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Abstract

Deep convolutional neural networks have recently

achieved state-of-the-art performance on a number of

image recognition benchmarks, including the ImageNet

Large-Scale Visual Recognition Challenge (ILSVRC-2012).

The winning model on the localization sub-task was a net-

work that predicts a single bounding box and a confidence

score for each object category in the image. Such a model

captures the whole-image context around the objects but

cannot handle multiple instances of the same object in the

image without naively replicating the number of outputs for

each instance. In this work, we propose a saliency-inspired

neural network model for detection, which predicts a set of

class-agnostic bounding boxes along with a single score for

each box, corresponding to its likelihood of containing any

object of interest. The model naturally handles a variable

number of instances for each class and allows for cross-

class generalization at the highest levels of the network. We

are able to obtain competitive recognition performance on

VOC2007 and ILSVRC2012, while using only the top few

predicted locations in each image and a small number of

neural network evaluations.

1. Introduction

Object detection is one of the fundamental tasks in com-

puter vision. A common paradigm to address this problem

is to train object detectors which operate on a sub-image and

apply these detectors in an exhaustive manner across all lo-

cations and scales. This paradigm was successfully used

within a discriminatively trained Deformable Part Model

(DPM) to achieve state-of-art results on detection tasks [6].

The exhaustive search through all possible locations and

scales poses a computational challenge. This challenge be-

comes even harder as the number of classes grows, since

most of the approaches train a separate detector per class.

In order to address this issue a variety of methods were

proposed, varying from detector cascades, to using seg-

mentation to suggest a small number of object hypotheses

[17, 2, 4].

In this paper, we ascribe to the latter philosophy and pro-

pose to train a detector, called “DeepMultiBox”, which gen-

erates a small number of bounding boxes as object candi-

dates. These boxes are generated by a single Deep Neural

Network (DNN) in a class agnostic manner. Our model has

several contributions. First, we define object detection as a

regression problem to the coordinates of several bounding

boxes. In addition, for each predicted box the net outputs a

confidence score of how likely this box contains an object.

This is quite different from traditional approaches, which

score features within predefined boxes, and has the advan-

tage of expressing detection of objects in a very compact

and efficient way.

The second major contribution is the loss, which trains

the bounding box predictors as part of the network training.

For each training example, we solve an assignment problem

between the current predictions and the groundtruth boxes

and update the matched box coordinates, their confidences

and the underlying features through backpropagation. In

this way, we learn a deep net tailored towards our local-

ization problem. We capitalize on the excellent representa-

tion learning abilities of DNNs, as exemplified recently in

image classification [11] and object detection settings [15],

and perform joint learning of representation and predictors.

Finally, we train our object box predictor in a class-

agnostic manner. We consider this as a scalable way to en-

able efficient detection of large number of object classes.

We show in our experiments that by only post-classifying

less than ten boxes, obtained by a single network applica-

tion, we can achieve competitive detection results. Further,

we show that our box predictor generalizes over unseen

classes and as such is flexible to be re-used within other

detection problems.

2. Previous work

The literature on object detection is vast, and in this sec-

tion we will focus on approaches exploiting class-agnostic

ideas and addressing scalability.

Many of the proposed detection approaches are based on
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part-based models [7], which more recently have achieved

impressive performance thanks to discriminative learning

and carefully crafted features [6]. These methods, however,

rely on exhaustive application of part templates over multi-

ple scales and as such are expensive. Moreover, they scale

linearly in the number of classes, which becomes a chal-

lenge for modern datasets such as ImageNet 1.

To address the former issue, Lampert et al. [12] use a

branch-and-bound strategy to avoid evaluating all potential

object locations. To address the latter issue, Song et al. [14]

use a low-dimensional part basis, shared across all object

classes. A hashing based approach for efficient part detec-

tion has shown good results as well [3].

A different line of work, closer to ours, is based on the

idea that objects can be localized without having to know

their class. Some of these approaches build on bottom-up

classless segmentation [10]. The segments, obtained in this

way, can be scored using top-down feedback [17, 2, 4]. Us-

ing the same motivation, Alexe et al. [1] use an inexpen-

sive classifier to score object hypotheses for being an ob-

ject or not and in this way reduce the number of location

for the subsequent detection steps. These approaches can

be thought of as multi-layered models, with segmentation

as first layer and a segment classification as a subsequent

layer. Despite the fact that they encode proven perceptual

principles, we will show that having deeper models which

are fully learned can lead to superior results.

Finally, we capitalize on the recent advances in Deep

Learning, most noticeably the work by Krizhevsky et

al. [11]. We extend their bounding box regression approach

for detection to the case of handling multiple objects in a

scalable manner. DNN-based regression applied to object

masks has been investigated by Szegedy et al. [15]. This

last approach achieves state-of-art detection performance on

VOC2007 but does not scale up to multiple classes due to

the cost of a single mask regression: in that setup, one needs

to execute 5 networks per class at inference time, which is

not scalable for most real-world applications.

3. Proposed approach

We aim at achieving a class-agnostic scalable object de-

tection by predicting a set of bounding boxes, which rep-

resent potential objects. More precisely, we use a Deep

Neural Network (DNN), which outputs a fixed number of

bounding boxes. In addition, it outputs a score for each box

expressing the network confidence of this box containing an

object.

Model To formalize the above idea, we encode the i-th

object box and its associated confidence as node values of

the last net layer:

1A typical deformable-parts model takes 1 CPU-sec/image/label at

inference time, thus for 1000 classes inference would take 1000 CPU-

seconds; sharing parts across class labels is an open research problem.

Bounding box: we encode the upper-left and lower-right

coordinates of each box as four node values, which can

be written as a vector li ∈ R
4. These coordinates are

normalized w. r. t. image dimensions to achieve invari-

ance to absolute image size. Each normalized coordi-

nate is produced by a linear transformation of the last

hidden layer.

Confidence: the confidence score for the box containing

an object is encoded as a single node value ci ∈ [0, 1].
This value is produced through a linear transformation

of the last hidden layer followed by a sigmoid.

We can combine the bounding box locations li, i ∈
{1, . . .K}, as one linear layer. Similarly, we can treat col-

lection of all confidences ci, i ∈ {1, . . .K} as the output as

one sigmoid layer. Both these output layers are connected

to the last hidden layers.

At inference time, our algorithm produces K bound-

ing boxes. In our experiments, we use K = 100 and

K = 200. If desired, we can use the confidence scores

and non-maximum suppression to obtain a smaller number

of high-confidence boxes at inference time. These boxes are

supposed to represent objects. As such, they can be classi-

fied with a subsequent classifier to achieve object detection.

Since the number of boxes is very small, we can afford pow-

erful classifiers. In our experiments, we use second DNN

for classification [11].

Training Objective We train a DNN to predict bounding

boxes and their confidence scores for each training image

such that the highest scoring boxes match well the ground

truth object boxes for the image. Suppose that for a partic-

ular training example, M objects were labeled by bounding

boxes gj , j ∈ {1, . . . ,M}. In practice, the number of pre-

dictions K is much larger than the number of groundtruth

boxes M . Therefore, we try to optimize only the subset of

predicted boxes which match best the ground truth ones. We

optimize their locations to improve their match and maxi-

mize their confidences. At the same time we minimize the

confidences of the remaining predictions, which are deemed

not to localize the true objects well.

To achieve the above, we formulate an assignment prob-

lem for each training example. Let xij ∈ {0, 1} denote the

assignment: xij = 1 iff the i-th prediction is assigned to

j-th true object. The objective of this assignment can be

expressed as:

Fmatch(x, l) =
1

2

∑

i,j

xij ||li − gj ||
2

2
(1)

where we use L2 distance between the normalized bound-

ing box coordinates to quantify the dissimilarity between

bounding boxes.



Additionally, we want to optimize the confidences of the

boxes according to the assignment x. Maximizing the con-

fidences of assigned predictions can be expressed as:

Fconf(x, c) = −
∑

i,j

xij log(ci)−
∑

i

(1−
∑

j

xij) log(1−ci)

(2)

In the above objective
∑

j xij = 1 iff prediction i has been

matched to a groundtruth. In that case ci is being maxi-

mized, while in the opposite case it is being minimized. A

different interpretation of the above term is achieved if we∑
j xij view as a probability of prediction i containing an

object of interest. Then, the above loss is the negative of the

entropy and thus corresponds to a max entropy loss.

The final loss objective combines the matching and con-

fidence losses:

F (x, l, c) = αFmatch(x, l) + Fconf(x, c) (3)

subject to constraints in Eq. 1. α balances the contribution

of the different loss terms.

Optimization For each training example, we solve for an

optimal assignment x∗ of predictions to true boxes by

x∗ = argmin
x

F (x, l, c) (4)

subject to xij ∈ {0, 1},
∑

i

xij = 1, (5)

where the constraints enforce an assignment solution. This

is a variant of bipartite matching, which is polynomial in

complexity. In our application the matching is very inex-

pensive – the number of labeled objects per image is less

than a dozen and in most cases only very few objects are

labeled.

Then, we optimize the network parameters via back-

propagation. For example, the first derivatives of the back-

propagation algorithm are computed w. r. t. l and c:

∂F

∂li
=

∑

j

(li − gj)x
∗

ij (6)

∂F

∂ci
=

∑
j x

∗

ijci

ci(1− ci)
(7)

Training Details While the loss as defined above is in

principle sufficient, three modifications make it possible to

reach better accuracy significantly faster. The first such

modification is to perform clustering of ground truth loca-

tions and find K such clusters/centroids that we can use as

priors for each of the predicted locations. Thus, the learn-

ing algorithm is encouraged to learn a residual to a prior, for

each of the predicted locations.

A second modification pertains to using these priors in

the matching process: instead of matching the N ground

truth locations with the K predictions, we find the best

match between the K priors and the ground truth. Once

the matching is done, the target confidences are computed

as before. Moreover, the location prediction loss is also

unchanged: for any matched pair of (target, prediction)

locations, the loss is defined by the difference between

the groundtruth and the coordinates that correspond to the

matched prior. We call the usage of priors for matching

prior matching and hypothesize that it enforces diversifi-

cation among the predictions, since the linear assignment

forces the model to learn a diverse set of predictions. We

have found that without prior matching, the convergence

speed and quality of our models were significantly lower.

It should be noted, that although we defined our method

in a class-agnostic way, we can apply it to predicting object

boxes for a particular class. To do this, we simply need to

train our models on bounding boxes for that class.

Further, we can predict K boxes per class. Unfortu-

nately, this model will have number of parameters grow-

ing linearly with the number of classes. Also, in a typi-

cal setting, where the number of objects for a given class

is relatively small, most of these parameters will see very

few training examples with a corresponding gradient con-

tribution. We thus argue that our two-step process – first

localize, then recognize – is a superior alternative in that

it allows leveraging data from multiple object types in the

same image using a small number of parameters.

4. Experimental results

4.1. Network Architecture and Experiment Details

The network architecture for the localization and clas-

sification models that we use is the same as the one used

by [11]. We use Adagrad for controlling the learning rate

decay, mini-batches of size 128, and parallel distributed

training with multiple identical replicas of the network,

which achieves faster convergence. As mentioned previ-

ously, we use priors in the localization loss – these are com-

puted using k-means on the training set. We also use an α

of 0.3 to balance the localization and confidence losses.

The localizer might output coordinates outside the crop

area used for the inference. The coordinates are mapped

and truncated to the final image area, at the end. Boxes are

additionally pruned using non-maximum-suppression with

a Jaccard similarity threshold of 0.5. Our second model

then classifies each bounding box as objects of interest or

“background”.

To train our localizer networks, we generated approx-

imately millions of images (10–30 million, depending on

the dataset) from the training set by applying the following

procedure to each image in the training set. For each image,

we generate the same number of square samples such that

the total number of samples is about ten million. For each

image, the samples are bucketed such that for each of the ra-



tios in the ranges of 0−5%, 5−15%, 15−50%, 50−100%,

there is an equal number of samples in which the ratio cov-

ered by the bounding boxes is in the given range.

For the experiments below we have not explored any

non-standard data generation or regularization options. In

all experiments, all hyper-parameters were selected by eval-

uating on a held out portion of the training set (10% random

choice of examples).

4.2. VOC 2007

The Pascal Visual Object Classes (VOC) Challenge [5]

is the most common benchmark for object detection algo-

rithms. It consists mainly of complex scene images in which

bounding boxes of 20 diverse object classes were labelled.

In our evaluation we focus on the 2007 edition of VOC,

for which a test set was released. We present results by

training on VOC 2012, which contains approx. 11000 im-

ages. We trained a 100 box localizer as well as a deep net

based classifier [11].

4.2.1 Training methodology

We trained the classifier on a data set comprising of

• 10 million crops overlapping some object with at least

0.5 Jaccard overlap similarity. The crops are labeled

with one of the 20 VOC object classes.

• 20 million negative crops that have at most 0.2 Jaccard

similarity with any of the object boxes. These crops

are labeled with the special “background” class label.

The architecture and the selection of hyperparameters fol-

lowed that of [11].

4.2.2 Evaluation methodology

In the first round, the localizer model is applied to the max-

imum center square crop in the image. The crop is resized

to the network input size which is 220 × 220. A single

pass through this network gives us up to hundred candi-

date boxes. After a non-maximum-suppression with over-

lap threshold 0.5, the top 10 highest scoring detections are

kept and were classified by the 21-way classifier model in

a separate passes through the network. The final detection

score is the product of the localizer score for the given box

multiplied by the score of the classifier evaluated on the

maximum square region around the crop. These scores are

passed to the evaluation and were used for computing the

precision recall curves.

4.3. Discussion

First, we analyze the performance of our localizer in iso-

lation. We present the number of detected objects, as de-

fined by the Pascal detection criterion, against the number

Figure 1. Detection rate of class “object” vs number of bounding

boxes per image. The model, used for these results, was trained on

VOC 2012.

of produced bounding boxes. In Fig. 1 plot we show results

obtained by training on VOC2012. In addition, we present

results by using the max-center square crop of the image as

input as well as by using two scales: the max-center crop by

a second scale where we select 3× 3 windows of size 60%
of the image size.

As we can see, when using a budget of 10 bounding

boxes we can localize 45.3% of the objects with the first

model, and 48% with the second model. This shows better

performance than other reported results, such as the object-

ness algorithm achieving 42% [1]. Further, this plot shows

the importance of looking at the image at several resolu-

tions. Although our algorithm manages to get large number

of objects by using the max-center crop, we obtain an addi-

tional boost when using higher resolution image crops.

Further, we classify the produced bounding boxes by a

21-way classifier, as described above. The average preci-

sions (APs) on VOC 2007 are presented in Table 1. The

achieved mean AP is 0.29, which is quite competitive. Note

that, our running time complexity is very low – we simply

use the top 10 boxes.

Example detections and full precision recall curves are

shown in Fig. 2 and Fig. 3 respectively. It is important to

note that the visualized detections were obtained by using

only the max-centered square image crop, i. e. the full im-

age was used. Nevertheless, we manage to obtain relatively

small objects, such as the boats in row 2 and column 2, as

well as the sheep in row 3 and column 3.

4.4. ILSVRC 2012 Classification with Localization
Challenge

For this set of experiments, we used the ILSVRC 2012

classification with localization challenge dataset. This

dataset consists of 544,545 training images labeled with cat-

egories and locations of 1,000 object categories, relatively



class aero bicycle bird boat bottle bus car cat chair cow

DeepMultiBox .413 .277 .305 .176 .032 .454 .362 .535 .069 .256

3-layer model [18] .294 .558 .094 .143 .286 .440 .513 .213 .200 .193

Felz. et al. [6] .328 .568 .025 .168 .285 .397 .516 .213 .179 .185

Girshick et al. [9] .324 .577 .107 .157 .253 .513 .542 .179 .210 .240

Szegedy et al. [15] .292 .352 .194 .167 .037 .532 .502 .272 .102 .348

class table dog horse m-bike person plant sheep sofa train tv

DeepMultiBox .273 .464 .312 .297 .375 .074 .298 .211 .436 .225

3-layer model [18] .252 .125 .504 .384 .366 .151 .197 .251 .368 .393

Felz. et al. [6] .259 .088 .492 .412 .368 .146 .162 .244 .392 .391

Girshick et al. [9] .257 .116 .556 .475 .435 .145 .226 .342 .442 .413

Szegedy et al .[15] .302 .282 .466 .417 .262 .103 .328 .268 .398 .47
Table 1. Average Precision on VOC 2007 test of our method, called DeepMultiBox, and other competitive methods. DeepMultibox was

trained on VOC2012 training data, while the rest of the models were trained on VOC2007 data.

Figure 2. Sample of detection results on VOC 2007: up to 10 boxes from the class-agnostic detector are output, after non-max-suppression

with Jaccard overlap 0.5 is performed.

uniformly distributed among the classes. The validation set,

on which the performance metrics are calculated, consists

of 48,238 images.

4.4.1 Training methodology

In addition to a localization model that is identical (up to

the dataset on which it is trained on) to the VOC model, we

also train a model on the ImageNet Classification challenge

data, which will serve as the recognition model. This model

is trained in a procedure that is substantially similar to that

of [11] and is able to achieve the same results on the clas-

sification challenge validation set; note that we only train

a single model, instead of 7 – the latter brings substantial

benefits in terms of classification accuracy, but is 7× more
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Figure 3. Precision-recall curves on selected VOC classes.

expensive, which is not a negligible factor.

Inference is done as with the VOC setup: the number

of predicted locations is K = 100, which are then reduced

by Non-Max-Suppression (Jaccard overlap criterion of 0.4)

and which are post-scored by the classifier: the score is the

product of the localizer confidence for the given box mul-

tiplied by the score of the classifier evaluated on the mini-

mum square region around the crop. The final scores (de-

tection score times classification score) are then sorted in

descending order and only the top scoring score/location

pair is kept for a given class (as per the challenge evalua-

tion criterion).

In all experiments, the hyper-parameters were selected

by evaluating on a held out portion of the training set (10%

random choice of examples).

4.4.2 Evaluation methodology

The official metric of the “Classification with localization“

ILSVRC-2012 challenge is detection@5, where an algo-

rithm is only allowed to produce one box per each of the 5

labels (in other words, a model is neither penalized nor re-

warded for producing valid multiple detections of the same

class), where the detection criterion is 0.5 Jaccard overlap

with any of the ground-truth boxes (in addition to the match-

ing class label).

Table 2 contains a comparison of the proposed method,

dubbed DeepMultiBox, with classifying the ground-truth

boxes directly and with the approach of inferring one box

per class directly. The metrics reported are detection@5

and classification@5, the official metrics for the ILSVRC-

2012 challenge metrics. In the table, we vary the number of

windows at which we apply the classifier (this number rep-

resents the top windows chosen after non-max-suppression,

the ranking coming from the confidence scores). The one-

box-per-class approach is a careful re-implementation of the

winning entry of ILSVRC-2012 (the “classification with lo-

calization” challenge), with 1 network trained (instead of

7).

Table 2. Performance of Multibox (the proposed method) vs. clas-

sifying ground-truth boxes directly and predicting one box per

class
Method det@5 class@5

One-box-per-class 61.00% 79.40%

Classify GT directly 82.81% 82.81%

DeepMultiBox, top 1 window 56.65% 73.03%

DeepMultiBox, top 3 windows 58.71% 77.56%

DeepMultiBox, top 5 windows 58.94% 78.41%

DeepMultiBox, top 10 windows 59.06% 78.70%

DeepMultiBox, top 25 windows 59.04% 78.76%

We can see that the DeepMultiBox approach is quite

competitive: with 5-10 windows, it is able to perform about

as well as the competing approach. While the one-box-per-

class approach may come off as more appealing in this par-

ticular case in terms of the raw performance, it suffers from

a number of drawbacks: first, its output scales linearly with

the number of classes, for which there needs to be training

data. The multibox approach can in principle use transfer

learning to detect certain types of objects on which it has

never been specifically trained on, but which share similar-

ities with objects that it has seen2. Figure 5 explores this

hypothesis by observing what happens when one takes a lo-

calization model trained on ImageNet and applies it on the

VOC test set, and vice-versa. The figure shows a precision-

recall curve: in this case, we perform a class-agnostic de-

tection: a true positive occurs if two windows (prediction

and groundtruth) overlap by more than 0.5, independently

of their class. Interestingly, the ImageNet-trained model is

able to capture more VOC windows than vice-versa: we

hypothesize that this is due to the ImageNet class set being

2For instance, if one trains with fine-grained categories of dogs, it will

likely generalize to other kinds of breeds by itself



Figure 4. Some selected detection results on the ILSVRC-2012 classification with localization challenge validation set.

much richer than the VOC class set.

Secondly, the one-box-per-class approach does not gen-

eralize naturally to multiple instances of objects of the same

type (except via the the method presented in this work,

for instance). Figure 5 shows this too, in the comparison

between DeepMultiBox and the one-per-class approach3.

Generalizing to such a scenario is necessary for actual im-

age understanding by algorithms, thus such limitations need

to be overcome, and our method is a scalable way of doing

so. Evidence supporting this statement is shown in Figure 5

shows that the proposed method is able to generally capture

more objects more accurately that a single-box method.

5. Discussion and Conclusion

In this work, we propose a novel method for localiz-

ing objects in an image, which predicts multiple bounding

boxes at a time. The method uses a deep convolutional neu-

ral network as a base feature extraction and learning model.

It formulates a multiple box localization cost that is able to

take advantage of variable number of groundtruth locations

of interest in a given image and learn to predict such loca-

tions in unseen images.

We present results on two challenging benchmarks,

VOC2007 and ILSVRC-2012, on which the proposed

method is competitive. Moreover, the method is able to

perform well by predicting only very few locations to be

probed by a subsequent classifier. Our results show that the

DeepMultiBox approach is scalable and can even generalize

3In the case of the one-box-per-class method, non-max-suppression is

performed on the 1000 boxes using the same criterion as the DeepMulti-

Box method

across the two datasets, in terms of being able to predict lo-

cations of interest, even for categories on which it was not

trained on. Additionally, it is able to capture multiple in-

stances of objects of the same class, which is an important

feature of algorithms that aim for better image understand-

ing.

While our method is indeed competitive, there ex-

ist methods which have substantially larger computational

cost, but that can achieve better detection performance,

notably on VOC2007 and ILSVRC localization. Over-

Feat [13] efficiently slides a convolutional network at mul-

tiple locations and scales, predicting one bounding box

per class. That model takes 2 seconds/image on a GPU,

roughly 40x slower than a GPU implementation of our

model. Fig. 9 of [13] has the results of a single-scale, cen-

tered crop version of their model, the closest to what we

propose. That results in a 40% top-5 result on ILSVRC-

2012, compared to 40.94%, but with DeepMultiBox we are

able to extract multiple regions of interest in one network

evaluation.

Another method is that of [8], using selective search [16]

to propose 2000 candidate locations per image, extract top-

layer features from a ConvNet and using a hard-negative-

trained SVM to classify the locations into VOC classes. The

main differences with our approach are that this method is

200x more expensive, the authors pre-train their feature ex-

tractor on ImageNet and that they use hard negative mining

to learn a mapping from features to classes that has low false

positive ratio.

The latter two are good lessons, which we need to ex-

plore. While we showed in Fig. 1 that by predicting more



Figure 5. Class-agnostic detection on ILSVRC-2012 (left) and VOC 2007 (right).

windows we are able to capture more ground-truth bound-

ing boxes, a comparable increase in mAP on VOC2007

was not observed by us. We hypothesize that a classifi-

cation model that incorporates better hard-negative mining

and learns to better model local features, the context and de-

tector confidences jointly will likely take better advantage of

the proposed windows.

In the future, we hope to be able to fold the localization

and recognition paths into a single network, such that we

would be able to extract both location and class label infor-

mation in a single feed-forward pass through the network.

Even in its current state, the two-pass procedure (localiza-

tion network followed by categorization network) entails 5-

10 network evaluations. Importantly, this number does not

scale linearly with the number of classes to be recognized,

which still makes the proposed approach very competitive

with DPM-like approaches.
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