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Abstract

Network embedding has been proven to be help-
ful for many real-world problems. In this pa-
per, we present a scalable multiplex network em-
bedding model to represent information of multi-
type relations into a unified embedding space. To
combine information of different types of relations
while maintaining their distinctive properties, for
each node, we propose one high-dimensional com-
mon embedding and a lower-dimensional addi-
tional embedding for each type of relation. Then
multiple relations can be learned jointly based on
a unified network embedding model. We con-
duct experiments on two tasks: link prediction and
node classification using six different multiplex
networks. On both tasks, our model achieved bet-
ter or comparable performance compared to cur-
rent state-of-the-art models with less memory use.

1 Introduction

Network or graph embedding, which uses dense vec-
tors to represent nodes, has been well studied for many
years [Archdeacon, 1996; Chung, 1997; Goyal and Fer-
rara, 2017]. Recently, inspired by recurrent neural net-
works [Goodfellow et al., 2016], network embedding has
been re-investigated and developed based on random walks
over graphs and stochastic gradient descent optimization,
which can be applied to very large graphs, such as real
social networks [Perozzi et al., 2014; Tang et al., 2015;
Grover and Leskovec, 2016]. The embedding vector of nodes
can be used to encode some of the topological structure of
the network, and then can be used as features for downstream
models. Network embedding has been proven to be help-
ful for network analysis tasks including link prediction, node
classification, and community detection.

Multiplexity property is a common feature of networks, es-
pecially for social networks. In the social network analysis,
multiplexity refers to multifaceted relationships between two
people [Verbrugge, 1979]. If we generalize this idea to all
kinds of network, by “multiplex network,” we mean a group
of networks which contains multiple kinds of relations, and
each kind of the relations can create a layer of the network.
Take the social network as an example. In a social network

such as Facebook, users often have different kinds of inter-
actions with each other like friendship relation, forwarding
articles to each other, conversation, money transferring, etc.
Each of them will create a layer of the network among all
users. If we consider them as a united one, we will get a huge
multiplex network. While each layer of the network can only
represent one kind of interactions among users, to better un-
derstand the whole multiplex network, it is better to integrate
different types of information from these networks together
without sacrificing their distinctive properties.

Considering the fact that a network could be huge, in this
paper, we present a scalable multiplex network embedding
model to efficiently store and learn information of multi-type
relations into a unified embedding space. For each node, we
propose one high-dimensional common embedding vector,
which is shared across all layers of the multiplex network,
and we use that to build a bridge among different layers of
the network. For each node, to learn its distinct property
on different layers with small memory occupation, we also
propose a low-dimensional additional vector for each type of
relation. To align these embeddings with different dimen-
sions together, we introduce a global transformation matrix
for each layer of the network. Following DeepWalk [Perozzi
et al., 2014], we use stochastic gradient descent to optimize
our model. Since the global transformation matrix will be up-
dated much more times than node vectors will be, we add an
additional regularization to constrain the size of the matrix.

Our contributions can be summarized as follows.

• We formally define the problem of multiplex network
embedding to handle the multiplexity property of net-
works.

• We propose a scalable multiplex network embedding
model to represent information from multi-type rela-
tions into a unified embedding space.

• We evaluate our embedding algorithm on two network
analysis tasks: link prediction and node classification.
On both tasks, our model achieved better or comparable
performance compared to current state-of-the-art mod-
els with less memory use.

The source code of our model is available at:
https://github.com/HKUST-KnowComp/MNE.
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2 Related Work

2.1 Multiplex Network Analysis

Traditionally in social science, multiplexity has been used
to characterize the multiple facets of social exchange rela-
tionships among users [Verbrugge, 1979]. The idea of mul-
tiplexity can be generalized to all kinds of network. In
data mining community, people sometimes also use the term
“multi-relational network” to represent the multi-type rela-
tions in social networks and verified that considering such re-
lations in the social network can help data mining tasks such
as community mining or link prediction [Cai et al., 2005;
Chen et al., 2016]. In addition, in bioinformatics commu-
nity, it has been shown that by integrating multiple networks,
the node representation can be improved for genes functional
analysis [Cho et al., 2016].

Nowadays, graph mining methods on the multiplex net-
work are mainly targeting on specific tasks. For link predic-
tion, traditional methods [Newman, 2001; Adamic and Adar,
2003] can be applied to multiplex network without consid-
ering the information of the typed edges. For community
detection, cross-layer centrality measurement [Bródka et al.,
2012] is proposed to capture the centrality of nodes in a
multiplex network. Besides that, multilayered local cluster-
ing coefficient (MLCC) and cross-layer clustering coefficient
(CLCC) [Kazienko et al., 2010; Lytras et al., 2010] are also
proposed to describe cluster coefficient of a node in a multi-
plex network.

In this paper, we propose a general solution for multiplex
network analysis from the perspective of network embedding.

2.2 Network Embedding

Network embedding (or sometimes called graph embedding,
historically also graph drawing) has been well studied for
many years [Archdeacon, 1996; Chung, 1997; Goyal and Fer-
rara, 2017]. It is also related to manifold learning [Huo et al.,
2007] while manifold learning was usually applied to dimen-
sionality reduction for high-dimensional data. Network em-
bedding focuses on generating the vector representation of
nodes for real networks or graphs to facilitate further analysis
of networks. Traditional approaches to network embedding
usually involve time-consuming computational components,
such as eigenvalue decomposition to analyze the spectral
property of graphs [Spielman, 2011]. However, given mod-
ern very large-scale online social networks, such approaches
may be less efficient and sometimes infeasible to generate the
node representations.

Recently, inspired by the development of recurrent neural
networks [Goodfellow et al., 2016], particularly the efficient
word embedding method, word2vec [Mikolov et al., 2013b;
Mikolov et al., 2013a], many network embedding approaches
have been proposed to handle large-scale social networks.
For example, DeepWalk [Perozzi et al., 2014] proposes to
perform random walk on the network to generate sequences
of nodes and then perform skip-gram algorithm (a technique
used in word2vec) on those sequences to achieve the embed-
ding. On top of DeepWalk, Node2Vec [Grover and Leskovec,
2016] adds two parameters to control the random walk pro-
cess and make it biased random walk. Some other embedding

models focus on specific kinds of structures in the network.
For example, LINE [Tang et al., 2015] tries to use the embed-
ding to approximate the first-order and second-order proxim-
ities of the network.

All the models above have been proven useful on sin-
gle network analysis, but they did not consider multiplex-
ity. Recently, an embedding approach is proposed to tar-
get the multiplexity property [Liu et al., 2017]. They pro-
posed three methods to learn one overall embedding from
the multiplex network. Unlike their approach, we propose
one high-dimensional common embedding and several lower-
dimensional additional embeddings for each type of relations.
A recent work [Li et al., 2018] called itself multi-layer net-
work embedding. Essentially, it is a heterogeneous informa-
tion network since in the definition in their paper, different
layers have different type of nodes.

3 Multiplex Network Embedding

3.1 Problem Definition

We first introduce our problem and notations. Given a mul-
tiplex network, our goal is to learn a representation for each
node. Suppose N is the set of nodes and there are M differ-
ent relation types, represented as G1, ...,GM . For each rela-
tion based network Gi = (Ni, Ei), we have Ei ⊆ Ni×Ni and
Ni ⊆ N .

For each node n ∈ N , it has one common embedding vec-
tor, which is shared across all the relation types and denoted
as bn ∈ R

d. We use that common embedding as a bridge to
transfer information across different relation types. To cap-
ture the distinct property of each sub-network, for each node,
we also propose a series of low-dimensional vectors ui

n ∈ R
s

for each relation type i. Here, d is the dimension of common
embedding and s is the dimension of typed relation vector. To
avoid our model becoming too large, we set s ≪ d ≪ |N|,
where |N | is the number of all nodes. To align bn and u

i
n,

we introduce a transformation matrix X
i ∈ R

s×d. Then we
use a new vector vi

n to represent the embedding vector of n
for relation type i:

v
i
n = bn + wi ·XiT

u
i
n, (1)

where we use a weight wi to denote the overall importance of
relation type i.

3.2 Optimization

For each relation type i of the multiplex network, we con-
duct random walk to generate a sequence of nodes and then
perform Skip-gram algorithm used in word2vec [Mikolov et
al., 2013a] over the sequences to learn the embeddings. As
shown in Eq. (1), a node’s final embedding is composed of
three parts: common embedding bn, relation-based embed-
ding u

i
n, and transformation matrix X

i. We need to learn
these parameters at the same time.

For any node n in a random walk path relation type i, as-
suming it appears in position j, we will take nj−c, ..., nj+c

as its neighbors, where c is half of the window size. Thus,
given a sequence of nodes, our objective is to minimize the
following negative log-likelihood:

− logPθi(nj−c, ..., nj−1, nj+1, ..., nj+c | nj), (2)
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which can be further factorized as −
∏j−1

k=j−c logPθi(nk|nj)·
∏j+c

k=j+1
logP (nk|nj) given the conditional independence

assumption. Here we use Pθi to denote the parameterization
for relation type i. For each Pθi(nk|nj), a softmax function
is used to define the probability:

Pθi(nk | nj) =
exp(v′nk

T · vinj
)

∑

n exp(v
′
n
T · vinj

)
, (3)

where v
i
nj

represents the input word embedding of user nj ,

and v
′
nk

, and v
′
n represent the parameters of context vectors

shared by all relation types, which are only used during the
training process. To speed up the training process, following
word2vec [Mikolov et al., 2013a], we use negative sampling
to approximate the objective function as:

E = − log σ(v′
nk

T
· vinj

)−
∑

n∈N i
nj

log σ(−v′
n

T
· vinj

), (4)

where σ(x) = 1/(1 + exp(−x)) is the logistic function and
N i

nj
is the randomly sampled negative context node set for

nj .
Assuming the sequence is generated in relation type i, ac-

cording to Eq. (1), in the new objective function, we can re-

place v
i
n with bn +X

iT
u
i
n. After that we employ stochastic

gradient descent (SGD) to minimize the objective function.
We update the context parameter vectors, node embedding
vectors, and transformation matrix as follows:

bnj
:= bnj

− η ·
∂E

∂bnj

= bnj
− η · e(nj , nk) · v′nk

, (5)

v′
nk

:= v′nk
− η ·

∂E

∂v′nk

= v′
nk

− η · e(nj , nk) · vinj
, (6)

ui
nj

:= ui
nj

− η ·
∂E

∂ui
nj

= ui
nj

− η · e(nj , nk) · Xiv′nk
, (7)

Xi := Xi − η ·
∂E

∂Xi
= Xi − η · e(nj , nk) · ui

nj
v′nk

T
, (8)

where e(nj , nk) = σ(v′nk

T · vinj
) − tk and tk=1 if nk is the

neighbor of nj and tk=0 if nk is in the negative sampling set.

We initialize all the vi with zero vector and Xi with zero
matrix. For context parameter vector v′n for all the users, we

randomly initialize them. Since Xi’s can be updated many
times when optimizing the objective function, to avoid its
norm becoming too huge, we add the following constraints:

||Xi|| ≤ r, (9)

where r is a controlling parameter for the Frobenius norm of

matrix ||Xi||. In our experiment, we also involve an extra
combination layer and since this layer has no actual meaning,
we will only update common embedding during the training
on that layer.

We summarize our algorithm in Algorithm 1. As our
model is a random walk based solution, assuming that we
have M relation types of sub-networks and |N | nodes, the
time complexity of our model is O(M |N |). The memory
complexity of our model is O((d+ s ∗M)|N |).

Algorithm 1 Multiplex Network Embedding

INPUT: Multiplex network which is composed of sub net-
works G1, . . . ,GM , common embedding dimension d, addi-
tional embedding dimension s, learning rate η, size of con-
text window c, number of negative sampling k, transforma-
tion matrix size regularization parameter r.

1: Initialize bn, vi
n and X

i for different nodes n’s and rela-
tions i’s.

2: for Each relation network Gi do
3: for Each path P generated by random walk do
4: for nj ∈ P do
5: for nc ∈ P [j − c, j + c] do
6: Nnj

= NegativeSampling(N ,m)

7: vi
nj

= bnj
+X

iT
u
i
nj

8: Nsample = Nnj
∪ nc

9: for nk ∈ Nsample do

10: e(nj , nk) = σ(v′nk

T · vinj
)− tk

11: Update bnj
, v′nk

, ui
nj

, and Xi based

on Eqs. (5), 6), (7), and (8) respectively.
12: end for
13: if

∥

∥Xi
∥

∥ > r then

14: Xi := r
‖Xi‖

· Xi

15: end if
16: end for
17: end for
18: end for
19: end for

OUTPUT: Common embedding bn, additional embeddings
u
i
n, and transformation matrix X

i for different nodes n’s and
relations i’s.

4 Experiments

4.1 Datasets

We use open multiplex networks from Manlio De Domenico
project1 as our experimental datasets. We select four mul-
tiplex networks from different network types. The selection
criteria are that they cannot be too small and they cannot be
too sparse, which means that they should have at least one
edge per node per relation type. The details of these datasets
are as follows:

Vickers [Vickers and Chan, 1981]: Data collected by ask-
ing 29 seventh grade students in a school in Victoria, Aus-
tralia, for whom they asked three questions and each of them
creates a relation type of the network.

CKM [Coleman et al., 1957]: Data collected by asking
physicians in four towns in Illinois, Bloomington, Quincy,
and Galesburg. They asked three questions and each of them
creates a relation type of the network.

LAZEGA [Lazega, 2001]: This multiplex social network
consists of three kinds of relationships (Co-work, Friendship,
and Advice) between partners and associates of a corporate
partnership.

C.ELEGANS [Chen et al., 2006]: This multiplex net-
work consists of layers corresponding to synaptic junctions:

1http://deim.urv.cat/~manlio.dedomenico/data.php
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Dataset (Network Type) #layers #nodes #edges

Vickers (Social) 3 29 740
CKM (Social) 3 246 1,551

LAZEGA (Social) 3 71 2,223
C.ELEGANS (Neurinal) 3 279 5,863
Twitter (Online Social) 2 456,626 15,183,974
Private (Online Social) 17 40,000 1,380,470

Table 1: Statistics of datasets.

electric (“ElectrJ”), chemical monadic (“MonoSyn”), and
polyadic (“PolySyn”) among a group of neurons.

Since the sizes of the above multiplex networks are rel-
atively small, to test the scalability and performance of our
model, we also conduct experiments on two real large-scale
online social media networks: Twitter and Private. The de-
tailed information of these large scale social networks are as
follows:

Twitter: The Twitter data used in our experiments is the
higgs-twitter dataset2. This dataset was used to analyze the
spreading of news [De Domenico et al., 2013]. It crawled all
tweets about a scientific term “Higgs boson discovery” in one
week. We select the largest two sub-networks (following and
retweet) to build the multiplex network.

Private: Our Private data is based on an online social net-
work, where users can have friendship relations with each
other and can send articles to their friends. From all of our
users, we randomly chose 40,000 users who have annotated
themselves affiliated with a university and we recorded all the
article forward activities within that group in one month. Af-
ter applying topic modeling on the content of the articles, we
grouped all the articles by topics. Thus, we got 16 topics and
each one of them creates a relation type of the multiplex net-
work. If we add the base friendship relation, we have in total
17 relation types.

The statistics of these datasets are listed in Table 1.

4.2 Baseline Methods

We will first compare our model with following state-of-the-
art embedding-based baseline methods.

• DeepWalk: DeepWalk [Perozzi et al., 2014] first ap-
plies random walk on the network, treats the path as a
sentence, and then uses Skip-gram algorithm to train the
embeddings.

• LINE: LINE [Tang et al., 2015] adds direct link fitting
term to the DeepWalk cost function, and adds second
hop friends into one hop friends to incorporate higher-
order relations.

• Node2Vec: Node2Vec [Grover and Leskovec, 2016]

adds a pair of parameters to control the random walk
process and makes it better for certain types of nodes,
such as hubs or tail users.

• Principled Multilayer Network Embedding:
PMNE [Liu et al., 2017] proposed three different mod-
els to merge multiplex network together to generate
one overall embedding for each of the node, we will

2https://snap.stanford.edu/data/higgs-twitter.html

compare our model with all of their three models. We
denote their network aggregation, results aggregation,
and Co-analysis model as PMNE (n), PMNE (r), and
PMNE (c) respectively.

Besides the above embedding methods, we will also com-
pare our embedding model with the state-of-the-art network
structure-based methods for the link prediction task.

• Common neighbor (CN): The CN metric is one of the
most widespread measurements used in link prediction
tasks due to its simplicity [Newman, 2001]. For each
pair of nodes, the more common neighbors it has, the
more likely it will have one edge.

• Jaccard Coefficient (JC): For a pair of nodes, JC nor-
malized the number of common neighbors with the
number of their total neighbors.

• Adamic/Adar (AA): AA [Adamic and Adar, 2003] is
similar to JC, but unlike JC, AA gives more weight
to the nodes with fewer neighbors and compared with
other structure-based methods, it achieved state-of-the-
art performance on a series of networks [Liben-Nowell
and Kleinberg, 2007].

4.3 Experimental Settings

Evaluation Metrics

For link prediction, following the commonly used evalua-
tion criteria in similar tasks, we use ROC-AUC [Hanley and
McNeil, 1982] as the evaluation criteria in our experiment.
A higher value represents better performance and an ideal
model that ranks all the positive samples above negative sam-
ples will achieve AUC value of 1. For Node Classification,
we employ the ℓ2-regularized logistic regression on learned
embedding to train classifiers and we evaluate all the embed-
ding models based on the prediction accuracy.

Model Parameters

To be fair, following their original papers, for all the em-
bedding based methods, we set their embedding dimensions
and the dimension of common embedding in our model to
be 200. For all the random walk based methods, we set the
width of the window to be ten and select five negative sam-
ples. As LINE has two kinds of embedding (the so-called
first-order proximity and second-order proximity), we set the
embedding dimension for both embeddings to be 100 and
concatenate them together. For Node2Vec, we empirically
use the best hyper-parameter for training, which is p = 2 and
q = 0.5. For the three PMNE models, we will use the hyper-
parameters given by their original paper. For our algorithm
multiplex network embedding (MNE), we simply set the di-
mension of additional vectors to be 10.

4.4 Link Prediction

As shown in Table 2, we evaluate AUC values of different
models on all of the datasets with five-fold cross-validation
setting. Following other embedding methods, for each pair of
nodes, we calculate the cosine similarity of their embedding.
The larger the similarity the more likely there exists a link
between them. As the multiplex network has more than one
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Model Vickers CKM LAZEGA C.ELEGANS Twitter Private

DeepWalk 0.821 (0.030) 0.781 (0.008) 0.780 (0.007) 0.821 (0.006) 0.502 (0.002) 0.621 (0.007)
LINE 0.676 (0.011) 0.637 (0.012) 0.695 (0.006) 0.732 (0.006) 0.519 (0.003) 0.512 (0.010)

Node2Vec 0.821 (0.030) 0.781 (0.008) 0.780 (0.007) 0.820 (0.006) 0.504 (0.003) 0.644 (0.010)
PMNE (n) 0.810 (0.032) 0.917 (0.008) 0.792 (0.009) 0.843 (0.003) 0.446 (0.004) 0.629 (0.006)
PMNE (r) 0.844 (0.025) 0.904 (0.008) 0.813 (0.007) 0.835 (0.007) 0.446 (0.001) 0.659 (0.005)
PMNE (c) 0.837 (0.029) 0.847 (0.016) 0.797 (0.011) 0.824 (0.009) 0.449 (0.002) 0.506 (0.004)

Common Neighbor (CN) 0.799 (0.011) 0.877 (0.006) 0.809 (0.007) 0.869 (0.002) 0.592 (0.002) 0.691 (0.002)
Jaccard Coeficient (JC) 0.778 (0.007) 0.873 (0.006) 0.826 (0.007) 0.833 (0.001) 0.520 (0.002) 0.573 (0.004)

Adamic/Adar (AA) 0.803 (0.019) 0.875 (0.013) 0.814 (0.008) 0.881 (0.001) 0.592 (0.002) 0.691 (0.003)

MNE 0.871 (0.014) 0.900 (0.010) 0.839 (0.013) 0.910 (0.006) 0.622 (0.003) 0.723 (0.002)

Table 2: Link prediction based on similarities between two nodes. All the numbers are the averaged AUC score based on five-fold cross
validation. The standard deviations are reported in the parentheses.

relation types, we will compute AUC for each relation type
first and take the average of all the relation types as the final
result. For the models designed for single layer network, we
will train a separate embedding for each relation type of the
network and use that to predict links on the corresponding
relation type, which means that they do not have information
from other relation types of the network. One thing worth
mentioning is that, in the two large online social network, the
following/friendship network is the base network for other
relation types. For example, in our Private data, one can only
send articles to their friends. To make the evaluation more
similar to our real task, for the AUC evaluation of these two
datasets, we will randomly select the same amount of edges
from the base network, which do not appear in that relation
type to be the negative examples and we will not evaluate the
base network. Based on the experiment results, we have the
following interesting observations:

(1) For nearly all the networks, jointly considering differ-
ent relation types of the network is helpful. The models that
take the whole network into consideration outperform all the
models designed for the single network (Deepwalk, LINE,
Node2Vec). This is consistent with our assumption that the
information from any single network is not enough and infor-
mation in different relation types can be the complement to
each other.

(2) The performance of baseline methods varies a lot
based on the topological structure of different networks. For
example, if the network is a dense one like LAZEGA or
C.ELEGANS, the performance of traditional simple methods
are good enough, sometimes even better than the embedding
based approach. However, when the network is relatively
sparse like Vickers or CKM, embedding based methods have
better performance.

(3) The main difference between our model and PMNE is
that PMNE generates one overall embedding for a node and
our model generates a set of embeddings to capture the dis-
tinct information about each relation type. The experimental
results show that such information could be important, espe-
cially on our Private dataset, where difference among differ-
ent relation types of the network is more obvious.

To summarize, on six multiplex networks, our model can
stably outperform or achieve comparable performance with

all the baseline methods. Our understanding is that the com-
mon embedding in our model merges information from dif-
ferent relation types, and the additional vectors keep the dis-
tinct property of each relation type of the network.

4.5 Parameter Sensitivity

In our algorithm, there are three parameters: the dimension of
low-dimensional addition vectors s, the weight of additional
vectors wi, and the transformation matrix norm limitation r.
To clearly show the influence of these parameters, we repeat
our link prediction experiment with different parameter set-
tings. For the small multiplex datasets, we take the average
of them to see the trend.

As shown in Figure 1(a), the performance of our model is
improved when we increase the dimension of the additional
vector. When the dimension reaches 10, the performance
reaches the top, which proves that with the help of common
embedding, we can use a very low dimension (about one-
tenth of the base dimension) vector to represent the property
of each relation type of the multiplex network.

As shown in Figure 1(b), when we increase the weight of
the additional vector, the performance of our model will arise.
But after reaching to 1, the performance will start to go down
slightly. This is because in our embedding training phase, we
fixed the weights as one. It seems tuning this weights using
cross-validation does not further improve link prediction.

As shown in Figure 1(c), if we set the regularization pa-
rameter of the transformation matrix to be too small, we may
restrict the learning process of our model. When the regular-
ization parameter is larger than 10, the performance becomes
stable and the influence of our restriction is not significant.

4.6 Node Classification

In this section, we conduct the experiment on node classifi-
cation task to evaluate the quality of embedding captured by
our model. As the CKM social network is the only multiplex
network that provides the ground truth about node labels, we
use it as the experimental dataset. Considering the size of
datasets being small, we conduct 2-fold cross-validation ex-
periment on this task. The dataset labels all the researchers
with their original companies. We use this feature as labels
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(a) additional vector dimension s (b) weight of additional vectors wi (c) matrix norm limitation r

Figure 1: Performance of our model on different experimental settings. For the experiment on s, we set wi = 1 and r = 1000. For the
experiment on w

i, we set s = 10 and r = 1000. For the experiment on r, we set s = 10 and w
i = 1.

Figure 2: Node classification result.

to train the classifier and evaluate our embedding. For Deep-
walk, LINE, and Node2Vec, as they are designed for single
network, we first train a separate embedding for each relation
type and average them as the final embedding for each node.
For our model, we set the weight wi of all the types to be 1.

The result is shown in Figure 2. Our model can achieve
the best performance among all the embedding models. This
proves that through simple average operation, our model can
produce the high-quality overall representation of nodes.

4.7 Scalability of Our Model

In this section, we investigate the scalability of our model
with our large-scale online social network. As we all know,
in real life, the social network could be huge. For example,
there are about 1 billion active users on our private social net-
work. Every day, more than 500 million relational edges are
created. If we learn embedding for all of the sub-networks,
the training and storage of these models could be a big chal-
lenge. Hence we propose the structure of small additional
vector and transformation matrix, trying to reduce the overall
model size without sacrificing the overall performance.

As shown in Figure 3, the memory used by our model is
almost linear to the network size. Compared with Node2Vec
and LINE, our model occupy one-tenth of the memory space
without sacrificing performance. The reason is obvious. As
we showed in section 3, the memory complexity of our model
is O((d+ s ∗M)|N |) and the memory complexity of Deep-
walk and LINE is O((d ∗ M)|N |), where s is designed to
be much smaller than d. For the PMNE(n) and PMNE(c), as

Figure 3: Scalability of memory use.

they merge the multiplex network into one single network,
their model is the smallest but their model loses distinct in-
formation about relational edges, which is proved important
in the previous experiment.

5 Conclusion and Future Work

In this paper, we present a new scalable embedding model for
multiplex networks. We tested our model on two tasks: link
prediction and node classification. The experimental results
show that our model can effectively capture the overall rep-
resentation of nodes without sacrificing the distinct property
of every single relation types. We also conduct scalability
experiments using our social network to show that when the
network is large, we only need one-tenth of the old model size
to achieve better performance. In the future, we will explore
the idea of multiplex network for tasks in other areas.
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