate shared memory blocks. ARCSIM also

models compute cores and implements a transparent shared

memory system.

Like ARCSIM, PARALLEL EMBRA [30] is a fast functional

simulator for shared-memory multiprocessors which is part of

the PARALLEL SIMOS complete machine simulator. It takes

an aggressive approach to parallel simulation; while it runs

at user level and does not make use of the MMU hardware,

it combines binary translation with loose timing constraints

and relies on the underlying shared memory system for event

ordering, time synchronisation, and memory synchronisation.

While PARALLEL EMBRA shares its use of binary translation

with ARCSIM it lacks its scalability and parallel JIT translation

facility.

Another effort to parallelise a complete machine software

simulator was undertaken with MAMBO [31]. It aims to

produce a fast functional simulator by extending a binary

translation based emulation mode; published results include a

speedup of up to 3.8 for a 4-way parallel simulation. Similarly,

the MALSIM [32] parallel functional simulator has only been

evaluated for workloads comprising up to 16 threads. Despite

some conceptual similarities with these works our work aims

at larger multi-core configurations where scalability is a major

concern.

In [33] a DBT based simulator targeting a tiled architecture

is presented. It aims at implementing different portions of

a superscalar processor across distinct parallel elements thus

exploiting the pipeline parallelism inherent in a superscalar

microarchitecture. However, this work does not attempt to

simulate a multi-core target platform.

ARMN [34] is a cycle-accurate simulator for homogeneous

platforms comprising several ARM cores and with support

for various interconnect topologies. Whilst this provides flex-

ibility, the performance of ARMN is very low (approx. 10k

instructions per second) and, thus, its suitability for both HW

design space exploration and SW development is limited.

The GRAPHITE [35] multi-core simulation infrastructure

is most relevant to our work. GRAPHITE is a distributed

parallel multi-core simulator that combines direct execution,



seamless multi-core and multi-machine distribution, and lax

synchronisation. GRAPHITE has been demonstrated to simu-

late target architectures containing up to 1024 cores on ten 8-

core servers. Application threads are executed under a dynamic

binary instrumentor (currently PIN) which rewrites instructions

to generate events at key points. These events cause traps

into GRAPHITE’s backend which contains the compute core,

memory, and network modelling modules. In contrast, our

simulator uses DBT to implement any ISA (currently ARCOM-

PACT), which can also be different from the target system’s

ISA. In addition, the primary design goal of our simulator

has been highest simulation throughput as showcased by the

parallel JIT task farm comprised in ARCSIM. As a result

we achieve speedups over native execution for many multi-

core configurations, whereas GRAPHITE suffers up to 4007×

slowdown.

In [12] a methodology to simulate shared-memory multipro-

cessors composed of hundreds of cores is proposed. The basic

idea is to use thread-level parallelism in the software system

and translate it into core-level parallelism in the simulated

world. An existing full-system simulator is first augmented to

identify and separate the instruction streams belonging to the

different software threads. Then, the simulator dynamically

maps each instruction flow to the corresponding core of

the target multi-core architecture, taking into account the

inherent thread synchronisation of the running applications.

This approach treats the functional simulator as a monolithic

block, thus requiring an intermediate step for de-interleaving

instructions belonging to different application threads. ARC-

SIM does not require this costly preprocessing step, but its

functional simulator explicitly maintains parallel threads for

the CPUs of the target system.

Outside the academic community the PCXS2 software sim-

ulator [36] for the PS2 games console is a good example

of a simulator targeting a multi-core platform which utilises

dynamic binary translation.

B. FPGA Based multi-core Simulation Approaches

We can generally distinguish between two approaches to

FPGA based multi-core simulation: The first approach essen-

tially utilises FPGA technology for rapid prototyping, but still

relies on a detailed implementation of the target platform (see

section II-A), whereas the second approach seeks to speed up

performance modelling through a combined implementation

of a functional simulator and a timing model on the FPGA

fabric. In the following paragraphs we discuss approaches to

this latter FPGA architecture simulation.

RAMP GOLD [3] is a state-of-the-art FPGA based “many-

core simulator” supporting up to 64 cores. In functional-

only mode, RAMP GOLD achieves a full simulator throughput

of up to 100 MIPS when the number of target cores can

cover the functional pipeline depth of 16. For fewer target

cores (and non-synthetic workloads), the fraction of peak

performance achieved is proportionally lower. In compari-

son to the 25,307 MIPS peak performance of our software-

only simulation approach (based on an ISA of comparable
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Fig. 7. Comparison of simulator and hardware implementations. 1� shows
a comparison of maximum achievable simulation rate in MIPS for a 12-
core configuration running a parallel Mandelbrot fractal benchmark on an
FPGA, ASIP, and ISS platform. 2� depicts the ratio of interpreted vs. natively
executed instructions on the ISS platform.

complexity and similar functional-only simulation) the per-

formance of the FPGA architecture simulation is more than

disappointing. Other approaches to FPGA architecture model

execution such as RAMP [37], FAME [38], FAST [39], [40] and

PROTOFLEX [41] suffer from the same performance issues and

for none of the mentioned systems has scalability beyond 64

cores been demonstrated.

VI. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper we have developed an innovative methodology

for high-speed multi-core instruction set simulation based on

Just-in-Time Dynamic Binary Translation. We have integrated

a JIT task farm for parallel translation of hot code traces with

a combination of performance-enhancing techniques such as

private and shared caching of translated code, detection and

elimination of identical translation units in the JIT work queue,

and efficient low-level code generation for atomic exchange

operations. Through this unique combination of techniques we

achieve unprecedented simulator throughput of up to 25,307

MIPS and near-optimal scalability of up to 2048 simulated

cores for the SPLASH-2 and EEMBC MULTIBENCH bench-

marks on a standard 32-core x86 simulation host. Through

our empirical results we demonstrate a simulation performance

advantage by two orders of magnitude over leading and state-

of-the-art FPGA architecture simulation technology [3] for a

comparable level of simulation detail.

In our future work we will extend our cycle-accurate

single-core performance model [2] to efficiently capture the

detailed behaviour of the shared second level cache, processor

interconnect and external memory of the simulated multi-core

platform.
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