
Scalable Optimization of Neighbor Embedding for Visualization

Zhirong Yang1
zhirong.yang@aalto.fi

Jaakko Peltonen1,2
jaakko.peltonen@aalto.fi

Samuel Kaski1,2,3 samuel.kaski@aalto.fi

1Department of Information and Computer Science, Aalto University, Finland
2Helsinki Institute for Information Technology HIIT, Aalto University and 3University of Helsinki

Abstract

Neighbor embedding (NE) methods have
found their use in data visualization but
are limited in big data analysis tasks due
to their O(n2) complexity for n data sam-
ples. We demonstrate that the obvious ap-
proach of subsampling produces inferior re-
sults and propose a generic approximated op-
timization technique that reduces the NE op-
timization cost to O(n log n). The technique
is based on realizing that in visualization
the embedding space is necessarily very low-
dimensional (2D or 3D), and hence efficient
approximations developed for n-body force
calculations can be applied. In gradient-
based NE algorithms the gradient for an in-
dividual point decomposes into “forces” ex-
erted by the other points. The contributions
of close-by points need to be computed indi-
vidually but far-away points can be approx-
imated by their “center of mass”, rapidly
computable by applying a recursive decom-
position of the visualization space into quad-
rants. The new algorithm brings a significant
speed-up for medium-size data, and brings
“big data” within reach of visualization.

1. Introduction

Very simple techniques dominate in visual analytics
and large-scale information visualization, as the com-
putational complexity of advanced nonlinear dimen-
sionality reduction (NLDR) methods developed in the
machine learning community is too high. There is
an immediate need for methods for initial inspection,
“looking at the data”, for the sets that typically cur-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

rently range in tens of thousands or millions of data
samples. The scatterplot-type displays produced with
NLDR are one of the most common tools for smaller
sets and would be useful for the “bigger data” as well.

Neighbor embedding (NE) methods work by optimiz-
ing the low-dimensional output coordinates of sam-
ples, and some other NLDR methods by optimizing
the mapping function. The cost functions typically
measure preservation of distances or neighborhood re-
lationships from the original space to the output space.
Unfortunately, current advanced NLDR methods do
not scale well to large data sets, as the computational
complexity of their optimization is typically at least
quadratic (O(n2) for n data samples), and may be cu-
bic or even worse. This is unfeasible for large data
sets, and in some cases also the memory complexity
may grow unmanageably large. The naive solution, of
applying NLDR to a subset of data only, is unsatisfac-
tory as it neglects the vast majority of relationships in
data. We demonstrate experimentally that the naive
solution can lead to poor generalization.

In this paper we present novel, fast and scalable ver-
sions of several recent state-of-the-art NE methods, by
applying an efficient approximation to their gradient
terms. The key insight is that in the methods we con-
sider, interactions between far-away data samples do
not contribute much to the gradient, and hence their
contribution can be computed with stronger approx-
imations. Inspired by the Barnes-Hut simulation ap-
proach in n-body dynamical systems (Barnes & Hut,
1986), we use a quad-tree to approximate far-away
pairwise interactions: for each data sample, the effect
of a far-away sample is approximated by the effect of
the mean of a hierarchical cluster. The farther away
the samples, the less detailed clusters are needed.

Our principle for generating the approximate meth-
ods is generic and can be applied to several NE meth-
ods. In this paper we apply the principle to develop
novel fast versions of Stochastic Neighbor Embedding

Scalable Optimization of Neighbor Embedding for Visualization

(SNE; Hinton & Roweis, 2002), t-distributed Stochas-
tic Neighbor Embedding (t-SNE; van der Maaten
& Hinton, 2008), Elastic Embedding (EE; Carreira-
Perpiñán, 2010), and Neighbor Retrieval Visualizer
(NeRV; Venna & Kaski, 2007; Venna et al., 2010). We
show in experiments that our efficient NLDR methods
clearly outperform the original state of the art meth-
ods in terms of computation time, and achieve essen-
tially the same quality. We demonstrate that the new
methods bring within reach of visualizations very large
data sets which could not be processed in a reasonable
time by the existing state-of-the-art methods.

2. Neighbor Embedding

We now present the methods we will make scalable.
Neighbor Embedding (NE) is a family of methods
for finding a configuration of data points in a lower-
dimensional “embedding space”. Given a set of mul-
tivariate data points {x1, x2, . . . , xn}, where xi ∈ R

M ,
their neighborhood is encoded in a square nonnegative
matrix P , where Pij is proportional to the probability
that xj is a neighbor of xi. Neighbor Embedding finds
a mapping xi 7→ yi ∈ R

m for i = 1, . . . , n such that
the neighborhoods are approximately preserved in the
mapped space. Usually m = 2 or 3, and m < M . If
the neighborhood in the mapped space is encoded in
Q ∈ R

n×n such that Qij is proportional to the prob-
ability that yj is a neighbor of yi, the NE task is to

minimize D(P ||Q) over Y = [y1, y2, . . . , yn]
T
for a cer-

tain divergence D.

Different choices of P , Q and D give different
Neighbor Embedding methods. Let pij ≥ 0 and

qij , q
(

‖yi − yj‖
2
)

> 0. The NE method Stochas-
tic Neighbor Embedding (SNE; Hinton & Roweis,
2002) uses Pij =

pij∑
k
pik

, Qij =
qij∑
k
qik

and Kullback-

Leibler divergence in the cost function, D(P ||Q) =
∑

i DKL(Pi:||Qi:). The qij is typically chosen to be
proportional to the Gaussian distribution so that qij =
exp

(

−‖yi − yj‖
2
)

, or proportional to the Cauchy dis-
tribution so that qij = (1 + ‖yi − yj‖

2)−1.

Additionally bringing in the dual Kullback-Leibler di-
vergence DKL(Q||P) weighted by a tradeoff parame-
ter λ ∈ (0, 1), hence minimizing

∑

i λDKL(Pi:||Qi:) +
(1−λ)DKL(Qi:||Pi:) over Y , results in a method called
NeRV. NeRV has an information retrieval interpreta-
tion of making a tradeoff between precision and re-
call; SNE is a special case (λ = 1) maximizing recall,
whereas λ = 0 maximizes precision.

If Pij =
pij∑
kl

pkl
and Qij =

qij∑
kl

qkl
, the NE method

with cost function minY DKL(P ||Q) is called Sym-
metric SNE (s-SNE). When qij is proportional to the

Cauchy distribution, it is also called t-SNE (van der
Maaten & Hinton, 2008; t denotes the Student t-
distribution with a single degree of freedom).

If neither neighborhood matrix is normalized and the
divergence is the non-normalized Kullback-Leibler di-

vergence DI(p||ρq) =
∑

ij

[

pij log
pij

ρqij
− pij + ρqij

]

,

with a constant scalar ρ > 0, the NE method is equiv-
alent to the Elastic Embedding (Carreira-Perpiñán,
2010) when qij is set to be Gaussian. Some additional
methods have also been introduced to the NE family,
for example, LinLog (Noack, 2007) which uses Itakura-
Saito divergence and HSSNE (Yang et al., 2009) which
uses other heavy-tailed embedding functions. We skip
their description to avoid notational clutter.

We make the common approximation of sparsifying
P by zeroing the very small non-local input similari-
ties. This makes sense for two reasons: 1) geodesics
of curved manifolds in high-dimensional spaces can
only be approximated by Euclidean distances in small
neighborhoods; 2) most popular distances computed
of weak or noisy indicators are not reliable over long
distances. The matrix P is often built upon the k-
nearest-neighbor graph, of which there exist various
efficient construction methods (see e.g. Yianilos, 1993;
Liu et al., 2004; Beygelzimer et al., 2006). Note that in
general the output similarity matrix q (or Q) is dense.
The costly computation of this part can be avoided by
using the technique described in the next section.

3. Scalable Optimization for NE

The neighbor embedding methods in Section 2 have
an objective J and partial derivative ∂J

∂yi
of the form

J =

n
∑

i=1

n
∑

j=1

Aij ,
∂J

∂yi
=

n
∑

j=1

Bij (yi − yj) . (1)

where Aij and Bij are pairwise scalar terms computed
between data points i and j. To exactly compute J or
its gradient to Y takes O(n2) time in general, which
is infeasible when n is large. To avoid heavy com-
putation in visualizing large datasets, a common sim-
ple approach is to only calculate the embedding for
a small subset of data samples. However, as shown
in Section 4.1, the resulting visualization can be poor
even for the subset because information on pairwise
interactions outside the subset is not used in optimiza-
tion. van der Maaten & Hinton (2008) proposed an-
other workaround, where distances within the subset
of points were computed taking the rest of the data
into account, as multi-path connections between data
points in the whole neighbor graph. However, their
method cannot visualize the original neighborhood of

Scalable Optimization of Neighbor Embedding for Visualization

the whole data, rather it embeds a reduced and blurred
neighborhood among the subset. In addition, comput-
ing the multi-path connections is expensive.

Fast group-based approximation. We propose an
approximation method to speed up the objective and
gradient calculation in NE. The computational com-
plexity in NE is essentially due to the coordinates and
pairwise distances in the output space, which change
at every step of optimization. The idea is that, in
each complicated sum computed around a data point
i in the output space (each sum over neighbors j of
the point), the terms in the sum will be partitioned
into several groups Gi

t and each group will be approxi-
mated as an interaction with a representative point of
the group. Consider the following summation which
appears commonly in NE objectives:

∑

j

f
(

‖yi − yj‖
2
)

=
∑

t

∑

j∈Gi
t

f
(

‖yi − yj‖
2
)

(2)

≈
∑

t

|Gi
t|f

(

‖yi − ŷt‖
2
)

, (3)

where i is the starting data point, j are its neighbors,
Gi

t are groups (subsets) of the neighbors j, |Gi
t| is the

size of the group, and ŷit is the representative, e.g.
mean, of the points in group Gi

t. Similarly, we can
approximate the gradient of the above sum. Denote
gij = f ′

(

‖yi − yj‖
2
)

. We have

∑

j

gij (yi − yj) =
∑

t

∑

j∈Gi
t

gij (yi − yj)

≈
∑

t

|Gi
t|f

′
(

‖yi − ŷit‖
2
) (

yi − ŷit
)

. (4)

The approximation within each group Gi
t is accurate

when all points in the group are far enough from yi.
Otherwise we divide the group into subgroups and re-
cursively apply the approximation principle to each
subgroup, until the group contains a single point j
where we directly calculate f

(

‖yi − yj‖
2
)

or gij . This
grouping hierarchy forms a tree-like structure. In prac-
tice, the tree does not need to be constructed sepa-
rately around each point i; it is enough to use a single
global tree. We thus omit the superscript i in what fol-
lows. Summations of O(n) cost can be approximately
calculated in O(log n) time if each split in the tree di-
vides the data into roughly equal size parts.

Fast computation of Eqs. 3 and 4 suffices to speed up
methods with pairwise separable NE objectives such
as Elastic Embedding. For NE methods involving nor-
malized similarities, each normalizing denominator is
another sum which can be approximated before com-
putation of the cost function or gradient using the

same principle. Some methods like NeRV need inner
summations in the objective or gradient, which can be
approximated beforehand in the same way.

Tree construction. The above approximation orig-
inated in the n-body problem in physics, where fast
computation of energy (objective) and forces (gradi-
ent) is needed to study systems with huge numbers
of particles. Various hierarchical structures exist for
the speedup, e.g. fast multipole method (Greengard &
Rokhlin, 1987) and dual tree (Gray & Moore, 2001;
2003a;b). We choose the one by Barnes & Hut (1986)
as it is simple. The cost of building such a tree is neg-
ligible compared to computation time of the NE ob-
jective or gradient. For notational brevity we only de-
scribe Barnes-Hut QuadTree for two dimensional out-
put points; it is straightforward to extend the principle
to the three dimensional case (OctTree).

A QuadTree is constructed as follows. First the root
node is assigned the smallest bounding box that con-
tains all data points, and a representative which is the
mean of all points. If the bounding box contains more
than one data point, it is divided into four smaller
boxes of equal size, and a child node is constructed at
each smaller bounding box if it contains at least one
data point. The splitting is done recursively until all
leaf nodes contain exactly one data point.

Fig. 1 shows an example QuadTree. Note that the tree
respects point density—an area with more data points
is split into deeper levels. Each tree node contains a
group of data points. Let Gt denote the set of points
within the bounding box in a branch (non-leaf) node
t. The branch node also has the following data fields:
a position ŷt which is the mean of points in Gt, and a
weight |Gt| which equals the size of Gt. An optional
coefficient may also be attached to a branch node to
facilitate computation (e.g. to precompute means of
some functions over the groups, needed for methods
like NeRV). The memory cost of a QuadTree is thus
linear in the number of data points.

Using the tree in computation. What remains is
to define a criterion that a point yi is far from a tree t.
A straightforward idea is that the tree’s bounding box
is small enough compared to the distance ‖yi − ŷt‖.
This can be implemented by

θ · TreeWidth(t) < ‖yi − ŷt‖, (5)

where tree width is the longer edge length of the tree’s
root node’s bounding box and θ is a positive param-
eter that controls the tradeoff between computational
cost and approximation accuracy. A larger θ gives
more accurate approximation but needs more expen-
sive computation. Typically θ ∈ [1.2, 5].

Scalable Optimization of Neighbor Embedding for Visualization

Figure 1. An example QuadTree for 62 data points. The
color labeling corresponds to the depth of each data point.

As an example, we show how to apply the approxima-
tion to t-SNE. Again denote the objective by J . The t-
SNE gradient is ∂J

∂yi
= 4

∑

j

(

Pij − s−1qij
)

qij (yi − yj)

where s =
∑

kl qkl. We first approximate s by Eq. 3
and then further approximate the gradient by Eq. 4.
This suffices for algorithms that only need gradients.
For those which use line search, the objective can also
be cheaply obtained: J ≈

∑

ij Pij‖yi − yj‖
2 + log ŝ+

constant, where ŝ is the approximation of s and we
compute the first term by exploiting sparsity of P .

4. Experiments

We experimentally verify the performance of the al-
gorithm, and demonstrate that alternative speedups
are not comparable. The experiments were run on
sixteen publicly available datasets (details in the sup-
plemental document). For NE, each data set was con-
verted to a symmetrized k-Nearest Neighbor matrix
(k-NN; k = 10 in all reported results) with pij = 1
if j is among k nearest neighbors of i or vice versa,
and pij = 0 otherwise. Conclusions are the same for
k = 15 and k = 20, and for Gaussian kernel matrices.

4.1. More data in NE learning helps

We first test how well the straightforward fast alter-
native of subsampling and interpolation would per-
form. We compute the embedding for only a random
subset of data, and then interpolate the rest in with
Locality-constrained Linear Coding (Wang et al., 2010;
Carreira-Perpiñán, 2010 presented another method for
out-of-sample extension, which is however restricted to
the EE method and requires expensive iterative learn-
ing). The result of embedding a 700-point subset of
the 70,000 digit images from the MNIST data is shown
in A1 of Figure 2, and with all points interpolated in
C1. When compared to the optimal visualization com-
puted for all the 70,000 points in C3, it is clear that the
interpolation misses and mixes up a lot of the structure
in the data.

One might argue that the smaller subset is already
sufficiently large to give an overview of the whole set,
and hence the larger visualization is not needed. In
A3 the same small set of 700 points is shown, but on
the display optimized for all the 70,000 points. The
visualization reveals the classes and cluster structure
much clearer than A1 which has been computed only
on the small set.

The conclusion is that learning the visualizations on
large data is beneficial, irrespective of whether only a
subset or all data are to be visualized. The remaining
problem is that embeddings with the largest data are
expensive to compute: generating subfigure C3 takes
about 46 hours. With the new algorithms a visual-
ization of almost the same quality can be achieved in
around 1.6 hours (Fig. 4 A).

4.2. Learning speed comparison

We tested the speed-up produced by the new approx-
imation technique on three NE methods: t-SNE, s-
SNE with Spectral Direction (SD) optimization (Vla-
dymyrov & Carreira-Perpiñán, 2010), and s-SNE with
momentum optimization (van der Maaten & Hinton,
2008). We will refer to the original ones by exact algo-
rithms and the new ones by approximated algorithms.

First we compared the learning times. Each method
was run for each dataset ten times, stopping when
‖Y new−Y ‖F < 10−6 ·‖Y ‖F or the number of iterations
exceeded 1000. To keep these computations manage-
able, only data sets with less than 20,000 samples were
included. A clear speedup was obtained on all the data
sets in terms of the mean elapsed times (Table 1).

We then verified that the approximated algorithms
produce embeddings of comparable quality to the ex-
act ones. We measured the quality with two quanti-
ties: relative difference ∆o between the objective func-
tion values and relative difference ∆a in the 10-NN
classification accuracies (A) computed after the em-
bedding: ∆o = |Jexact − Japprox|/|Jexact| and ∆a =
|Aexact − Aapprox|/|Aexact|. The measures are gener-
ally close to zero (Table 1), except for one dataset on
s-SNE (SD). This indicates the approximation accu-
racy by using the proposed technique is satisfactory.

Finally, we study the computation times for two larger
datasets: UCI Shuttle (size 58K) and MNIST hand-
written digit images (size 70K). The value of the ob-
jective function reduces markedly faster with the ap-
proximated algorithm (Fig. 3). Furthermore, the exact
and approximated values of the result produced by the
approximated algorithm are almost identical, indicat-
ing excellent approximation accuracy.

Scalable Optimization of Neighbor Embedding for Visualization

Figure 2. Effects of (random) subsampling on visualization quality. Rows: Amount of data shown on the display; A: 700,
B: 7,000, C: 70,000. Columns: Amount of data in learning the visualization; 1: 700, 2: 7,000, 3: 70,000. In images
below the diagonal, that is B1, C1, and C2, the rest of the samples have been interpolated with Locality-constrained
Linear Coding. In images above the diagonal, A2, A3 and B3, the points have been subsampled after the learning. Data:
MNIST handwritten digit images, with colors showing the 10 classes. Embedding method: t-SNE with Spectral Direction
optimization. In summary, interpolation reduces quality (compare C1 and C3), and subsampling after computing the
whole projection improves quality compared to subsampling beforehand (A3 vs A1).

Scalable Optimization of Neighbor Embedding for Visualization

Table 1. Effects of the new approximations on three NE methods, with 12 data sets. In each time column, the first figure
is the elapsed time of the original (exact) algorithm and the second the approximated algorithm (“s”:second, “m”:minute,
“h”:hour). ∆o: relative difference in objective function values (± standard deviation); ∆a: relative difference in k-NN
classification accuracy on the display.

t-SNE (SD) s-SNE (SD) t-SNE (momentum)
dataname size time ∆a ∆o time ∆a ∆o time ∆a ∆o

Iris 150 19s 2s 0.01± 0.00 0.02± 0.03 3s 2s 0.00± 0.00 0.03± 0.06 0.5s 0.5s 0.00± 0.00 0.01± 0.01
ORL 400 46s 14s 0.02± 0.01 0.01± 0.01 27s 3s 0.02± 0.02 0.04± 0.03 2s 4s 0.01± 0.01 0.01± 0.01
COIL 1K 4m 19s 0.01± 0.00 0.07± 0.01 7m 11s 0.01± 0.01 0.04± 0.03 25s 19s 0.00± 0.00 0.03± 0.01

Seg 2K 6m 1m 0.00± 0.00 0.06± 0.04 14m 20s 0.02± 0.05 0.46± 1.27 1m 37s 0.00± 0.00 0.03± 0.01
WebKB 4K 16m 7m 0.01± 0.01 0.01± 0.00 34m 2m 0.01± 0.02 0.00± 0.00 3m 1m 0.00± 0.00 0.01± 0.00
7Sectors 5K 20m 4m 0.02± 0.01 0.09± 0.04 52m 2m 0.05± 0.04 0.01± 0.01 4m 2m 0.00± 0.00 0.01± 0.00
OptDig 6K 32m 9m 0.00± 0.00 0.01± 0.00 1.7h 3m 0.01± 0.00 0.01± 0.01 6m 2m 0.00± 0.00 0.02± 0.00
Reuters 8K 1.1h 28m 0.01± 0.00 0.01± 0.01 2.0h 2m 0.07± 0.15 0.06± 0.15 14m 4m 0.00± 0.00 0.01± 0.00
RCV1 10K 1.0h 31m 0.00± 0.01 0.01± 0.00 3.1h 5m 0.02± 0.02 0.00± 0.00 18m 4m 0.00± 0.00 0.02± 0.00
Spam 10K 52m 28m 0.00± 0.00 0.01± 0.01 1.1h 7m 0.00± 0.00 0.00± 0.00 20m 6m 0.00± 0.00 0.01± 0.00

PenDig 11K 1.1h 33m 0.00± 0.00 0.02± 0.02 5.5h 11m 0.01± 0.01 0.03± 0.02 24m 5m 0.00± 0.00 0.05± 0.00
Magic 19K 3.4h 1.4h 0.00± 0.00 0.02± 0.01 7.0h 10m 0.01± 0.01 0.03± 0.03 1.2h 10m 0.00± 0.00 0.06± 0.00

4.3. Comparison to workaround in van der
Maaten & Hinton (2008)

We compared the efficiency of our approach against
another approximation approach (landmark t-SNE)
by van der Maaten & Hinton (2008) on the MNIST
dataset. The landmark t-SNE also starts from a sparse
similarity input, for example k-NN. Differently, they
first sample a subset of landmarks from the whole
dataset, and then they calculate the similarities among
the landmarks by considering multi-path connections,
which is implemented with random walk smoothing.
Finally a much smaller matrix is fed to t-SNE and
only the landmarks will be displayed.

Landmark t-SNE has a number of drawbacks. In appli-
cation, it cannot visualize the whole dataset. There-
fore, it can only discover a macro structure for cer-
tain datasets, given that the structure coincides with
the blurring distortion by random walk. In terms of
computational cost, landmark t-SNT requires solving
a very large linear system to find the multipath similar-
ities between the landmarks. In our practice, finding
a solution for the MNIST data costs 6-10 hours in a
machine with an Intel Core i7 CPU. For even larger
datasets, e.g. UCI Covertype and TIMIT in Section
4.4, landmark t-SNE causes out-of-memory failure.

In contrast, the approximated version of t-SNE with
SD only takes about 1.6 hours, with small memory
cost but an even better visualization (Section 4.4).

4.4. Visualization of large data

We finally demonstrate with the visualizations in Fig-
ure 4 that the new fast methods make feasible embed-
ding of very large data sets. Subfigure A visualizes
70,000 digit images from MNIST by the approximated
t-SNE with SD optimization. The classes are well sep-

arated and the plot is almost as good as exact t-SNE
in Figure 2 (C3), even though the computation time
has been reduced from 46 hours to 1.6 hour. Subfigure
B shows 58,000 points from the UCI Shuttle data (7
classes of shuttle states) embedded by approximated
s-SNE with SD optimization; the classes are well ar-
ranged with sharp borders. Subfigure C shows our ini-
tial results with a fast NeRV by SD optimization on the
MNIST data; classes are well arranged although some
class overlap is visible. Subfigure D shows 581,012
points from the UCI Covertype data (7 classes of for-
est cover types) embedded by s-SNE with SD; clear
structure is visible and classes are locally well arranged
although complete class separation is not easy for this
challenging data. Subfigure E shows 1.3 million points
from the DARPA TIMIT acoustic speech database
(points are 39ms segments with MFCC features; 49
phoneme classes) embedded by approximated t-SNE
with momentum optimization; although full class sep-
aration is not easy for the hard TIMIT data, clear
structure is again visible and there are several local
areas where classes are separated. Especially the visu-
alizations of TIMIT and Covertype would take unfea-
sibly long with the exact methods.

Overall, the fast methods can embed very large data
sets quickly. Even though the methods are unsuper-
vised, the arrangements revealed hidden ground truth
classes well. Even more importantly, the methods
made visualization possible for huge data sets where
the original exact methods would have been infeasible.

4.5. The θ parameter

In the above experiments we fixed θ = 2 in Eq. 5.
Here we study the approximation performance using
a range of θ values. We used t-SNE and MNIST
with θ ∈ [1, 2, . . . , 20]. For each θ value, we gener-

Scalable Optimization of Neighbor Embedding for Visualization

MNIST, 70K, 1.6 hour

Shuttle, 58K, 3.2 hours MNIST, 70K, 5.4 hours Covertype, 581K, 46 hours TIMIT, 1.3M, 33 hours

Figure 4. Visualization of large-scale datasets made feasible with the new approximations. A. MNIST using t-SNE and
Spectral Direction (SD); B. UCI Shuttle using s-SNE and SD; C. MNIST using NeRV and SD; D. UCI Covertype using
s-SNE and SD; and E. TIMIT using t-SNE and momentum. Titles of subfigures show the dataset name, dataset size, and
learning time.

Scalable Optimization of Neighbor Embedding for Visualization

Figure 3. Speedup on three methods (rows) for two large
data sets (columns). The curves show the evolution of the
objective function value as a function of time for the exact
algorithm (dash-dotted line) and approximated algorithm
(dashed line). The solid line shows the (off-line computed)
value of the exact cost function for the solution produced
by the approximated algorithm. For momentum optimiza-
tion, both dash and solid lines are offline calculated.

ated a 2D mapping by normal distribution with vari-
ance uniformly from [10−10, 1010]. The resulting ap-
proximated objective and gradient is compared with
the exact ones. Their relative differences are mea-
sured by ∆o = |Jexact − Japprox|/|Jexact| and ∆g =
‖∇exact−∇approx‖F /‖∇exact‖F , respectively, where ∇
stands for the gradient. We ran the experiment 10
times and recorded the mean and standard deviation.

The results are shown in Figure 5. We can see that
relative differences vanish quickly with increasing θ.
When θ > 5, more computational cost brings little ac-
curacy improvement. The phenomenon holds for both
the objective and gradient. The above experiments in-
dicate that generally a small θ is enough for NE meth-
ods such as t-SNE or s-SNE. A relatively larger θ can
be used for more complicated methods which require
several levels of approximation, for example, NeRV.

5. Conclusions

We have introduced novel fast versions of neighbor em-
bedding methods where interactions to far-away points
are approximated at centers-of-mass of a hierarchical

Figure 5. Relative differences between the exact and ap-
proximated (left) objectives and (right) gradients across
various θ values.

quad-tree, yielding fast O(n log n) complexity for cost
function and gradient computation. With this ap-
proach we created fast versions of Stochastic Neighbor
Embedding (SNE), symmetric SNE, and t-distributed
SNE; the same approach also yields fast algorithms for
Elastic Embedding and the Neighbor Retrieval Visu-
alizer which we did not focus on here.

We demonstrated that embedding large data helps
even if only a subset is ultimately plotted, and that
the straightforward approach of embedding a subset
and bringing in the other data by interpolation does
not work well. We showed on several benchmark data
sets that our fast methods can embed the full data
with minimal difference in quality (measured by cost
functions of the original methods and by classifica-
tion accuracy) and in far less time. We then demon-
strated our methods on very large data up to 1.3 mil-
lion points. Overall, our fast methods make it feasible
to visualize “big data” by advanced nonlinear embed-
ding approaches. Our NE software can be found in
http://research.ics.aalto.fi/mi/software/ne/.

Interestingly, the Barnes-Hut approximation that we
used to derive our fast methods has previously been
applied in another genre, graph drawing methods, but
to our knowledge not for visualizing manifold data.
Our results show that state-of-the-art manifold learn-
ing methods can greatly benefit from our fast compu-
tation approach with very little loss of quality.

The experiments in this work have been performed
in a single-core setting. Our method, however, does
not prevent distributed implementations using modern
parallel computing tools such as GPU or MapReduce.
QuadTree as the only centralized component is linear
in the number of data points in 2D or 3D. For even
larger datasets, one may consider distributed hash ta-
bles (e.g. Miller et al., 2010) to de-centralize the tree.

Acknowledgment

Academy of Finland, grants 251170, 140398, and
252845.

http://research.ics.aalto.fi/mi/software/ne/

Scalable Optimization of Neighbor Embedding for Visualization

References

Barnes, J. and Hut, P. A hierarchical O(N log N)
force-calculation algorithm. Nature, 324(4):446–449,
1986.

Beygelzimer, A., Kakade, S., and Langford, J. Cover
trees for nearest neighbor. In International Con-
ference on Machine Learning (ICML), pp. 97–104,
2006.

Carreira-Perpiñán, M. The elastic embedding algo-
rithm for dimensionality reduction. In International
Conference on Machine Learning (ICML), pp. 167–
174, 2010.

Gray, A. and Moore, A. N-body problems in statis-
tical learning. In Advances in Neural Information
Processing Systems (NIPS), pp. 521–527, 2001.

Gray, A. and Moore, A. Rapid evaluation of mul-
tiple density models. In International Conference
on Artificial Intelligence and Statistics (AISTATS),
2003a.

Gray, A. and Moore, A. Nonparametric density es-
timation: toward computational tractability. In
In SIAM International Conference on Data Mining
(ICDM), 2003b.

Greengard, L. and Rokhlin, V. A fast algorithm
for particle simulations. Journal of Computational
Physics, 73(2):325–348, 1987.

Hinton, G.E. and Roweis, S.T. Stochastic neighbor
embedding. In Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 833–840, 2002.

Liu, T., Moore, A., Gray, A., and Yang, K. An in-
vestigation of practical approximate nearest neigh-
bor algorithms. In Advances in Neural Information
Processing Systems (NIPS), pp. 825–832, 2004.

Miller, F.P., Vandome, A.F., and McBrewster, J. Dis-
tributed Hash Table. Alphascript Publishing, 2010.

Noack, A. Energy models for graph clustering. Journal
of Graph Algorithms and Applications, 11(2):453–
480, 2007.

van der Maaten, L. and Hinton, G. Visualizing data us-
ing t-SNE. Journal of Machine Learning Research,
9:2579–2605, 2008.

Venna, J. and Kaski, S. Nonlinear dimensionality re-
duction as information retrieval. Journal of Machine
Learning Research - Proceedings Track, 2:572–579,
2007.

Venna, J., Peltonen, J., Nybo, K., Aidos, H., and
Kaski, S. Information retrieval perspective to non-
linear dimensionality reduction for data visualiza-
tion. Journal of Machine Learning Research, 11:
451–490, 2010.

Vladymyrov, M. and Carreira-Perpiñán, M. Partial-
hessian strategies for fast learning of nonlinear em-
beddings. In International Conference on Machine
Learning (ICML), pp. 167–174, 2010.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and
Gong, Y. Locality-constrained linear coding for im-
age classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3360–
3367, 2010.

Yang, Z., King, I., Xu, Z., and Oja, E. Heavy-tailed
symmetric stochastic neighbor embedding. In Ad-
vances in Neural Information Processing Systems
(NIPS), volume 22, pp. 2169–2177, 2009.

Yianilos, P. Data structures and algorithms for nearest
neighbor search in general metric spaces. In Proceed-
ings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 311–321, 1993.

