
Scalable Multicast Forwarding 

B j t i r n  G r t i n v a U  (bg@sics.se)  

Swedish Institute o f  Computer Science and Luled University of  Technology 

The  goal of  this work is to develop efficient algo- 
rithms and data structures suitable for  software-based 
forwarding of  muRicast datagrams. The  algorithms should 
scale to very  large numbers  o f  simultaneously active mul- 
ticast groups. In an example  configuration with 32 in- 
terfaces a new algorithm can forward 20,000 simulta- 
neously active multicast groups using only 64Kbytes o f  
memory  and a leak probabil i ty of  2 . 4 x 1 0  - s .  This al- 
gori thm can per form almost 10 million forwarding deci- 
sions per second on a 800MHz Penfium III processor  

The  task of  a mult icast-forwarding engine is to for- 
ward packets along branches of  a distribution tree. The  
branches of  the tree consists of  network segments and 
the nodes in the tree are routers. There  are a few dif- 
ferent classes o f  distribution trees. For  simpficity only 
bidirectional trees will be considered in this discussion. 

Abstractly, a bidirectional-distribetion tree is a bidi- 
rectional acyclic graph. R has a root  called center, core 
or, rendez-vous point. Forwarding is per formed by  hav- 
ing traffic flow up the tree towards the center, and down 
the tree towards the receivers. 

A router  must  for  each distribution tree maintain a list 
o f  interfaces that connect  the tree. To forward a packet, 
first find the interface list corresponding to the group. I f  
the packet  arrived on an interface in the list, then, for- 
ward the packet  over  the remaining interfaces in the list. 

It is possible to per form this forwarding function us- 
ing probabilistic methods. Observe that forwarding will 
be successfuUy per formed i f  the interface list includes 
at least all interfaces that the packet  must  be forwarded 
over. Since the interface list can potentially be  to long, 
a packet  will occasionally leak out the wrong interface. 
However,  at a minimum, packets will always be for- 
warded over  the distribution tree. Since the leak prob- 
ability can be made  arbitrarily small, this may  not  be a 
problem in practice. 

Assume a network configuration where packets are 
allowed to leak with a max imum probabili ty P .  The 
probabili ty that a leaked packet  will leak through the 
next  router is p 2 ,  and through a third p3 .  Thus, leak 
probabifity decays exponential ly as we travel down (or 
up) the tree. Also, hosts configure their network adap- 
tors to filter out unwanted multicasts. I f  a packet  should 
sneak through this hardware filter, then software filter- 
ing sets in. Thus, hosts on leaf  networks are already 

prepared to handle  the problem with traffic leaks. 
The  suggested probabil isf ic-forwardin g algori thm has 

an efficient implementat ion based on B lo o m filters. The  
algori thm uses a fixed small number  of  m e m o r y  refer- 
ences (e.g eight) and a small number  o f  multiplications 
and shift instructions. M e m o r y  requirements  scale fin- 
early with the m ax im u m  allowed number  o f  groups and 
is also independent  o f  the number  o f  interfaces. Surpris- 
ingly, m e m o r y  requirements  are independent  o f  group 
address length. This is a result  o f  that addresses are not  
stored in the data structure. Thus,  112 bit IPv6 addresses 
use no more  forwarding m e m o r y  than 28 bit  IPv4  ad- 
dresses. 

An important  quality o f  the algori thm is that it is in- 
dependent  o f  address-space usage. Per formance  is un- 
changed i f  addresses are picked uni formly  random or 
f rom some other  distribution. This is important  since 
it is impossible to predict  how a future muiticast  address 
space will be  ufifized. 

There  is always a downside to using probabilistic meth- 
ods. In this case we introduce traffic leakage, i.e traffic 
will with a smaU probabil i ty leave the distribution tree. 
The  probabil i ty that a group will leak through an inter- 
face is [1 -- (1 -- 1/M)KN] K. Here  N represents the 
number  of  active groups, M is the number  o f  bits in the 
filter, and K is the number  o f  m e m o r y  references used 
per  lookup. 

Ou t l ine  o f  a lgo r i t hm:  Recal l  that multicast  routing 
is basically about  finding the appropnate  interface list 
and then forward the packet  over  all those interfaces. 
This mapping f rom group to interface list can be im- 
plemented using a number  of  parallel  B lo o m filters. For  
each interface we maintain one  B l o o m  filter. I f  a group is 
active with respect  to an interface, then the correspond- 
ing B lo o m  filter includes this group. 

B lo o m  filters are essentially arrays of  bits. By  orga- 
nizing these bit arrays as columns in a bit matr ix it is 
possible to evaluate all filters in parallel using word op- 
erations. Thus, a 32 bit micro  processor  can efficiently 
calculate a 32 interface list in parallel. 

M o r e  i n f o r m a t i o n  

For  more  information contact  bg@sics.se o r  look at the 
web page http://www.sics, se/crta/scalable-multicast.html. 

ACM SIGCOMM 68 Computer Communication Review 


