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Abstract
We describe a scalable stochastic method for the experimental measurement
of generalized fidelities characterizing the accuracy of the implementation
of a coherent quantum transformation. The method is based on the motion
reversal of random unitary operators. In the simplest case our method
enables direct estimation of the average gate fidelity. The more general
fidelities are characterized by a universal exponential rate of fidelity loss. In
all cases the measurable fidelity decrease is directly related to the strength of
the noise affecting the implementation, quantified by the trace of the
superoperator describing the non-unitary dynamics. While the scalability of
our stochastic protocol makes it most relevant in large Hilbert spaces (when
quantum process tomography is infeasible), our method should be
immediately useful for evaluating the degree of control that is achievable in
any prototype quantum processing device. By varying over different
experimental arrangements and error-correction strategies, additional
information about the noise can be determined.

Keywords: noise estimation, quantum computing, randomization, gate
fidelity

1. Introduction

The characterization and elimination of decoherence and
other noise sources has emerged as one of the major
challenges confronting the coherent experimental control of
increasingly large multi-body quantum systems. Decoherence
arising from undesired interactions with background (or
environment) systems and imprecision in the classical control
fields lead to severe limits on the observation of mesoscopic
and macroscopic quantum phenomena, such as interference
effects, and, in particular, the realization of quantum
communication and computation algorithms. Measurement
of the strength and other detailed properties of the noise
mechanisms affecting a physical implementation is a critical
part of optimizing, improving, and benchmarking the physical
device and experimental protocol [1, 2]. Moreover, in
the case of quantum devices capable of universal control,
knowledge of specific characteristics of the noise enables

the selection and optimization of passive and active error-
prevention strategies [3–8].

The exact method for characterizing the noise affecting
an implementation is quantum process tomography (QPT)
[8]. Let D denote the dimensionality of the Hilbert space
(constituted, e.g., from nq = log2(D) qubits). For QPT,
the desired transformation (usually a unitary operator) must
be applied to each member of a complete set of D2 input
states (spanning the state space), followed by tomographic
measurement of the output state. This allows for a complete
reconstruction of the superoperator (completely positive linear
map) representing the imperfect implementation of the target
transformation. From this superoperator the cumulative noise
superoperator can be extracted from conventional analysis
of the matrix. The QPT approach to noise estimation
suffers from several practical deficiencies. First, often the
intrinsic properties of the noise operators are of interest, but
the noise superoperator determined from QPT will depend

1464-4266/05/100347+06$30.00 © 2005 IOP Publishing Ltd Printed in the UK S347

http://dx.doi.org/10.1088/1464-4266/7/10/021
http://stacks.iop.org/JOptB/7/S347


J Emerson et al

on the symmetries between the noise mechanisms and the
choice of target transformation. Second, the number of
experiments that must be carried out grows exponentially in the
number of qubits D4 = 24nq . Third, conventional numerical
analysis of the tomographic data requires the manipulation
of matrices of exponentially increasing dimension (D2 ×
D2). For these last two reasons QPT becomes infeasible
for processes involving more than about a dozen qubits,
far fewer than the one thousand or so qubits required for
the fault-tolerant implementation of quantum algorithms that
outperform conventional computation. Hence the infeasibility
of complete noise estimation via tomography prompts the
question of whether there exist efficient methods by which
specific features of the noise may be determined.

We show below that the overall noise strength and the
associated accuracy of an implementation may be estimated
by a scalable experimental method. Specifically we show
that the average gate fidelity (1), and some more generalized
fidelities described below, can be estimated directly with an
accuracy O(1/

√
DN ) where N is the number of independent

experiments. This method provides a solution to the important
problem of efficiently measuring which member of a set
of experimental configurations and algorithmic techniques
produces the most accurate implementation of an arbitrary
target transformation. By varying over different experimental
methods and noise-reduction algorithms and then directly
measuring the variation in the associated fidelity this method
enables estimation of more detailed characteristics of the noise.

2. Efficient estimation of the average gate fidelity

A convenient starting point for our analysis is the average gate
fidelity

Fg(�) ≡ Eψ(Fg(U,�,ψ))

≡
∫

dψ 〈ψ |U−1(�(U |ψ〉〈ψ |U−1))U |ψ〉 (1)

where
�(ρ) =

∑
k

AkρA†
k (2)

is a completely positive (CP) map characterizing the noise. The
gate fidelity Fg is the inner product of the state obtained from
the actual implementation with the state that would be ideally
obtained under the target unitary. The measure dψ denotes the
natural, unitarily invariant (Fubini–Study) measure on the set
of pure states and hence the average gate fidelity provides an
indicator that is independent of the choice of initial state. If the
implementation is perfect then Fg = 1 and under increasing
noise Fg decreases. Due to the invariance of the Fubini–Study
measure the average fidelity depends only on the noise operator
and can been expressed in the form [9–11]

Fg(�) =
∑

k |Tr(Ak)|2 + D

D2 + D
. (3)

Hence the average fidelity can be determined if the noise
operator is known. The noise operator can be determined
experimentally by measuring the CP map �(U · U−1)

tomographically and then factoring out the inverse of the
target map U−1 · U . This procedure has been carried out

recently for three qubits in an implementation of the quantum
Fourier transform using liquid state NMR techniques [2]. As
noted above, this method requires O(D4) experiments and
the conventional manipulation of matrices also of dimension
D2 × D2. Recently Nielsen has proposed a method [11] for
the direct measurement of Fg that requires D2 (rather than D4)
experiments.

We now describe how the average gate fidelity (1) can be
estimated accurately from a simple experimental protocol. Our
method requires the physical implementation of the ‘motion
reversal’ transformation U−1U |ψ〉〈ψ |U−1U on an arbitrary
state |ψ〉〈ψ |. Under this transformation, the CP map � in
the gate fidelity (1) can be interpreted as the decoherence
and experimental control errors arising under the imperfect
implementation of the motion reversal experiment, i.e., � =
�U−1U , rather than as the noise associated with only the
forward transformation U , i.e., � = �U . The key idea
is to choose the target transformation U randomly from the
Haar measure [12]. This will earn us the advantage of the
concentration of measure in large Hilbert spaces, as described
further below, and leads to a universal form of the gate fidelity
depending only on the intrinsic strength of the cumulative
noise. This universal form will allow us to evaluate the average
fidelity for more generalized motion reversal protocols.

Our starting point is the gate fidelity uniformly averaged
over all unitaries,

EU (Fg) =
∫

U(D)
dU Tr[ρU−1�(UρU−1)U ], (4)

where in the above dU denotes the unitarily invariant Haar
measure on U (D) and ρ = |ψ〉〈ψ |. In order to evaluate this
integral we use the superoperator representation of the map
(2),

�̂ =
∑

k

Ak ⊗ A∗
k, (5)

and similarly Û = U ⊗ U ∗, where ∗ denotes complex
conjugation. The Haar-averaged gate fidelity takes the form

EU (Fg) = Tr
(
ρ

[∫
dU Û�̂Û−1

]
ρ

)
(6)

= Tr(ρ�̂aveρ) = Fg(�̂
ave) (7)

where �̂ave ≡ ∫
dU Û�̂Û−1. As shown in the appendix, the

Haar-averaged superoperator �̂ave is U (D) invariant and thus
can be expressed as a depolarizing channel

�̂aveρ = pρ + (1 − p)
1I

D
, (8)

(assuming Tr(ρ) = 1) characterized by the single ‘strength’
parameter

p =
∑

k |Tr(Ak)|2 − 1

D2 − 1
, (9)

where p ∈ [0, 1] and we have made use of the fact that
Tr(�̂ave) = Tr(�̂) = ∑

k |Tr(Ak)|2. Direct substitution leads
to

EU (Fg) = Fg(�̂
ave) = p +

(1 − p)

D
. (10)

Hence the gate fidelity for the Haar-averaged operator resulting
from a motion reversal experiment depends only on the single
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parameter Tr(�̂) which represents the intrinsic strength of
the cumulative noise. We remark that this result holds for
general (possibly non-unital) noise. Furthermore, suppressing
the arguments of F we note that the unitary invariance of the
natural measure on pure states implies the equivalence

Fg(�) = Eψ(Fg) = EU (Fg), (11)

and hence we recover equation (3).
We now describe why and how the intrinsic noise strength

(characterized by p or Tr(�̂)) can be estimated via an
efficient experimental protocol. By implementing a single
target transformation U that is randomly drawn from the
Haar measure, we gain the advantage of the concentration of
measure in large Hilbert spaces: the motion reversal (gate)
fidelity for the single random U is exponentially close to the
Haar-averaged motion reversal (gate) fidelity. From the unitary
invariance of the Fubini–Study measure we know that

Eψ(F
2
g ) = EU (F

2
g ). (12)

As will be shown in [13], the typical fluctuation for a random
initial state |ψ〉, given a fixed U and�, decreases exponentially
with the number of qubits,

(�ψ Fg)
2 ≡ F2

g − Fg
2 � O(1/D). (13)

Therefore it follows that

(�F)2U ≡ EU (F
2
g )− EU (Fg)

2 � O(1/D). (14)

Hence the fidelity under motion reversal of a single random U
and arbitrary (non-random) initial state is exponentially close
to the Haar-averaged fidelity

Fg(U,�,ψ) = Fg(�
ave) + O(1/

√
D)

= p +
(1 − p)

D
+ O(1/

√
D). (15)

The protocol is now clear: after the motion reversal
sequence has been applied experimentally, the single
parameter p characterizing the average gate fidelity appears as
the residual population of the initial state. Due to the invariance
of the Haar measure we may choose the initial state to be the
computational basis state (|0〉〈0|)⊗nq . Hence the gate fidelity
can be determined directly from a standard read-out (projective
measurement) of the final state in the computational basis.
When the noise strength is actually non-negligible (e.g., the
noise strength does not decrease as a polynomial function of
1/D) an accurate estimate of p is possible with only a few
experimental trials. If in each of N repetitions of the motion
reversal experiment an independent random unitary is applied,
then the observed average will approach the Haar average as
O(1/

√
DN ).

3. Generalized fidelities in a discrete-time scenario

More generally we imagine the ability to implement a set
of independent random unitary operators {U j } and their
inverses. The entire sequence is subject to some unknown
noise, consisting of the decoherence processes and control
errors affecting the implementation. Such generalized motion

reversal sequences are relevant not only for noise estimation,
but also have important applications in studies of fidelity decay
[14] and decoherence rates [15] for quantum chaos and many-
body complex systems.

We first consider the fidelity loss arising under an iterated
motion reversal sequence of the form

ρ(n) = Û−1
n �̂Ûn · · · Û−1

2 �̂Û2 Û−1
1 �̂Û1ρ(0), (16)

where �̂ j = �̂U−1
j U j

denotes the cumulative noise from the
motion reversal of U j and we now allow arbitrary (possibly
mixed) initial states ρ(0). The fidelity of this iterated
transformation is

Fn(ψ, {U j }) = Tr(ρ(0)Û−1
n �̂nÛn · · · Û−1

1 �̂1Û1ρ(0)). (17)

Averaging over the Haar measure for each U j takes the form

Fn ≡ E{U j }(Fn(ψ, {U j }))
≡

∫
U(D)⊗n

(�n
j=1dU j )Fn(ψ, {U j }) (18)

= Tr(ρ(0)[�n
j=1�̂

ave
j ]ρ(0)), (19)

where dU j denotes the Haar measure and we have defined the
Haar-averaged noise operator,

�̂ave
j ≡ EU j (�̂ j ) ≡

∫
U(D)

dU Û−1�̂ j Û . (20)

As noted above and shown in the appendix, �̂ave ≡∫
dUÛ�̂Û−1 is a depolarizing channel

�̂ave
j ρ = p jρ + (1 − p j )

1I

D
, (21)

with strength parameter

p j = Tr(�̂ j )− 1

D2 − 1
. (22)

Because each U j is random, we can further simplify this result
by assuming that the cumulative noise for each U j has the same
strength p j = p, in which case we obtain for arbitrary noise a
universal exponential decay of the averaged fidelity

Fn = pn Tr[ρ(0)2] +
(1 − pn)

D
(23)

depending only on the noise strength. In the limit of large n,
we see that Fn → D−1, as may be expected from the average
fidelity between random states [16]. Most importantly, due
to the concentration of measure (14), for large D the fidelity
loss under iterated motion reversal of a single sequence of
random unitary operators will be exponentially close to the
Haar average, and hence the noise strength can be estimated
with only a few experimental runs.

Another important generalized fidelity is the one obtained
under the imperfect ‘Loschmidt echo’ sequence [14, 17]

ρ(n) = Û−1
1 · · · Û−1

n �̂nÛn · · · �̂1Û1ρ(0), (24)

where the superoperator �̂ j represents the cumulative noise
during the implementation of each U j . The fidelity between
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the initial state and final state in the Loschmidt echo experiment
takes the form

Fecho
n (ψ, {� j }, {U j })
= Tr(ρ(0)Û−1

1 Û−1
2 · · · Û−1

n �̂nÛn · · · �̂1Û1ρ(0)). (25)

Moving to the interaction picture we define

�̂ j ( j ) = Û−1
1 · · · Û−1

j �̂ j Û j · · · Û1, (26)

so we have

Fecho
n (ψ, {� j }, {U j })
= Tr(ρ(0)�̂n(n)�̂n−1(n − 1) · · · �̂1(1)ρ(0)). (27)

From the invariance of the Haar measure the average fidelity
simplifies to

Fecho
n = Tr(ρ(0)�̂ave

n �̂ave
n−1 · · · �̂ave

1 ρ(0)) (28)

with �̂ave
j given by equation (21). As before, we can simplify

this result by assuming that the cumulative noise for each step
has the same strength (p j = p), in which case we obtain for
arbitrary noise a universal exponential form for the decay of
fidelity

Fecho
n (p) = pn +

(1 − pn)

D
. (29)

A generalized version of this Loschmidt echo that is more
relevant to noise estimation is one for which noise appears
in both the forward and backward sequences of the motion
reversal. The associated fidelity is

Fgen
n (ψ,�, {U j })
= Tr(ρ(0)�̂Û−1

1 �̂Û−1
2 · · · �̂Û−1

n �̂Ûn · · · �̂Û1ρ(0)). (30)

While we have not directly evaluated the average of this fidelity
analytically in the general case, we have obtained analytic and
numerical analysis for the special case of unitary noise which
leads us to conjecture that the relation

Fgen
n 	 Fecho

2n (31)

should hold in general for large n.

4. Generalized fidelities for continuous-time weak
noise

We describe our system by the Markovian master equa-
tion [18, 19]

d

dt
ρ = −i[HC(t), ρ] + ε L̂(ρ) (32)

where HC(t) governs a controlled reversible part of the
dynamics and the generator

L̂ ρ ≡ L(ρ) = −i[H, ρ] + 1
2

∑
α

([Vα, ρV †
α ] + [Vαρ, V †

α ])

(33)
with the condition Tr H = Tr Vα = 0 (which fixes the
decomposition of L̂ into Hamiltonian and dissipative parts
[19]) describes all sources of imperfections and noise. Here
0 < ε 
 1 is a small parameter characterizing noise strength.

The time dependent fidelity of the initial state φ is given
by

Fφ(t) = 〈φ|T exp

{
ε

∫ t

0
L̂(s) ds

}
(|φ〉〈φ|)|φ〉 (34)

where T denotes the chronological order, and

L̂(s) = Û †(s, 0)L̂Û (s, 0),

U (t, s) = T exp

{
−i

∫ t

s
HC(u) du

}
.

(35)

Using the notation

	̂(t) = T exp
{
ε

∫ t

0
L̂(s) ds

}
(36)

we can write down the following ‘cumulant expansion’ of the
dynamics with respect to the small parameter ε:

	̂(t) = exp{ε K̂1(t) + ε2 K̂2(t) + · · ·}. (37)

Using the Wilcox formula for the matrix-valued functions
d

dx
exp A(x)

=
(∫ 1

0
exp(λA(x))

d

dx
A(x) exp(−λA(x)) dλ

)
exp A(x)

(38)

one obtains

K̂1(t) =
∫ t

0
L̂(s) ds,

K̂2(t) = 1
2

∫ t

0
ds

∫ s

0
du[L̂(s), L̂(u)].

(39)

We assume now the following ergodic hypothesis: (a) the
ergodic mean exists and is equal to the Haar average

lim
T →∞

1

T

∫ T

0
L̂(t) dt = L̂ave =

∫
U(D)

dU Û L̂Û †; (40)

(b) the fluctuations δ L̂(t) ≡ L̂(t) − L̂ave around the ergodic
mean are normal, i.e. for long t

∥∥∥∥
∫ s+t

s
δ L̂(u) du

∥∥∥∥ ∼ t1/2. (41)

These conditions are satisfied, for instance if the time
dependent dynamics t → U (t) can be modelled by a random
walk on the group U (D) or by a trajectory on U (D) given by
a certain deterministic dynamics with strong enough ergodic
properties. The norm of K̂2(t) can be estimated using (41)

‖K̂2(t)‖ = 1
2

∥∥∥∥
∫ t

0
ds

∫ s

0
du

([δ L̂(s), δ L̂(u)] + [δ L̂(s), L̂ave] + [L̂ave, δ L̂(u)])

∥∥∥∥ ∼ t3/2.

(42)

Therefore for small enough ε and long enough times t such
that εt is fixed, the first term dominates and we can write

	̂(t) 	 exp

(
ε

∫ t

0
L̂(s) ds

)
. (43)
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Then replacing 	̂(t) by exp(ε L̂avt) and using the explicit
expression (56), (57) we obtain the universal exponential decay
of the fidelity

Fφ(t) 	 e−γ t +
1

D
(1 − e−γ t),

γ = D

2(D2 − 1)

∑
α

Tr(|Vα|2).
(44)

5. Discussion

We have described how generalized Haar-averaged fidelities
may be directly estimated with only a few experimental
measurements. By implementing a motion reversal sequence
with a Haar-random unitary transformation, the observed
fidelity decay provides a direct experimental estimate of the
intrinsic strength of the noise. Moreover, because the target
transformation is a Haar-random unitary, the cumulative noise
measured by this method will not be biased by any special
symmetries of the target transformation.

The only inefficiency of our protocol is the requirement
of experimentally implementing a Haar-random unitary: the
decomposition into elementary one- and two-qubit gates
requires an exponentially long gate sequence [12]. However,
the randomization provided by Haar-random unitary operators
may be unnecessarily strong and this leads to the open
question of whether efficient random circuits [20, 21] can
provide an adequate degree of randomization for the above
protocols. Indeed the experimental results of [2] suggest
that even a structured transformation such as the quantum
Fourier transform is sufficiently complex to approximately
average the cumulative noise to an effective depolarizing
channel, and from studies of quantum chaos it is known that
efficient chaotic quantum maps are faithful to the universal
Haar-averaged fidelity decay under imperfect motion reversal
[14]. While more conclusive evidence is needed to answer
this question, it appears likely that the inefficiency associated
with implementing Haar-random unitary operators may be
overcome.

An additional question is whether the implementation of
random unitary operators (e.g., Haar-random unitary operators
or even efficient random circuits) leads to an even stronger
form of averaging. We have throughout our analysis made the
usual assumption that the noise superoperator� is independent
of the specific target transformation but depends only on the
duration of the experiment. However, it is known that the
actual noise in general depends sensitively on the choice of
target transformation U . Moreover, the cumulative noise
operator generally also depends on the particular sequence
of elementary one- and two-qubit gates applied to generate
U . For example, the implementation of the quantum Fourier
transform [1, 2] will generate very different cumulative noise
to the trivial implementation of the identity operator U = 1I
for the same time τ . However, it appears likely that the
cumulative noise operators, and in particular their intrinsic
noise strength, under a specific but random gate sequence
should become concentrated about an average value depending
only on the length of the sequence. If this is the case,
then the usual assumption that the noise is independent of
the actual gate sequence becomes statistically well motivated,

and the measured fidelity under motion reversal can provide
a benchmark of an intrinsic noise strength that is fully
independent of the target unitary.
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Appendix. Haar-averaged superoperators

We consider a linear superoperator �̂ acting on the space MD

of D × D complex matrices treated as a Hilbert space with
a scalar product (X,Y ) = Tr(X†Y ). The superoperator �̂
has a D2 × D2-dimensional matrix representation and Tr �̂
denotes the usual sum over the diagonal elements of the
matrix. For clarity of notation we will sometimes express
the linear operation �̂ρ in the form �(ρ). By {|k〉} we
denote an orthonormal basis in CD while {Ekl = |k〉〈l|} is
a corresponding basis in MD . The group U (D) of unitary
D × D matrices has its natural unitary representation on MD

defined by

U (D) � U → Û , Û X = U XU †. (45)

This representation is reducible and implies the decomposition
of MD into two irreducible invariant subspaces:

MD = Mc
D ⊕ M0

D, M0
D = {X ∈ MD; Tr X = 0},

Mc
D = {X = c 1I}, (46)

where c is an arbitrary complex number.
Any superoperator �̂ possesses exactly two linear U (D)

invariants, i.e. the linear functionals on superoperator space
which are invariant with respect to all transformations of the
form �̂ → Û�̂Û †:

Tr[�(1I)] =
D∑

k=1

〈k|�(1I)|k〉 (47)

and

Tr(�̂) ≡
D∑

k,l=1

(Ekl ,�(Ekl)) =
D∑

k,l=1

〈k|�(Ekl)|l〉. (48)

Example. Take �(X) = AX B; then Tr[�(1I)] = Tr(AB)
and Tr(�̂) = Tr(A)Tr(B).

The following lemma completely characterizes U (D)-
invariant trace-preserving superoperators.

Lemma 1. Let �̂inv be a U (D) invariant, i.e. �̂inv = Û�̂invÛ †

for any U ∈ U (D), trace-preserving operator. Then

�̂inv X ≡ �inv(X) = pX + (1 − p) Tr(X)
1I

D
, (49)

where

p = Tr(�̂inv)− 1

D2 − 1
. (50)
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Proof. Schur’s lemma implies the form (49) for U (D)-
invariant trace-preserving operators. From the normalization
Tr[�inv(1I)] = D for the trace, the detailed expression (50)
can be explicitly calculated by comparing U (D) invariants for
both sides of equation (49). ��

The Haar-averaged superoperator corresponding to the
noise under the imperfect motion-reversal protocol, averaged
over all possible unitary operators, is a U (D)-invariant
superoperator

�̂ave =
∫

U(D)
dU Û�̂Û †. (51)

where dU is the normalized Haar measure on U (D). Using
lemma 1 we can easily compute the averaged form of the
dynamical map for both the Schrödinger operator

�(ρ) =
∑
α

AαρA†
α,

∑
α

A†
αAα = 1I (52)

and the semigroup generator

L̂ ρ ≡ L(ρ) = −i[H, ρ] + 1
2

∑
α

([Vα, ρV †
α ] + [Vαρ, V †

α ])

(53)
with the condition Tr H = Tr Vα = 0 which fixes the
decomposition of L̂ into Hamiltonian and dissipative parts.
From the fact that Tr(�̂ave) = Tr(�̂) we obtain

�ave(ρ) = pρ + (1 − p)Tr(ρ)
1I

D
(54)

where

p = Tr(�̂)− 1

D2 − 1
=

∑
α |Tr(Aα)|2 − 1

D2 − 1
. (55)

Similarly for the generator we obtain

L̂ave ρ ≡ Lave(ρ) = −γ
(
ρ − Tr(ρ)

1I

D

)
(56)

where

γ = D

2(D2 − 1)

∑
α

Tr(|Vα|2). (57)

Note added in proof. Additional evidence for the conjectured relation (31)
can be found in [22].
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