
Scalable parallel algorithms for

predictive modelling

P. Christen*, M. Hegland*, O. Nielsen \ S. Roberts^, I. Altas^

* Computer Sciences Laboratory, RSISE,

Australian National University, Canberra, Australia.

^School of Mathematical Sciences,

Australian National University, Canberra, Australia.

Charles Sturt University, Wagga Wagga, Australia.

Abstract

Data Mining applications have to deal with increasingly large data sets and

complexity. Only algorithms which scale linearly with data size are feasible.

We present parallel regression algorithms which after a few initial scans of

the data compute predictive models for data mining and do not require

further access to the data. In addition, we describe various ways of dealing

with the complexity (high dimensionality) of the data. Three methods are

presented for three different ranges of attribute numbers. They use ideas

from the finite element method and are based on penalised least squares

fits using sparse grids and additive models for intermediate and very high

dimensional data. Computational experiments confirm scalability both with

respect to data size and number of processors.

1 Introduction

Algorithms applied in data mining have to deal with two major challenges:

Large data sets and high dimensions. In recent years, data sets had the

size of Gigabytes but Terabyte data collections are being used in business

and the first Petabyte collections are appearing in science (Dullmann [5]).

It has also been suggested that the size of databases in an average com-

pany doubles every 18 months (Bell and Gray [1]) which is akin to the

growth of hardware performance according to Moore's law. Consequently,

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining II

data mining algorithms have to be able to scale from smaller to larger data

sizes when more data becomes available. The complexity of data is also

growing as more attributes tend to be logged in each record. Data mining

algorithms must, therefore, also be able to handle high dimensions in order

to process such data sets. This combination of large data size with high

data complexity poses a formidable challenge for all data mining algorithms

and parallel processing is a must in order to get reasonable response times.

Moreover, algorithms which do not scale linearly with data size are not fea-

sible. In this paper, we present scalable parallel algorithms for predictive

modelling that successfully deal with these issues and are being applied to

data mining problems where data sizes consist of about 18 million records

with a dimensionality as large as 38. Section 2 presents the basic algorithms,

Section 3 gives a definition of full scalability, Section 4 presents three differ-

ent variants for different ranges of dimensions, and Section 5 describes the

implementations.

2 A finite element approach to data mining

All major data mining packages include predictive modelling components.

They are often used in combination with clustering, where first clusters are

determined and then a predictive model is built to predict the cluster for a

record of attributes. Thus, the predictive models lead to an understandable

representation of the clusters. As a predictive model describes in some way

the average behaviour of a data set, one may use it to find data records

for which the values of the response is significantly different to the pre-

dicted value. These deviations from the "norm" often have simple natural

explanations but, in some cases, may be linked to fraudulent behaviour.

A predictive model is described by a function y = /(#i,... ,x<i) from

the set T of attribute vectors of length d into the the response set S. If S is

discrete (often binary), the determination of / is the classification problem

and if S is a set of real numbers, one speaks of regression. In the following

it will mainly be assumed that all the attributes Xi as well as y are real

values and we set x = (#1,..., Xd)^ >

In many applications, the response variable y is known to depend in a

smooth way on the values of the attributes so it is natural to compute / as

a least squares approximation to the data with an additional smoothness

constraint imposed. In this paper, we state the problem formally as follows:

Given n data points (x̂ \ŷ),i = 1,... ,ra where x^ € R/ and yW G R

we wish to minimise the functional

fd* (i)

where £, is a differential operator which maps real functions of d variables

into real vector-valued functions of d variables. Examples include the gra-

dient, Laplacian, Hessian etc. The smoothing parameter a controls the

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining II
425

trade-off between smoothness and fit: In the limit a -» 0 the function /

becomes an inter polant. If a is large, / becomes very smooth but may not

reflect the data very well. Techniques for choosing a appropriately is be-

yond the scope of this paper and we refer to Wahba [12] for details on this

matter.

For computational purposes / is often restricted further to a particular

functional space, for example the space of piecewise multilinear functions,

and different methods arise from these choices. In this paper, we describe

and compare three different choices that we have implemented as tools and

used for predictive modelling. These are:

• TPSFEM: Piecewise multilinear finite elements

• HISURF: Hierarchical finite elements (Bi-orthogonal wavelets)

• ADDFIT: Additive models

All of these tools approximate the minimiser in Equation (1) but they differ

in how well they approximate / and more importantly in their algorithmic

complexities. Roughly speaking, TPSFEM gives the most accurate approx-

imation at the highest computational cost whereas ADDFIT has the lowest

cost but the coarsest approximation. HISURF sits somewhere in between

these two extremes and provides good approximations at a reasonable cost.

Details about these methods are given in Section 4. All three methods

follow the same general computational procedure as outlined below.

Using a Galerkin projection of Equation (1) onto the chosen functional

space we obtain the ra x ra linear system

?M + <*L) / = M^y (2)

where the vector / consists of approximate function values of /. The matrix

M interpolates values in / to the n values that approximate the data points

y and L is a discretisation of the differential operator £. The interpolation

matrix M has n rows and ra columns, where m denotes the degrees of

freedom in /. Normally, ra is chosen such that ra « n. Computing / then

consists of two steps:

1. Assembly: The ra x ra matrix M*M and the ra x 1 vector M^y

are assembled. This step requires access to all n data points and it

can be organised such that the computational work is linear in n. If

m < n this is a reduction operation on the original data.

2. Solving: This step assembles the ra x ra penalty matrix and solves

the entire system for /. This step does not involve the n data points

directly and the computational work depends only on ra, typically as

O(râ).

Note that for large n step 1 will dominate whereas for large ra step 2 will

dominate.

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining II

3 Full scalability and parallel reduction algorithms

An algorithm is called scalable with respect to the data size n if it has a

linear complexity such that the processing time T(ri) is of the form

T(n) = On 4- 0. (3)

If the data mining algorithm reads all the data, its complexity cannot be

less than O(n). Scalability is essential in order to be able to analyse large

and growing data sets.

In parallel computing, scalability means that good parallel speedup is

obtained for large enough problem sizes. We assume that all processors

have access to the disk (possibly local). Let T(n,p) be the time required for

p processors to analyse n records of data. The parallel efficiency is defined

as

We say that the algorithm is scalable with respect to the number of processors

p if there is a constant E^ > 0 independent of the number of processors

such that

lim E(n,p) =#oo >0, p = 1,2,3,
71 -+00

Ideally, £"00 ~ 1- Parallel data mining algorithms require both types of

scalability and we suggest to call this full scalability. One gets

Lemma 1. A parallel algorithm is fully scalable if and only if

(4)

where p is the number of processors and n is the data size.

Proof. The "constants" in Equation (3) may depend on the number of pro-

cessors. Thus, an algorithm satisfying Equation (4) is scalable with respect

to data size and an algorithm which is scalable with respect to data size

satisfies

For such an algorithm the limit of the parallel efficiency is

F r T?(^ 0(1)£00 = hm E(n,p) =
n—»oo

Thus one has parallel scalability if and only if

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining II
427

10

10'

10'

Mo'

10'

10'

10
10 10'

d
10'

Figure 1: Dimension m as a function of the number of attributes d.

For predictive modelling both the determination of the model as well as the

evaluation on a large data set needs to be fully scalable. The evaluation

on the full data set is, for example, required in order to detect "unusual"

records.

Fully scalable algorithms may be built around sampling of the data

set, aggregation of tables into small (or at least manageable) tables, or bin-

ning. These algorithms all determine the predictive model in two steps:

First, the data is scanned one to three times and reduced to a manageable

size. Second, the model is determined from the reduced data (Weiss and

Indurkhya [13]). We suggest calling algorithms of this type reduction algo-

rithms. The size of the reduced data set needs to be independent of the

data size but typically will have an influence on the approximation error

or bias. Reduction algorithms with a fully scalable reduction step are fully

scalable. Note that the second term j3(p) is the time needed to process the

reduced data. If this stage is also processed in parallel, f3(p) decreases with

increasing p.

4 Dealing with high dimensions

The three methods TPSFEM, HISURF and ADDFIT presented in Section 2

differ mainly in their approximation properties and the size of the models

generated, see Figure 1. In Figure 2, the result of the application of these

three techniques to aeromagnetic data available from Australian Society of

Exploration Geophysicists (http: //www. aseg. org. au/) is shown. All three

techniques are fully scalable as defined in Section 3. MATLAB prototypes

of the codes are available from the authors on request.

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

428 Data Mining II

4.1 TPSFEM (Hegland et. al. [8, 3])

The Thin Plate Spline Finite Element approach uses a nonconforming finite

element approximation to the thin plate splines introduced in Duchon [4] for

one to three dimensions. In more than three dimensions, a term of the form

f fxi,...,xd(%)̂ dx is added as the usual smoothing term (which is the norm

of second derivatives) that does not yield continuous smooths for higher

than three dimensions. It turns out that the "curse of dimensionality" is

a major obstacle to handling higher than 3 to 5 dimensional spaces as the

dimension of the finite element space grows exponentially in the number of

variables d, see Figure 1.

4.2 HISURF

This tool uses a hierarchical piecewise linear bi-orthogonal wavelet basis and

tensor products thereof to approximate /. It can be shown (Nielsen et. al.

[9]) that many elements of this particular basis can be deactivated without

sacrificing the essential approximation power. The error is increased by a

factor Iog2(s)̂ ~*̂ by this procedure where s denotes the number of grid

points in each dimension. In return, the dimension of the truncated system

is of the order m % (logs)̂ ~̂ 5; which is a significant reduction compared

to TPSFEM, especially for large s.

TRSFEM: HISURF: 833 vars ADDFIT: 388 vars

Figure 2: Modelling 2D aeromagnetic data with 735,700 records.

4.3 ADDFIT

We have adopted (generalised) additive models (Hastie and Tibshirani [7])

to deal with very high dimensional data. Figure 1 clearly shows its supe-

riority with respect to complexity. However, this comes at a cost as the

approximation power of additive models is much poorer as can be seen for

the magnetisation example in Figure 2. Both advantages and disadvantages

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data Mining II
429

Normalised
Data

\

Figure 3: Steps of our data mining algorithm

are due to the simple form of additive models:

/(*) =/o

5=1

All the functions fs are piecewise linear and so the dimension of the finite

element space is pd -f 1. In Figure 2, the combinations z\ = x\ -f x? and

Z2 = xi — X2 were used as variables and by adding other linear combinations

one may be able to get better approximations. While the finer details are

lost in this simple representation, one can still see the main features (like

extrema) of the field.

5 Architecture and implementation

As discussed before, we would like to achieve full scalability as defined in

Lemma 1. To obtain scalability with respect to data size, our algorithms are

designed to access the data from secondary storage in one single pass. Once

the data is read and the matrix and vector are assembled the predictive

algorithms work on the reduced representations only.

Achieving a scalable parallel algorithm is mainly based on the require-

ment that the amount of communication must not depend on the number

of data records n, as communication costs would dominate otherwise. The

only steps that deal with the original data set (and thus depend on n) are

the preprocessing (which has to be done once only for a data set) and the

assembly of the matrices needed by the three methods TPSFEM, HISURF

and ADDFIT. We describe these steps here in more detail.

Assume that we have a d dimensional data set (i.e. d attributes). In a

first preprocessing step, continuous variables are normalised (i.e. they are

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data MiningII

transformed to values between 0.0 and 1.0) and categorical variables are

enumerated (i.e. categories are numbered starting from 1). This normali-

sation process can be parallelised almost ideally as each processor has to

process d/p attributes. Unfortunately, this may lead to load imbalance,

as some processors may have to process one more attribute than others.

Moreover, the time to process a categorical variable depends heavily on the

number of categories in an attribute, as each data record has to be checked

against all already existing categories.

For an example data set consisting of n = 17, 898,598 data records each

with d — 38 attributes we measured the following times on a Sun Enterprise

4000 SMP machine with ten 167 MHz Ultra-Spare processors, 4.75 GBytes

of main memory and an attached 256 GBytes RAID disk array: The first

processor finished preprocessing and normalisation of four attributes (with

at most 26 categories) after 70 minutes, while it took 91 minutes to finish for

the last processor also with four attributes but with 2,711,766 categories

in one attribute. Since the number of categories is often unknown prior to

preprocessing, it is hard to achieve good load balancing. For continuous

- as well as categorical variables with only a small number of categories -

good load balancing can be achieved, as the time in such a case is bounded

by file access.

Once the data files have been normalised they are available as binary

files on disc. The next step, which also requires access to the data, is the

assembly of the matrix and vector as needed by the three methods. For

each method a different matrix has to be assembled, but the structure of

the assembly process remains the same. Basically, each data record adds

some values into the matrix and vector at specific places.

As the assembly of each data record is independent of all others, it can

be parallelised such that each processor assembles a fraction n/p of all data

records into a local matrix and vector. To do so, each processor opens all

data files and seeks the position in the files where its partition begins. At

the end of the assembly, all local matrices and vectors have to be collected

and summed to form the global matrix and vector. The dimension m of this

matrix and vector only depends on the number of categories for categorical

attributes and the number of grid points for continuous attributes, respec-

tively. Most importantly, it is independent of the number of data records n.

Load balancing in this step is easily achieved, because each processor reads

and processes the same number of data records.

Today, most parallel computers are time-shared among several users,

so the global load of a processor can dynamically change over time. To

overcome this, we implemented the assembly step in a master-slave fashion,

which automatically results in a good balanced load on all processors. The

master sends the partition and number of data records to assemble to a

slave, which assembles them and returns a message back to the master after

it is finished. The master then sends another message to this slave. This is

repeated until no more data records are left to assemble.

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

Data .Mining II

Table 1: Timing results for matrix and vector assembly.

Number of processes

Time for assembly [sec]

Speedup

Efficiency

1

7484

-

-

2

3855

1.94

0.97

4

2018

3.70

0.93

6

1345

5.56

0.93

8

1046

7.16

0.89

10

983

7.61

0.76

Table 1 shows preliminary results for the assembly of n = 17,898,598 data

records into a dense matrix of dimension m = 752 on the 10 processor Sun

Enterprise 4000. During the measurements we had to share the machine

with other users, and so no optimal speedup results could be achieved.

After the assembly of the matrix and right-hand side vector this linear

system can be solved depending on the matrix dimension by a sequential

or parallel linear system solver like ScaLAPACK (Blackford et. al. [2]) or

Aztec (Tuminaro et. al. [10]).

The current implementation of our methods is done in a modular way.

For computing intensive processes we utilise parallel codes written in C and

using MPI (Gropp et. al. [6]) for communication as described above. With

the portability of MPI we can easily run our codes on workstation clusters,

distributed as well as shared memory machines.

Of course, data mining not only consists of building models (see Fig-

ure 3). Preprocessing and cleaning of the data have to be done first, and

results should be presented graphically to the user. We use the scripting

language Python (van Rossum [11]) to glue all our modules together and

give a consistent interface to the user. As our parallel programs mainly take

inputs from file and write outputs to file they can be called from Python

by simple system calls. Computationally intensive preprocessing is done by

our parallel code as described above. More complex preprocessing and data

aggregation can easily be programmed in Python. Another way is using a

database (e.g. MySQL) and importing its interface into Python for easier

access. All in all, we get a powerful, shell-like interface to mine huge and

high-dimensional data sets with our predictive modelling methods.

6 Conclusion and outlook

We have presented a three-fold approach to predictive modelling for very

large data-sets. They are all based on approximate smoothing splines using

finite element techniques. While all the techniques are equally scalable,

both with respect to the data size and the number of processors used, they

differ in their approximation power and range of dimensions for which they

are applicable. A first technique, called TPSFEM, is based on piecewise

multilinear elements and is most suited to low-dimensional problems. For

the intermediate range of dimensions we suggest HISURF which uses a

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

jo2 Data Mining II

sparse-grid type approach based on bi-orthogonal wavelets. Finally, for

very high-dimensions we have developed ADDFIT implementing additive

models. In future work we plan to add support for data types other than

continuous and categorical variables. We hope to include in a first instance

support for sets, time series and graphs. We plan also to explore how the

reduction techniques could be used to address data mining problems other

than prediction.

Acknowledgements

This research was supported by the Advanced Computational Systems CRC

and by the Swiss and Danish National Science Foundations.

References

[1] G. Bell and J.N. Gray, The revolution yet to happen, Beyond Calculation (P.J.
Denning and R.M. Metcalfe, eds.), Springer Verlag, 1997, pp. 5-32.

[2] L.S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley,
Scalapack user's guide, SI AM, 1997.

[3] P. Christen, I. Altas, M. Hegland, S. Roberts, K. Burrage, and R. Sidje, A parallel
finite element surface fitting algorithm for data mining, CTAC-99, 1999.

[4] J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces,
Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst.,
Oberwolfach, 1976), Springer, Berlin, 1977, pp. 85-100. Lecture Notes in Math.,
Vol. 571.

[5] D. Diillmann, Petabyte databases, SIGMOD '99, ACM, 1999.

[6] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable parallel programming
with the message-passing interface, MIT Press, Cambridge, MA, USA, 1994.

[7] T. J. Hastie and R. J. Tibshirani, Generalized additive models, Monographs on statis-
tics and applied probability, vol. 43, Chapman and Hall, 1990.

[8] M. Hegland, S. Roberts, and I. Altas, Finite element thin plate splines for data
mining applications, Mathematical Methods for Curves and Surfaces, 1998, pp. 245-
253,

[9] O.M. Nielsen, M. Hegland, and Z. Shen, High dimensional smoothing based on
multiresolution analysis, In preparation.

[10] R.S. Tuminaro, M. Heroux, S.A. Hutchinson, and J.N. Shadid, Official Aztec user's
guide: Version 2.1, Massive Parallel Computing Research Laboratory, Saridia Na-
tional Laboratory, December, 1999.

[11] G. van Rossum, Python tutorial, Centrum voor Wiskunde en Informatica (CWI),
1995.

[12] G. Wahba, Spline models for observational data, CBMS-NSF Regional Conference
Series in Applied Mathematics, vol. 59, SIAM, 1990.

[13] S.M. Weiss and N. Indurkhya, Predictive data mining, a practical guide, Morgan
Kaufmann Publishers, 1998.

 Data Mining II, C.A. Brebbia & N.F.F. Ebecken (Editors)

 © 2000 WIT Press, www.witpress.com, ISBN 1-85312-821-X

