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ABSTRACT
The growth of music resources on personal devices and In-
ternet radio has increased the need for music recommenda-
tions. In this paper, aiming at providing an efficient and
general solution, we present a search-based solution for scal-
able music recommendations. In this solution a music piece
is first transformed to a music signature sequence in which
each signature characterizes the timbre of a local music clip.
Based on such signatures, a scale-sensitive method is then
proposed to index the music pieces for similarity search, us-
ing the locality sensitive hashing (LSH). The scale-sensitive
method can numerically find the appropriate parameters for
indexing various scales of music collections, and thus can
guarantee a proper number of nearest neighbors are found
in search. In the recommendation stage, representative sig-
natures from snippets of a seed piece are extracted as query
terms, to retrieve pieces with similar melodies for sugges-
tions. We also design a relevance-ranking function to sort
the search results, based on the criteria that include match-
ing ratio, temporal order, term weight, and matching confi-
dence. Finally, with the search results, we propose a strat-
egy to generate a dynamic playlist which can automatically
expand with time. Evaluations of several music collections
at various scales showed that our approach achieves encour-
aging results in terms of recommendation satisfaction and
system scalability.

Categories and Subject Descriptors
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1. INTRODUCTION
Music is more pervasive than ever as an important en-

tertainment medium. With the increase in online music
stores and services, and the popularization of portable mu-
sic devices, we can more conveniently access music than ever
before. For example, we can purchase compact discs from
electronic marketplaces such as iTunes and Amazon.com,
and listen to Internet radio services such as Pandora [3] and
Last.fm [1], or enjoy music anywhere with portable mp3
players like iPod and Zune. All these channels, including
portable devices, provide massive music resources. For ex-
ample, a typical mp3 player with 30GB hard disk can hold
more than 5, 000 songs. With such a vast scale of collec-
tions, a “long tail” distribution can be observed in user lis-
tening history. That is, in their collections, except for a few
pieces that are frequently played, most are rarely visited,
due to the inconvenient operating functions of portable de-
vices. Even on desktop computers, it is usually a tedious
task to select a group of favorite pieces from a larger music
collection. Therefore, music recommendations are highly de-
sired because users a perceived need for suggestions to find
and organize pieces close to their tastes.

Much research effort has been devoted to music recom-
mendations in recent years [4,10,13,16,18,19,23–25,27]. Two
major recommendation technologies have been reported in
the literature: collaborative filtering (CF)-based and content-
based recommendation. CF-based methods [10] recommend
music by investigating user group ratings history, and are
widely adopted in online stores and music societies [1]. To
achieve reasonable suggestions, CF-based methods should
be based on large-scale rating data and an adequate num-
ber of users. However, it is difficult to extend CF-based
methods to applications like recommendations on local per-
sonal music collections. Moreover, CF-based methods still
suffer from problems like lack of data and poor varieties of
recommendation results [18,27].

Content-based methods can meet the requirements of more
application scenarios, since they focus on the properties of
the music itself. Content-based methods can be further
divided into metadata-based [4, 23–25] and acoustic-based
methods [13, 16, 18, 19, 27]. Metadata, which includes prop-
erties such as artists, genre, and track title, are global cata-
log attributes supplied by music publishers. Based on such
attributes, some criteria or constraints can be set up to fil-
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ter favorite pieces. However, building optimal suggestion
sequences based on multiple constraints is an NP-hard prob-
lem [4]. Although acceleration algorithms like simulated an-
nealing [23] have been proposed, it is still difficult to extend
such methods to a scale with thousands of pieces and hun-
dreds of constraints. Other methods based on metadata, uti-
lize statistical learning to construct recommendation mod-
els from existing playlists [24, 25]. Due to the limitation of
training data, such learning-based approaches are also dif-
ficult to scale up. Furthermore, metadata is too coarse to
describe and distinguish individual pieces’ characteristics.
And in practice, it is difficult to obtain complete and accu-
rate metadata in most situations.

In comparison, acoustic-based methods have far few re-
strictions and are more suitable for situations in which con-
sumers or service providers own the music themselves [3].
In general, acoustic-based methods first extract some physi-
cal features from audio signals, and then construct distance
measurements or statistical models to estimate the similar-
ity of two music objects in the acoustic space. In recom-
mendation, music pieces with similar acoustic characteris-
tics are grouped as suggestion candidates. For example,
Knees et al. [16] extracted Mel frequency cepstral coeffi-
cients (MFCCs) on short-time audio segments, and each mu-
sic track is then modeled using a Gaussian mixture model
(GMM), based on which pair-wise distances between pieces
are finally computed. In [13], music tracks are grouped us-
ing the LBG quantization based on MPEG-7 audio features,
and the group closest to the seed piece is returned as sug-
gestions. Similar to [13], Logan [19] construct music clusters
using MFCCs and K-means. And, in [8], some mid-level
acoustic descriptions like tempo, meter, and rhythm pat-
terns are computed, and a global measure of similarity is
then defined by assigning specific weights to these diverse
feature dimensions.

By investigating various recommendation scenarios, we
found that scales of music collection are quite different. For
example, a music fan needs help to automatically create an
ideal playlist from hundreds of pieces on an iPod; while an
online music radio provider should do the same job but from
several million pieces. However, almost all the aforemen-
tioned methods on music recommendation face the prob-
lem of scalability, either when scaling down or scaling up.
CF-based methods must rely on large-scale user data, and
performance will decrease significantly when the data scale
drops. Content-based approaches mainly use linear scan to
find candidates for suggestions, and processing time will in-
crease linearly with the data scale. To accelerate the process-
ing time on large-scale music collections, most content-based
approaches utilize track-level descriptions of pieces, i.e., a
whole music piece is characterized with one feature vec-
tor [4,8,23,24] or one model [16]. Some approaches further
group music pieces into clusters, and the similarity search is
carried out on the cluster-level [13, 19]. To our knowledge,
the best performance reported in one state-of-the-art work
is tenths of a second for one match over a million pieces [8].
Although the processing speed is improved, such high-level
descriptions may not be able to provide enough information
to characterize and distinguish various pieces. On the one
hand, music is a time sequence and the temporal character-
istics should be taken into account when estimating the con-
tent similarity. On the other, some high-level descriptions
are too coarse and are incapable of filtering an ideal sugges-
tion from many similar candidates. Furthermore, another
disadvantage of current approaches is that they are bound

to given music collections, and are basically grounded on
pre-computed pair-wise similarities. Therefore, update costs
are considerable. While in real situations, the members of
a music collection usually change frequently, especially in
personal collections.

A perfect solution should combine all the advantages of
CF-, meta-, and acoustic-based methods. However, in this
paper we mainly focus on the problem of acoustic-based
music recommendation, and leave the multi-modality rec-
ommendation problem as future work. Specifically, we try
to provide a scalable scheme to meet recommendation re-
quirements on various scales of music collections. The main
idea here is to convert the recommendation problem to a
scalable search problem, or, in brief, recommendation-by-
search. Actually, web search can be considered a kind of
recommendation. That is, users submit requests (queries)
and the recommender (search engines) returns suggestions
(web pages). Analogously, a musical piece can be regarded
as a web page, and can be indexed based on its local melody
segments (just like a web page is indexed based on keywords)
for efficient retrieval.

Compared with current methods, recommendation-by-search
has the following advantages. First, search technologies have
been proven efficient and can be scaled from a local desk-
top, intranet, to the entire Web. Second, as users select and
organize queries (recall the scenario of query-by-humming
(QBH) [17], users decide which part of a piece they will
hum as a query), user interaction can be seamlessly inte-
grated into search-based recommendation. We noticed that
a similar idea has been revealed in [2]. Moreover, updating is
more convenient and cheaper by means of the search-based
approach. We only need to incrementally update the index,
without the need to go through the whole music collection
to re-estimate pair-wise similarities.

However, for the purpose of scalable music recommenda-
tion, there are still several issues that should be addressed:

• First and the most important, is how to design a proper
index structure based on data scale. Under different
data scales, the criterion of “similarity” between music
segments should be adaptively changed to guarantee a
proper number of candidates retrieved for suggestion.

• Second, how to prepare seeds for query is another key
problem in recommendation-by-search. As mentioned
before, it may be no a good idea to take an entire
musical piece as a seed, since in most cases only parts
of sections in a piece impress users.

• Third, with a list of retrieval results, a well-designed
strategy is required to rank these results based on their
similarities to the seed, and finds the most appropri-
ate one for recommendation. This is similar to the
dynamic ranking of resulting pages in web search.

To construct a search-based system for scalable music rec-
ommendation, we propose a solution to address the above
problems. In the proposed solution, a musical piece is first
represented with a music signature sequence in which the
signature characterizes one local music segment. Then, the
local sensitive hashing (LSH) method [11, 14] is applied to
index signatures to consider their L2 distances. To address
the first problem, we propose an algorithm to adaptively es-
timate appropriate parameters for LSH indexing on a given
scale of the music collection. In recommendation, we extract
representative signatures as query terms from a seed piece by
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Figure 1: The flowchart of the proposed solution
for scalable music recommendation, which consists
of two parts: (I) scale-sensitive music indexing; and
(II) recommendation-by-search.

using a music snippet analysis [5,20] and design a relevance-
ranking function to integrate criteria such as matching ra-
tio, temporal order, term weight, and matching confidence.
In addition, we also propose a strategy for dynamic playlist
generation based on the search results, in which the require-
ments of “stick to the seed” and “drift for surprise” [22] are
well balanced. Finally, we evaluate our approach on various
collections from around 1,000 pieces to more than 100,000
pieces, and the experimental results showed that our ap-
proach achieves promising performance on both recommen-
dation satisfaction and system scalability, with relatively low
CPU and memory costs.

The rest of this paper is organized as follows. In Sec-
tion 2, an overview of the proposed approach is presented.
In Section 3, we introduce our method and implementa-
tion for scale-sensitive music indexing. Section 4 describes
the detailed process of the recommendation-by-search, and
how to automatically construct a playlist using the proposed
method. Evaluations and discussions are given in Section 5.
In the last section, we draw conclusions and point out future
research directions.

2. OVERVIEW OF OUR APPROACH
The flowchart of our solution is illustrated in Figure 1,

which mainly consists of two parts: scale-sensitive music
indexing and recommendation-by-search.

In the indexing stage, we first extract a sequence of sig-
natures for each piece in the music collection, just like the
process of term extraction in text document indexing. Here,
a signature is a compact representation of a short-time music
segment based on low-level spectrum features. With a sig-
nature sequence, the local spectral characteristics and their
temporal variation over a music piece are preserved so as to
provide more information than previous track-level descrip-
tions. All these signatures are then organized by inverted
indexes based on hash codes generated by LSH. We utilize
LSH because it theoretically guarantees signatures that are
close to one another will fall into the same hash-bucket with
high probability. A key problem here is how to define the
criterion of “closeness” in LSH, which directly affects the
system performance. In our solution, we automatically es-
timate such a “closeness” boundary based on the scale of a
music collection, to ensure a proper number of results can
be retrieved for recommendation. Intuitively, the boundary
of such “closeness” in indexing should be somewhat relaxed
for a small music collection and tightened for a massive col-
lection.

In the recommendation stage, the seed piece is also con-
verted to a signature sequence, based on which snippets of
the piece are extracted. Snippets (or thumbnails) are those
representative segments in a music piece, and are usually
the main chorus or highlights parts. Thus, we select signa-
tures from the snippets instead of from the whole piece, to
construct queries for retrieval. The returned search results
are then sorted through a relevance-ranking function. In the
ranking function, besides some sophisticated criteria widely
used in text search, we also introduce several new criteria to
meet the specialties of music search. Finally, we construct a
dynamic playlist using the ranked search results.

In the implementation, we build an efficient disk-based
indexing storage, and only a small cache is dynamically kept
in memory to speed up the search process. In this way, our
system can operate on most off-the-shelf PCs.

3. SCALE-SENSITIVE MUSIC INDEXING
In this section, we describe in detail the proposed method

and the implementation of the scale-sensitive music index-
ing. This is the offline part of the proposed scheme.

3.1 Music Signature Generation
Some work related to music signature extraction has been

discussed in the literature on audio fingerprinting [6,7]. How-
ever, the fingerprints defined in various articles are quite
different from each other. For example, some are based on
the distortion between two adjacent 10-ms audio frames and
some are based on the statistics of a whole audio stream [7].
In this work, we adopt a method similar to the two-layer
oriented principal component analysis (OPCA) presented
in [6], as it is based on a length suitable for our require-
ment and is robust enough to overcome noise and distortions
caused by music encoding.

In the implementation, all music files are converted to 8
kHz, 16-bit, and mono-channel format, and are divided into
frames of 25.6 ms with 50% overlapping. For each frame,
1024 modulated complex lapped transform (MCLT) coef-
ficients [21] are first computed and are then transformed
to a 64-dimensional vector through the first-level OPCA.
Further, to characterize the temporal variation, such 64-
dimensional vectors from 32 adjacent frames (around 4.2 sec-
onds) are concatenated and again transformed to a new 32-
dimensional vector through the second-level OPCA. Here,
the MCLT coefficients are used to describe the timbre char-
acteristics on spectrum for each frame; and the time window
is experimentally selected as 4.2 seconds to characterize the
trend of temporal evolution. In this way, both spectral and
temporal information of the corresponding audio segment is
embedded in the last 32-dimensional vector, which is taken
as a signature in our work. Thus, a piece is finally converted
to a sequence of signatures by repeating the above operation
through the whole audio stream.

3.2 Music Indexing
The objective of music indexing is to build an efficient data

structure to accelerate similarity search. It is worth notic-
ing that the music indexing in this work is quite different to
those introduced in audio fingerprinting related works. In
fingerprinting systems, the key difference is that only identi-
cal fingerprints are allowed to be indexed together, and two
fingerprints with only small differences may have quite dif-
ferent index references [8,25]. In our approach, we use sim-
ilarity search and try to group those close signatures in the
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Figure 2: The average K-NN L2 distances on four
music collections with various scales.

indexing. We also investigate how to control the tolerance
of such “closeness” to ensure a proper number of signatures
can be indexed together in the same hash bucket.

3.2.1 Locality Sensitive Hashing
Locality sensitive hashing (LSH) was first proposed in [14]

and was extended in [11,15], as an efficient approach to solve
the problem of high-dimensional nearest neighbor search.
LSH is based on a family of hash functions H = {h : S →
U}, which is called locality sensitive for the distance function
D(·, ·), if and only if for any p, q ∈ S, it satisfies:

PrH(h(p) = h(q)) = fD(D(p, q)) (1)

where fD(D(p, q)) is monotonically decreasing with D(p, q).
Given a (R,λ, γ)-high dimensional nearest neighbor search
problem 1, LSH uniformly and independently selects L ×
K hash functions from H, and hashes each point into L
separate buckets. Thus two closer points will have higher
collision probabilities in the L buckets. More details can be
found in [11]. It has been theoretically proven that given
a certain (R, λ, γ), the optimal L and K can be automated
estimated [15]. In the nearest neighbor search problem, the
probabilities λ and γ can be experientially selected, and the
last problem is how to select a proper R.

The value of R directly affects the expectation of how
many neighbors can be retrieved with probability λ using
LSH. Figure 2 shows such an example. In Figure 2, we
randomly sampled 1000 signatures as query terms from four
music collections with different scales 2, respectively, and
then compute the average L2 distance of a term to its Kth

neighbor for each collection. From Figure 2, it is clear that
to return a given number of neighbors, different boundaries
should be set for different data scale. Intuitively, such a
boundary should be relaxed for small set while tightened
when data scale increases, to ensure an expected number of
neighbors can be returned. Specifically, it a requirement of
recommendation-by-search is to promise a proper number of
pieces will be returned for suggestion on whatever scale of
music collections.

1That is, for any given query point q, each point p satisfying
D(p, q) ≤ R should be retrieved with probability at least λ,
and each point satisfying D(p, q) > R should be retrieved
with probability at most γ [15].
2The detailed information of the four collections please refers
to Section 5.1.

Table 1: The mean μ and standard deviation σ of the
pair-wise distances of signatures on various scales of
music collections.

Scale ≈ 1,000 5,000 10,000 100,000
μ 177.1 176.3 175.8 175.6
σ 39.3 39.3 39.2 39.2
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Figure 3: The distribution of the pair-wise distance
of music signatures on a collection with more than
100, 000 pieces. It can be approximated using a
Gamma distribution.

3.2.2 Scale Sensitive Parameter Estimation
In this work, we propose a numerical method to auto-

matically estimate the value of R for a given scale of music
collection. An assumption here is, whatever the data scale
is, the distribution of the pair-wise L2 distances among sig-
natures should be relatively stable. A similar conclusion has
been drawn in [9]. To verify such an assumption, we checked
the pair-wise distances on the four collections in our exper-
iments, and list the corresponding mean μ and standard
deviation σ in Table 1.

From Table 1, it is clear that the means and standard de-
viations of the pair-wise distances are close on various scales
of the collections. We also draw the histogram of the dis-
tance distribution on the collection that contains more than
100,000 pieces in Figure 3. Such a distribution is similar
to a Gaussian distribution. However, it is asymmetric since
the L2 distance is always larger or equal to zero, and it can
be better approximated by a Gamma distribution, as shown
in Figure 3. The probability density function (pdf ) of a
Gamma distribution is:

g(t;α, θ) = tα−1 e−t/θ

Γ(α)θα
(2)

where the two parameters α and θ can be estimated as:

α = μ2/σ2; θ = σ2/μ (3)

Based on the above assumption, we can consider that
for various music collections, the pair-wise L2 distances of
our signatures follow a same Gamma distribution g(t;α, θ).
Thus, given the data scale V0 and the expected result num-
ber V , the optimal value of R can be obtained by solving
the following equation (R is replaced by x for clarity):

f(x) =

∫ x

0

g(t;α, θ) dt − ρ =

∫ x

0

tα−1 e−t/θ

Γ(α)θα
dt − ρ (4)
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and ρ = V/V0 is the expected ratio of the returned results.
In our experiments, V is set to 20 for all the datasets. Let
s = t/θ, equation (4) is further transformed to:

f(x) =
1

Γ(α)

∫ x/θ

0

sα−1e−s ds − ρ =
1

Γ(α)
γ(α,

x

θ
) − ρ (5)

where γ(α, x) is a lower incomplete Gamma function, and
can be solved numerically. Thus, x can be iteratively achieved
using the Newton-Raphson method with a random initial
value x0, as:

xn+1 = xn − f(xn)/f ′(xn) (6)

where the derivative f ′(x) = g(t;α, θ).
In this way, we can estimate a proper R and construct

a LSH-based index, according to the scale of a given music
collection. In the search stage, a query signature is hashed
by the same set of LSH hash functions, and its neighbors are
independently retrieved from the corresponding L buckets.

4. RECOMMENDATION-BY-SEARCH
Music in a similar style usually adopts some typical rhythm

patterns and instruments. For example, fast drum beat pat-
terns are widely used in most heavy metal music. Similar
instruments usually generate similar spectral timbres, and
similar rhythms will lead to similar temporal variation. As
music signature describes temporal spectral characteristics
of a local audio clip, it is expected that music pieces of
a similar style will share some similar signatures, just like
documents on similar topics usually share similar keywords.
Thus, it is possible to make music recommendation prac-
tical by retrieving pieces with similar signatures. In other
words, in our system, the criterion for recommendation is
to find out music pieces with similar time-varying timbre
characteristics.

In this section, we describe in detail the proposed idea
of recommendation-by-search, and how it is implemented,
based on the efficient music indexing scheme introduced in
Section 3. In the following, we first introduce how to se-
lect signatures as query terms from a seed piece, and then
present the criteria for designing the relevance-ranking func-
tion. Finally, we present the proposed strategy for auto-
mated playlist creation.

4.1 Music Snippet-based Query Selection
How to select proper signatures as query terms from a

piece is not a trivial problem. First, not all the signatures in
a piece are representative to its content. Second, too many
query terms will drop the search performance significantly
(on average, a piece around 5 minutes has more than 2,000
signatures). Actually, people like and remember one piece
mostly because some short but impressive melody clips recur
in the piece. Therefore, it is reasonable to select query terms
only from such typical and repetitive segments, which have
been called music snippets or thumbnails.

There have been several reported approaches for music
snippet extraction [5, 20]. Here, we simply utilize a revised
algorithm of that proposed in [5], as their approach was
also based on audio signatures. In the implementation, we
extract three snippets from the front, middle, and back parts
of a piece 3, and each snippet is a segment of around 10 ∼ 15

3There are usually several repetitive segments for a piece,
and the snippet detection algorithm also returns multiple
candidates. To cover more reasonable snippets, we experi-

seconds [5]. However, we still face the “long query” problem
as there are still about 100 signatures in such a 15-second
segment. It is still a large burden for the search engine.

Considering that music is a continuous stream and the
two adjacent signatures have around 4-second overlaps, the
L2 distances between adjacent signatures are usually small,
unless some distinct changes happen in the signal. Thus,
such signatures can be further compacted by grouping sig-
natures close enough to each for reducing the number of
query terms. In our system, a bottom-up hierarchical clus-
tering is performed on signatures from one snippet, and the
clustering is stopped when the maximum distance between
clusters is larger than R/2. For each cluster, the signature
closest to the centre is reserved as a query term. Experi-
mentally, the query terms can be reduced to 1/10 after the
clustering. Finally, by combining adjacent signatures in a
same cluster, a music snippet is converted to a query, which
is represented with a sequence of (term, duration) pairs, as:

Q ∼ [(qQ
1 , tQ

1 ), · · · , (qQ
i , tQ

i ), · · · , (qQ
NQ

, tQ
NQ

)], qQ
i ∈ SQ (7)

where qQ
i and tQ

i are the signature and the duration of the

ith term, SQ = {s1, s2, · · · , sNUQ} is the set of all the NUQ

unique terms in the query, and NQ is the query length.

4.2 Rank Criteria
Relevance ranking is a crucial component of almost all

search related problems. In text search, relevance ranking
has been well studied such as the BM25 algorithm in [26].
The relevance ranking in music search has similar features
with that in text search, but also has its own characteristics.
As shown in (7), query terms here have duration informa-
tion, and their temporal order is also important. Moreover,
as the search is similarity-based but not identical matching,
the confidence of such a matching should also be considered
in the ranking.

First, let us look back the search process, and describe
how the search results are obtained and organized for rank-
ing. As introduced in Section 3.2, a query term (signature)
will be hashed into L buckets with LSH, and the pieces in-
dexed in these L buckets will be merged as a result list of this
term. For a hit point (also a signature in a piece in the in-
dex), its similarity to the query term can be approximated
by the number of buckets it belongs to over the whole L
buckets (according to the LSH theory, the closer two signa-
tures are, the higher probability they are in a same bucket).
Such a similarity can be considered as a confidence of this
matching. After going through all the unique terms in the
query, their result lists are further combined to a candidate
set 4 for relevance ranking. For each candidate piece in the
set, its matching statistics can be represented with a triple
sequence by merging adjacent hit points of a same term into
a segment, as shown in Figure 4. A triple is in the form of
(qR, tR, cR), where qR is the matched term, tR is the seg-
ment duration, and cR is the average matching confidence
of the hit points in this segment.

In ranking, each candidate piece is further divided into
fragments, as shown in Figure 4, if the time interval Δt be-
tween two matching segments is larger than a pre-defined

mentally select three most possible candidates from different
parts of a piece.
4Here, it is assumed the search operation is “OR”, as it can-
not be expected all these terms in a query will exist in one
another piece.
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threshold Tmin (which is set as 15 seconds). Then, we com-
pute the relevance scores for all the fragments, and the max-
imum is returned as the score of the candidate piece.

Considering of the characteristics of music search, in our
approach, the relevance of a fragment is mainly based on the
matching ratio and temporal order, and also integrates the
term weight and the matching confidence above.

First, similar to the Robertson/Sparck weight [26] in text

retrieval, the weight of the ith term in SQ is defined as:

wi = log
V0 − ni + 0.5

ni + 0.5
(8)

where V0 is the total number of pieces in the dataset (i.e.,
the data scale defined in Section 3.2.2, and ni is the length
of the result list of the ith term. The sum of all the term
weights in SQ is further normalized to one. In this way, we
assign lower weights to popular terms while higher weights
to special terms, just like the inverse document frequency
(idf ) utilized in text retrieval.

Then, our ranking function is defined as a linear combi-
nation of the measurements of the matching ratio fratio and
the temporal order forder, as:

franking = fratio + forder (9)

In details:

• fratio is defined as:

fratio =
1

NUQ

NUQ∑
i=1

min (dQ
i , dR

i )

max (dQ
i , dR

i )
· wi (10)

where dQ
i and dR

i are the durations of the ith term oc-
curring in the query and in the fragment, respectively:

dQ
i =

∑
k|qQ

k
=si

tQ
k ; dR

i =
∑

k|qR
k

=si

tR
k (11)

In (10), the matching ratio and combined with the
term weight.

• forder is defined as:

forder =
1

NQ − 1

NQ−1∑
i=1

Poccur(q
Q
i , qQ

i+1) (12)

where Poccur(q
Q
i , qQ

i+1) is the maximum confidence of

the pair (qQ
i , qQ

i+1) occurred in order in the result frag-
ment, as:

Poccur(q
Q
i , qQ

i+1) = max
j|qR

j =q
Q
i &qR

j+1=q
Q
i+1

(cR
j · cR

j+1) (13)

In (13), the temporal order and matching confidence
are combined together.

In this way, fragments with larger matching ratio and
more ordered term pairs are ranked with higher relevance
scores, based on which corresponding candidate pieces are
sorted for further recommendation.

4.3 Automated Playlist Creation
Up till now, we have implemented a search-based ap-

proach to find recommendations for a given piece from a
music collection. In practice, users still need a continuous
playlist, which can automatically expand with time. Here,
we also present one strategy for automated playlist creation
using the recommendation-by-search.

Various approaches have been proposed to automatically
generate music playlists in previous works [4, 16, 23–25]. In
general, a key idea is to provide an optimum compromise
between the desire for repetition and the desire for sur-
prise [22]. In another word, a good recommender should
suggest both popular pieces with similar attributes (“stick
to the seed”), and new pieces to provide fresh feeling (“drift
for surprise”). However, for most content-based recommen-
dation systems, finding novel songs becomes an unavoidable
problem as their criterion is to find out similar pieces (while
for CF-based recommendation, this issue can be well solved
using the power of social community). Thus, our approach
does have such a limitation in finding novel songs. To im-
prove the diversity of recommendation, here, we heuristically
add some dynamics when creating playlists. In details, the
playlist is generated as following steps:

1. User manually assigns a piece as a seed.

2. Extract three snippets from the seed piece, as described
in Section 4.1, to construct three queries for search.
The first result of each query is added to the playlist.
Thus, the suggestions are still acoustically similar with
the seed. In this step, we intend to meet the require-
ment of “stick to the seed”.

3. Randomly select a piece from the top three suggestions
as a new seed, and go to step 2. Thus, the new seed
is different with the original one, and will drive the
playlist to a somewhat new style. In this step, we
intend to meet the requirement of “drift for surprise”.

User interactions can be easy integrated into the above
process. For example, users can also tag any parts they are
interested in a piece, and the playlist will be dynamically up-
dated using queries generated from the tagged parts, instead
of from the snippets by default.

5. EVALUATIONS AND DISCUSSIONS
In this section, we present results of the proposed recommendation-

by-search, including the system efficiency, quantitative eval-
uations on both acoustic and genre consistencies, and sub-
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jective evaluations from a user study. Based on these eval-
uations, we want to show that: 1) our approach is effective
and efficient on various scales of music collections; and 2)
the recommendation quality is also promising and is close
to some state-of-the-art commercial systems.

5.1 Datasets and Experimental Settings
In experiments, we collected 114, 239 pieces (from 11, 716

albums) in mp3 and wma formats. To simulate music collec-
tions with different scales, we randomly sample some albums
from all the 11, 716 albums, and construct four collections:
C1 (1,083 pieces in 106 albums), C2 (5,126 pieces in 521
albums), C3 (9,931 pieces in 1007 albums), and C4 (all the
pieces). These collection scales are selected to simulate the
scenarios of recommendation on portable devices, personal
PCs, and online radio services.

To evaluate the performances of the proposed solution on
various scales of collections, for each collection, we created
20 playlists with the seed pieces listed in Table 2. For com-
parison, we also recorded the recommendation lists from a
state-of-the-art online music recommendation service, Pan-
dora [3], using the same 20 seeds. In addition, we still gen-
erated 20 playlists in shuffle model by randomly selecting
pieces from the collections. The length of all the playlists
is fixed to 10. Thus, in the experiment, we constructed 6
playlist collections, with 20 playlists in each.

As a side note, here we want to give more explanation
to why we chose Pandora for comparison. Although there
are some related techniques in the literature for automated
and acoustic-based music recommendation, it is still hard
to compare ours with them, since their implementation de-
tails and parameter settings are unavailable. Moreover, such
comparisons are also unfair because the data collections used
in various papers are different. This is why there are few
such cross-system comparisons in music recommendation lit-
erature. In this paper, we try to situate the recommendation
quality of our approach using two relatively fair references-
random shuffle and Pandora. Pandora is public for access,
and it is a top-ranked commercial recommendation service.
It should be noted that we don’t expect our automated and
only acoustic-based system can exceed the performance of
Pandora, as it leverages metadata and acoustic-related infor-
mation, as well as many expert annotations. Thus, Pandora
acts as a referee in the following evaluations. More discus-
sions please refer to Section 5.5.

5.2 System Efficiency
In the experiment, we employ a PC with 3.2 GHz Intel

Pentium 4 CPU and 1GB memory to evaluate the system
efficiency.

We first evaluate the performance of the front-end, i.e., au-
dio processing and music signature extraction. We randomly
select 100 pieces in either mp3 or WMA format from the
dataset. The average duration is 5.2 minutes. It took 3 min-
utes and 51 seconds for the front-end (including the steps of
mp3/WMA decoding, down-sampling, MCLT, OPCA, and
LSH-hashing) to parse all the 100 pieces. If the snippet ex-
traction is also included, the total time cost is 5 minutes
and 57 seconds. That is, 3.57 seconds are required on av-
erage to process a seed piece in recommendation. However,
in most applications the seed piece is also a member of the
music collection, and the snippets and query terms can be
pre-generated and stored. The indexing time of the largest
collection C4 is about 87 hours, and the detailed index size
of each collection is listed in Table 3.

To evaluate the online search performance, for each collec-
tion, we carried out 1, 000 queries (with around 13.4 terms
each) and the average performances are shown in Table 3.
From Table 3, it is first observed that the memory costs of
our system on various collections are relatively stable, and
such memory cost is also acceptable for most desktop appli-
cations on PCs. Second, the average search time increases
with the data scale, but is also acceptable for most appli-
cations. The search time here includes retrieving inverted
indexes from (#term×L) hush buckets, merging, and rank-
ing the search results. In C1, as most of the index can be
cached in memory, the speed is quite fast. When index in-
creases with the data scale, the search time becomes longer,
as more disk I/O are needed for cache exchange. Actually,
when the data scale is extremely large, the search operation
can be easily distributed to multiple machines to accelerate
the process time.

Another statistic shown in Table 3 is the average number
of returned results. As discussed in Section 3.2, we need to
assure enough results are returned for recommendation on
various scale of collections. From Table 3, the resulting num-
ber can be roughly kept in the range of 500 ∼ 1000. More
detailed, there are around 45% of pieces in C1 are returned
for each query; while with C4 the percentage is only around
0.9%. However, the number of results is still increased with
the data scale, as the LSH is designed to bind the worst
conditions, while in real data the hitting probability is much
higher than expected.

In general, it indicates our method of the scale-sensitive
music indexing is effective in practice. In various music
scales (application scenarios), our system can guarantee a
return of a proper number of suggestions within an accept-
able response time. In the following, we evaluate both the
quantitative and subjective qualities of our recommendation
results in Section 5.3 and Section 5.4.

5.3 Quantitative Evaluation
To the best of our knowledge, there is still not a sophisti-

cated method to give a quantitative evaluation to music rec-
ommendation. In this work, we tried to utilize some indirect
evidence for quantitative comparisons. One is the acoustic
consistency, to verify the suggestions from the acoustic-level.
The other is the genre consistency, to verify the suggestions
from the metadata-level.

5.3.1 Acoustic Consistency
The acoustic consistency is to verify how close those sug-

gested pieces are in the low-level acoustic space, and also
has been utilized in some previous works for music recom-
mendation [16, 19]. Here, we adopted a GMM-based ap-
proach [12, 16] to measure the distance between two pieces.
In implementation, each piece in a playlist is modeled with
a GMM in the d = 64 dimensional MCLT spectrum space
(the same one we adopted in Section 3.1 for music signature
extraction), as:

f(x) =

k∑
i=1

αiN (x; μi, Σi) =

k∑
i=1

αifi(x) (14)

where μi, Σi, and αi are the mean, covariance, and weight of
the ith Gaussian component fi(x), respectively; and k is the
number of mixtures (which is set as 10 experimentally). The
distance between two GMMs f(x) and g(x) is then defined:

d(f, g) =
1

2
(�d(f, g) + �d(g, f)) (15)
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Table 2: Information of the seed pieces in experiments.

No. Track Artist Genre
1 Lemon Tree Fool’s Garden Pop
2 My Heart Will Go On Celine Dion Pop
3 Candle in the Wind Elton John Pop
4 Soledad Westlife Pop
5 Say You, Say Me Lionel Richie Pop
6 Everytime Britney Spears Pop
7 As Long As You Love Me Backstreet Boys Pop
8 Right Here Waiting Richard Marx Rock
9 Yesterday Once More Carpenters Rock
10 It’s My Life Bon Jovi Rock
11 Tears in Heaven Eric Clapton Rock
12 Take Me to Your Heart Michael Learns to Rock Rock
13 What’d I Say Ray Charles R&B
14 Beat It Michael Jackson R&B
15 Fight For Your Right Beastie Boys Rap
16 Does Fort Worth Ever Cross your Mind George Strait Country
17 Cross Road Blues Robert Johnson Blues
18 Born Slippy Underworld Electronic
19 Scarborough Fair Sarah Brightman Classical
20 So What Miles Davis Jazz

Table 3: The usages of disk, memory, and CPU on C1 ∼ C4.

C1 C2 C3 C4

Index on Disk 70M 414M 787M 9.16G
Runtime Memory in Search 42.5M 43.3M 43.5M 47.1M

Average Search Time 0.27s 1.41s 1.72s 2.53s
Average Result Number 491 632 758 985

where �d(f, g) is the direct distance from f to g:

�d(f, g) =

k∑
i=1

αi min
j,1≤j≤k

KL(fi||gi) (16)

Here, the Kullback-Leibler (KL) divergence between two
Gaussian components is defined as:

KL(N (x; μ1, Σ1)||N (x; μ2, Σ2)) =

1

2
[log

|Σ2|
|Σ1| + tr(Σ−1

2 Σ1) + (μ1 − μ2)
T Σ−1

2 (μ1 − μ2) − d] (17)

In this way, for each playlist we compute all the pair-wise
distances between pieces. After going through all the 20
playlists in a collection, the distribution of such GMM-based
distances on the collection is obtained and can be approxi-
mated by a Gamma distribution, similar to that introduced
in Section 3.2.2. Figure 5 illustrates the approximate dis-
tance distributions on all the six playlist collections in our
experiments.

From Figure 5, it is found that the average pair-wise dis-
tance in shuffle is the largest, while C4 is the smallest. This
indicates that pieces suggested by our search-based approach
still have similar acoustic characteristics in the track-level,
although only signatures in snippet parts are used for search.
This indicates our recommendation-by-search can satisfy the
assumption of acoustic-based music recommendation. With
the decrease of the data scale, from C4 ∼ C1, the aver-
age distance becomes larger, as well as the deviation of the
distribution. In Figure 5, the distribution of Pandora is in
the middle of the shuffled approach and those generated us-
ing our approach. This indicates acoustic features may also

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

GMM-based Distance

P
ra

ba
bi

lit
y

C1
C2

C3

C4

Pandora
Shuffle

Figure 5: The distributions of the GMM-based pair-
wise distance of pieces in a playlist, for the six
playlist collections, respectively.

be considered in Pandora, but their recommendations are
not only based on the acoustic attributes. This observation
is consistent with the online introduction of Pandora [3],
that is, it also leverages expert annotations such as culture
and emotion to generate their playlists. Thus, in Pandora,
pieces with similar annotations are also possibly selected for
recommendation, although their low-level acoustic features
may be quite different.

5.3.2 Genre Consistency
A music genre is a category of pieces of music that share a

certain style, and is one of the basic tags in music industry.
Although the genre classifications are sometimes arbitrary
and controversial, it is still possible to note similarities be-
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Table 4: Entropy of the genre distribution on the
six playlist collections.

Pandora Shuffle C1 C2 C3 C4

Mean 0.23 0.56 0.32 0.40 0.38 0.35
Std 0.15 0.08 0.13 0.17 0.15 0.16

tween musical pieces, and thus is widely used in metadata-
based music recommendation [4, 23–25]. To guarantee the
genres used in the experiment are as accurate as possible, we
utilized AllMusic (www.allmusic.com) – the most authori-
tative commercial music directory – to manually verify the
genre of each piece. In total, nine basic genre categories:
Pop, Rock, R&B, Rap, Country, Blues, Electronic, Classi-
cal, and Jazz, are adopted for classification.

The evaluation of genre consistency here is similar to that
presented in [16]. That is, the Shannon entropy is utilized
to measure the genre distribution of pieces in a playlist. The
Shannon entropy is defined as:

H(x) = −
∑

x

p(x) log10 p(x) (18)

where p(x) is the percentage of a given genre in a playlist.
Here, considering the length of a playlist is 10, we adopt
log10(·) in (18) thus the entropy of the worst case (the 10
pieces in a playlist are from 10 different genres) is 1. And
for the ideal case (all the 10 pieces are from a same genre),
the entropy is 0. The statistics of the entropies on the 6
collections are listed in Table 4.

There is not an authoritative criterion to describe what
the genre distribution should be like for an ideal playlist [16].
Here, by comparing the average entropies of playlists from
Pandora and in shuffle model, we just assume the lower the
entropy, the better the playlist quality. In Table 4, the en-
tropy of playlists in shuffle is the highest and with small de-
viation, and it indeed should be close to the genre distribu-
tion of the whole music collection. The genre entropies of the
playlists from C1 ∼ C4 are around 0.3∼0.4, and are between
Pandora and the shuffle one. As genre is actually one of the
criteria utilized for recommendation in Pandora [3], the dis-
tribution on Pandora is the most concentrated. Through the
comparison, it indicates that our approach can still keep the
genre consistency, to a certain extent.

5.4 Subjective Evaluation
To evaluate the performance in practice, we also con-

ducted a small user study by inviting 10 college students
as testers. Considering the work load, we randomly se-
lected 5 playlists from each collection for each tester. Thus,
each tester evaluated 30 playlists through listening to them
one by one, and the collection information was blind to the
testers. The testers were asked to assign a rating ranging
score from 1 to 5 to each playlist. The rating criteria are: 1
(“totally unacceptable”), 2 (“marginally acceptable, but still
inconsistent”), 3 (“acceptable, and basically consistent”), 4
(“acceptable, with some good suggestions”), and 5 (“almost
all good suggestions”). Here, “acceptable” is defined as “it
is OK to finish the playlist without interruption”. To re-
move the individual bias, ratings from each tester are first
re-normalized before analysis. Then, the normalized ratings
from various testers are averaged on each playlist collection,
and the corresponding mean and standard deviation are kept
for comparison, as shown in Table 5.

Table 5: Statistics of the subjective ratings for the
six playlist collections.

Pandora Shuffle C1 C2 C3 C4

Mean 4.29 1.73 3.81 3.85 3.88 3.87
Std 0.69 0.52 0.91 0.97 0.95 0.96

From Table 5, it is clear that the highest subjective rat-
ing is achieved on Pandora, with an average rating close to
4.3. The ratings from C1 ∼ C4 are around 3.85, which in-
dicates that with our approach, the suggestion qualities are
still acceptable and suffer little from the data scales, espe-
cially when the scales are large enough (such as C3 and C4).
The performance of the playlists in shuffle is the worst, their
average ranking is lower than 2. However, an interesting
phenomenon is that the standard deviation on the shuffle
collection is the smallest, which suggests subjective judg-
ments are more consistent using it. Similarly, the subjects
also show consistent satisfaction for Pandora. While in com-
parison, such deviations of C1 ∼ C4 are notably higher. It
indicates that the suggestion qualities of our approach are
not as stable as that of Pandora, and need to be improved
in the future work.

5.5 Discussion
The above evaluations have shown our solution can achieve

encouraging and stable performance on various scales of mu-
sic collections, and is efficient in practice. The general per-
formance is much better than that in shuffle, and is close
to Pandora. However, it still needs improvement in com-
parison with Pandora. Pandora was created by the Music
Genome project [3], which is trying to “create the most com-
prehensive analysis of music ever”. In Music Genome, a
group of musicians and music-loving technologists were in-
vited to carefully listen to pieces and label “everything from
melody, harmony and rhythm, to instrumentation, orches-
tration, arrangement, lyrics, and of course the rich world
of singing and vocal harmony”. Thus, the recommendation
of Pandora has integrated both meta- and acoustic- infor-
mation, as well as human knowledge from music experts.
That is why it achieved the best subjective satisfaction in
the experiments. However, Pandora requires a great amount
of manual/expert labeling works, which is expensive and is
not available without great difficulty in many applications,
such as music recommendations on personal PCs or portable
devices.

In comparison, our solution can be conveniently deployed
to both desktop and web services. Especially for desktop-
based applications, our approach can be naturally integrated
into desktop search, to facilitate users search, browsing, and
discovery local personal music resource. Furthermore, if
metadata and user listening preferences are available, our so-
lution can be further improved by combining local acoustic-
based search results with CF-based and meta-based informa-
tion retrieved from the Web. This is one of our directions
in the future.

6. CONCLUSIONS
In this paper we have presented a search-based solution for

scalable music recommendation. In this solution, through
acoustic analysis, music pieces are first transformed to se-
quences of music signatures. Based on this, an LSH-based
scale-sensitive method is presented to index the music pieces
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for effective similarity search. According to a given data
scale, this method can numerically estimate the appropri-
ate parameters to index various scales of music collections,
and thus guarantees that an optimum number of nearest
neighbors can be returned in search. In the recommendation
stage, representative signatures from the snippets of a seed
piece are first selected as query terms to retrieve pieces with
similar melodies from the indexed dataset. Then, a relevance
function is designed to sort the search results by considering
criteria like matching ratio, temporal order, term weight,
and matching confidence. In addition, we also propose a
strategy to generate dynamic playlists using the search re-
sults. Experimental evaluations have shown that the pro-
posed approach achieved promising performance on system
efficiency, content consistency, and subjective satisfaction
for various music collections from around 1,000 music pieces
to more than 100,000 pieces.

Although the proposed solution has been verified to be fea-
sible for music recommendations, there is still considerable
room for further investigation and improvement. For exam-
ple, besides the relevance (dynamic) ranking, static ranks
such as sound quality and music popularity can also be inte-
grated to find better suggestions. Moreover, more sophisti-
cated acoustic features should be evaluated to discover those
that are more suitable for music recommendation. Lasting
personalized music recommendation, user preferences should
be modeled by tracking operational behavior and listening
histories. These are directions of our future work.

7. REFERENCES
[1] Last.fm – The Social Music Revolution.

http://www.last.fm.
[2] Owl multimedia � use YOUR music to find New

music! http://www.owlmm.com.

[3] Pandora Internet Radio and Music Genome Project.
http://www.pandora.com.

[4] J.-J. Aucouturier and F. Pachet. Scaling up music
playlist generation. In Proc. IEEE ICME’02,
volume 1, pages 105–108, Lausanne, Aug. 2002.

[5] C. J. C. Burges, D. Plastina, J. C. Platt, E. Renshaw,
and H. S. Malvar. Using audio fingerprinting for
duplicate and thumbnail generation. In Proc. IEEE
ICASSP’05, volume 3, pages 9–12, Philadelphia, PA,
USA, Mar. 2005.

[6] C. J. C. Burges, J. C. Platt, and S. Jana. Distortion
discriminant analysis for audio fingerprinting. IEEE
Trans. Speech and Audio Processing, 11(3):165–174,
May 2003.

[7] P. Cano, E. Batlle, E. Gómez, L. Gomes, and
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