Scalable Multicast Forwarding

Bjom Gronvall (bg@sics.se)
Swedish Institute of Computer Science and Luled University of Technology

The goal of this work is to develop efficient algo-
rithms and data structures suitable for software-based

forwarding of multicast datagrams. The algorithms should

scale to very large numbers of simultaneously active mul-
ticast groups. In an example configuration with 32 in-
terfaces a new algorithm can forward 20,000 simulta-
neously active multicast groups using only 64Kbytes of
memory and a leak probability of 2.4x1075. This al-
gorithm can perform almost 10 million forwarding deci-
sions per second on a 800MHz Pentium III processor

The task of a multicast-forwarding engine is to for-
ward packets along branches of a distribution tree. The
branches of the tree consists of network segments and
the nodes in the tree are routers. There are a few dif-
ferent classes of distribution trees. For simplicity only
bidirectional trees will be considered in this discussion.

Abstractly, a bidirectional-distribution tree is a bidi-
rectional acyclic graph. It has a root called center, core
or, rendez-vous point. Forwarding is performed by hav-
ing traffic flow up the tree towards the center, and down
the tree towards the receivers.

A router must for each distribution tree maintain a list
of interfaces that connect the tree. To forward a packet,
first find the interface list corresponding to the group. If
the packet arrived on an interface in the list, then, for-
ward the packet over the remaining interfaces in the list.

It is possible to perform this forwarding function us-
ing probabilistic methods. Observe that forwarding will
be successfully performed if the interface list includes
at least all interfaces that the packet must be forwarded
over. Since the interface list can potentially be to long,
a packet will occasionally leak out the wrong interface.
However, at a minimum, packets will always be for-
warded over the distribution tree. Since the leak prob-
ability can be made arbitrarily small, this may not be a
problem in practice.

Assume a network configuration where packets are
allowed to leak with a maximum probability P. The
probability that a leaked packet will leak through the
pext router is P2, and through a third P%. Thus, leak
probability decays exponentially as we travel down (or
up) the tree. Also, hosts configure their network adap-
tors to filter out unwanted multicasts. If a packet should
sneak through this hardware filter, then software filter-
ing sets in. Thus, hosts on leaf networks are already

ACM SIGCOMM 68

prepared to handle the problem with traffic leaks.

The suggested probabilistic-forwarding algorithm has
an efficient implementation based on Bloom filters. The
algorithm uses a fixed small number of memory refer-
ences (e.g eight) and a small number of multiplications
and shift instructions. Memory requirements scale lin-
early with the maximum allowed number of groups and
is also independent of the number of interfaces. Surpris-
ingly, memory requirements are independent of group
address length. This is a result of that addresses are not
stored in the data structure. Thus, 112 bit IPv6 addresses
use no more forwarding memory than 28 bit IPv4 ad-
dresses.

An important quality of the algorithm is that it is in-
dependent of address-space usage. Performance is un-
changed if addresses are picked uniformly random or
from some other distribution. This is important since
it is impossible to predict how a future multicast address
space will be utilized.

There is always a downside to using probabilistic meth-
ods. In this case we introduce traffic leakage, i.e traffic
will with a small probability leave the distribution tree.
The probability that a group will leak through an inter-
face is (1 — (1 — 1/M)KN|K Here N represents the
number of active groups, M is the number of bits in the
filter, and K is the number of memory references used
per lookup.

Outline of algorithm: Recall that multicast routing
is basically about finding the appropriate interface list
and then forward the packet over all those interfaces.
This mapping from group to interface list can be im-
plemented using a number of parallel Bloom filters. For
each interface we maintain one Bloom filter. If a group is
active with respect to an interface, then the correspond-
ing Bloom filter includes this group.

Bloom filters are essentially arrays of bits. By orga-
nizing these bit arrays as columns in a bit matrix it is
possible to evaluate all filters in parallel using word op-
erations. Thus, a 32 bit micro processor can efficiently
calculate a 32 interface list in parallel.

More information

For more information contact bg @sics.se or look at the
web page http://www.sics.se/cna/scalable-multicast. html.

Computer Communication Review

