
 1

SCALABLE PARALLEL COLLISION DETECTION SIMULATION

Ilan Grinberg

Computer Science Department
Bar-Ilan University

Ramat-Gan
Israel

ilan_grin@hotmail.com

Yair Wiseman
Computer Science Department

Bar-Ilan University
and School of Computer Science & Engineering

The Hebrew University of Jerusalem
wiseman@cs.huji.ac.il

Abstract

Several simulations for parallel collision detection have
been suggested during the last years. The algorithms
usually greatly depend on the parallel infrastructure and
this dependency causes in many times non-scalability
performance. The dependency also harms the portability
of the simulation. This paper suggests a scalable and
portable parallel algorithm for collision detection
simulation that fits both clusters and MPI machines.

Keywords: Motion Detection and Estimation,
Scalability, Geometry Models, Parallel and Distributed
Simulation.

1 Introduction

There are many simulation software tools in the civilian
and military markets for many purposes [1], for example
Crash Detection Simulation, Vehicle Survival
Performance, Sensor Calibration Optimization, Safety
Military Experiments and Simulation of Battles. All of
these tools are based on three-dimensional shapes that
made up of elementary polygons [2]. Such simulation
systems are designed to illustrate the real world; hence,
they require high accuracy. High accuracy is obtained by
using ten thousands to millions of polygons [3]. Handling
so many polygons obviously requires enormous
computation resources.

The main computation in such simulators focuses in basic
functions of computational geometry like:

• Lines intersections
• Line-Polygon intersections
• Polygon-Polygon intersections
• Collision Detection on Gantt Chart
• Projections
• Transformations
• Axis Switches.

and many more.

These functions are part of any standard graphic engine
that is used as a framework for any three-dimensional

simulator or any computer game [4]. Some of these
computations consume many resources and an acute
problem can occur if the number of the geometrical
elements in a given space is too high.

Methodologies in this area raise several issues like what
the optimal way to implement these functions in any
computational environment is. Any special hardware like
Graphics Accelerator Card, Graphic Card with Dual
Processor, Multi-Processor Computer or Computer
Cluster can significantly influence the implementation of
these functions.

To accommodate the many requirements of the
computational geometry functions (e.g. Polygon-Polygon
intersections in a space where each polygon has its own
velocity and acceleration) there will be a need for:

• Clever algorithms that can reduce the
complexity of the function.

• Utilization of as many as possible of processors
i.e. parallel or distributed computation.

In this paper, we present a parallel algorithm for Collision
Detection Simulation. The suggested algorithm is based
on the Locality Principle and the Load Balance Principle.
The algorithm is suitable for both complex and simple
geometry models with no dependency on the parallel
environment and the architecture of the machines.

2 Bounding Volumes

One of the most common methods for efficiently
implementing computational geometry functions is
constructing a smart simulation model for each geometry
shape consists of basic polygons. Figure 1 is an example
for such a simulation model.

Such a simulation model for the geometry shapes enables
an execution of geometry functions on the simulation
model in a much more efficient manner than executing
the functions on each polygon that the geometry shape
consists of. This simulation model is well known as
Spatial Data Structures [5].

 2

Figure 1: Simulation Model of a geometry shape consists
of basic polygons.

Spatial Data Structures are used in two ways. The first
way is reducing the number of intersection checks of
static and dynamic objects in a given space. For n objects,
there will be

2
n

potential objects that may be intersected.

This number is obviously very high and the significantly
reducing in the number of intersection checks obtained by
Spatial Data Structures is quite important.

The second way is reducing the number of intersection
checks of pair of primitive polygons in intersection
detection of two complex objects or an intersection of a
primitive object and a complex object. In this scheme, the
Spatial Data Structures are created in the preprocessing
step and remain static, assuming the simulated objects are
rigid.

Spatial Data Structures are employed for Space
Partitioning [6] and Bounding Volumes [7]. Space
Partitioning is a sub-partitioning of a space to convex
regions called cells. Each cell maintains a list of objects
that it contains. Using this structure, many pairs of objects
can be easily sifted out.

Bounding Volume is a split of an object set into consistent
subsets and computing for each one of the subsets tight
bounding volume so when the intersections of the subsets
are checked, these subsets will be straightforwardly sifted
out by finding which bounding volumes are not
overlapping.

We require the Bounding Volume to have several
features:

• The Bounding Volume should be in a close
proximity to the model in order to reduce the
cases when an intersection with a Bounding
Volume is detected but no other parts of the
model are actually intersected.

• Detecting an overlap of two Bounding Volumes
should be very fast i.e. this detection should be
much faster than a detection of two overlapping
models.

• The implemented Bounding Volumes should

consume a small memory space. This memory
consumption should be much smaller than the
model itself consumes.

• The computation cost of the Bounding Volumes

should be inexpensive, particularly if the
application needs a frequent computation of the
Bounding Volumes.

Some researches have been conducted on tactics of
representing Bounding Volumes like Bounding Spheres
[8], K-DOPs - Discrete orientation polytopes [9], OBB -
Oriented Bounding Boxes [10], AABB - Axis Aligned
Bounding Boxes [11] and Hierarchical Spherical Distance
Fields [12].

We prefer the most common one, the AABB tactic. This
tactic represents the bounding volume as minimum and
maximum values of a geometric model over each one of
the axes. In this way, a bounding volume will be created.
It should be noted that the AABB representation
consumes more memory space than the "Bounding
Sphere" tactic; however, intersections of two bounding
volumes can be calculated faster.

Constructing a bounding volume in the AABB technique
is quite fast [5]. The algorithm runs through each one of
the basic elements contained in the bounding volume and
projects it on each of the axes. The following step is
finding the minimum/maximum values for each axis.

3 Bounding Volume Hierarchies

Bounding volume hierarchies [9,13] are a tree data
structure, whose leaves are constructed from the basic
elements of the geometry. Each node's leaves are placed
inside the bounding box it represents. Sibling nodes can
be overlapped by their representing bounding volumes.

The advantages of using bounding box hierarchies are:

• Fast query for intersection testing
• Linear memory space in the number of elements

constructing the geometry.

The major drawback of using this technique is the long
execution time that the algorithm needs in order to
construct the representing tree of the geometry and the
updates that the algorithm requires when using non-rigid
objects. This is the reason for the common use of
bounding volume hierarchies with rigid geometries - its

 3

representing tree is generated only once as a pre-
processing step.

The test of collisions between two geometric models is
done recursively for each two nodes that are taken from
each of the geometries trees, starting with the roots. The
intersection test handles the following cases:

1. If the representing bounding volumes of the
nodes intersect, "False" will be returned.

2. If both of the nodes are leaves, the primitive
elements contained in these leaves will be
checked for an intersection.

3. If one of the nodes is a leaf and the other is not,
the leaf will be checked for an intersection with
one of the other node's children.

4. If both of the nodes are not leaves, the node
having the smaller volume representing a
bounding box will be checked for an intersection
with one of the other node's children.

The overall collision detection cost of two geometric
models, which are represented with bounding volume
hierarchies can be formulated by the following equation
[5]:

ppbbtotal CNCNT ⋅+⋅=
Where,

Ttotal – The total time to test an intersection between
the two models.

Nb – Number of bounding volumes pairs that are
tested for an intersection.

Cb – The cost of an intersection test between
bounding volume pairs.

Np – Number of primitive polygons pairs that are
tested for an intersection

Cp – The cost of an intersection test between pairs of
primitive polygons

The parameters that are affected by the bounding volume
type are Nb, Np, and Cb. A tight-fitting bounding volume
type, such as OBB, will produce a low Nb and a low Np,
but will produce a relatively high Cb, whereas AABB
would have produced more tests to perform, but the value
of Cb would have been lower.

4 Related Works

The potential of sequential algorithms is somehow limited
and the parallelizing becomes an essential enhancement if
the algorithm has to run quickly. Some works have been
done to put into practice parallel collision detection. We
survey the approaches of these works and explain what
has led us to our approach.

In [14] the authors employ AABB to represent the
geometry models that are used for collision detection. The
algorithm constructs for each model a hierarchy of three

levels of Bounding Volumes. The principle is not to
construct a huge tree containing leaves with only one
Bounding Volume of a single polygon. However,
complex geometry shapes are likely to have leaves with
many primitive polygons. Because of such leaves, the
execution time is much larger than a full hierarchy of
Bounding Volumes due to the many checks of
intersections of polygon pairs.

The algorithm of [14] is dedicated for SMP machines and
cannot work on computer clusters. In SMP machines the
RAM is in the vicinity of all the processors; hence, the
locality principle is not kept. If the algorithm is used on a
computer cluster and the geometry shapes are complex, a
bottleneck will be occur when the geometry shapes are
loaded in the beginning of any computation unit.

The algorithm of [15] suggests a parallel version for
Space Partitioning Based Collision Detection. The
algorithm is scalable and keeps the locality principle by
making any voxel a separate process. However, this
algorithm does not employ Bounding Volumes Hierarchy.
Rather, it employs Bounding Volumes in a constant size
that has been set in advance. This feature will drastically
harm the performance of the algorithm if the geometry
shapes have non-homogenous density in the polygon
prefix.

In addition, some polygons have empty Bounding
Volumes that cause unequal balance on the nodes in the
cluster. In order to balance the load the algorithm utilizes
the parallel infrastructure. Actually, this indicates that no
effort is taken to balance the load. If such a case occurs,
the parallel infrastructure will be supposed to resolve the
unequal balance. This tactic creates an overhead - the
solution for unbalance nodes is a migration of processes
from one node to another. These migrations may harm the
performance of the algorithm.

The cost of constructing the voxels' data structures in [15]
is quite low; hence, rigid objects that require frequent
updates of the data structure can benefit this feature.

The splitting of the space into a large number of voxels
enables a node that hosts many voxels to efficiently
manage voxels that need the processor and voxels that
need the communication line, by the operating system.
Obviously, this will not be correct in the beginning of a
new simulation when there is no data for any voxel and
all the voxels call one node at the same time and create a
bottleneck.

In [16] several versions of parallel algorithms for collision
detection are presented. The algorithms keep the locality
principle and keep the load balance of the nodes. The
algorithms are aimed at collision detections of animations
(roughly some dozens of frames per seconds) for simple
geometry shapes (less than 4000 primitive shapes). The

 4

algorithms are also aimed at just SMP architectures with
shared memory.

The load balancing in [16] is static and is done in the
beginning before the intersection check step. In addition,
the algorithm assumes that the processors are
homogenous. Static load balancing reduces the
communication overhead; hence is more suitable for real-
time simulation. The authors also suggest several
techniques to reduce this overhead by using a common
queue for several processors.

There are also works that are only aimed at grid
environments like [17]. This work suggests a simulation
that cannot work properly on SMP machines.

In this paper, we suggest a dynamic load balancing. This
may have a slight higher overhead, but it will be able to
handle heterogeneous processors and will be able to
manage better computer clusters.

5 Scalable Collision Detection

The new parallel simulation that is suggested in this paper
includes several advantages over the known parallel
collision detection simulations. The main idea of the
suggested simulation is keeping the scalability principle
while not abandoning the locality principle and the load
balancing of the system.

We can use one of the known algorithms for Bounding
Volumes hierarchy for checks of an intersection of two
models or a collision. Let us define the smallest "work
unit" as one operation (like a collision detection) on a
complex geometry model or one operation between two
complex geometry models. Indeed, a finer split into
smaller unit could have been done like the author of [14]
suggest; however, the cost of execution of one "work
unit" that we suggest will be still very small, even if the
geometry model is very complex. Experiments show that
a splitting of geometry models into too many smallest
units can produce too much overhead.

Let us define "processing unit" as one process that gets
some parts of the collision detection procedure and
returns the results to the master process. Any process in
the parallel system can migrate from one processor to
another processor in the same SMP or migrate from one
node to another node in the same cluster, if this is the
policy of the parallel infrastructure.

The algorithm uses the Vector Space technique [18] to
find similarity of scenarios ("work units") and machines
("processing units") in a similar way of queries in
document sets in the Information Retrieval field.

Let us assume that we have two geometry models consist
of basic polygons, n different scenarios where the models

are placed in various places and various orientations and
there is a collision in each scenario.

The work is defined as finding

1

n

ik∑ intersection points of

two objects in the n different scenarios where ki is the
number of the intersection points in scenario i. In such a
case, the finding of one single collision will be denoted as
one "work unit".

5.1 The Simulation Algorithm

Let us denote np as the maximal processors in our
machine.

• Create np children that will be the "processing
units".

• Create a queue of "processing units" in an

arbitrary order.

• Construct the Bounding Volumes hierarchy of

the two geometry models by one of the known
models that have been cited above. The data
structure can be saved along with the geometry
information so there will be no need to
reconstruct the hierarchy many times. The
Bounding Volumes hierarchy trees represent the
geometry models and any leaf in any tree
contains one basic polygon. The indices are put
in nodes of no more than level d in each tree
from left to right as can be seen in Figure 2.

• Create a list of scenarios containing for each

scenario, the scenario index and the Bounding
Volume vector. i. e. for each scenario ("work
unit"), the Bounding Volumes (the black nodes
in Figure 2) that are a part of the current check
will be put in the list.

• Let us denote the Bounding Volume vector as

BB. The value of a BBi that is not intersected in
the given scenario will be 0. The value of a BBj
that is intersected in the given scenario will be
the number of the primitive polygons that the
Bounding Volume vector bounds. An example
for such a data structure can be seen in Table 1 -
The upper table is the Bounding Volume vectors
that are intersected in given scenarios for the
geometry model that is depicted in Figure 2. The
lower table depicts Bounding Volume vectors for
the same scenarios but for the geometry colliding
with the first model.

 5

scenario BB1 BB2 BB3 BB4 BB5 BB6

1 0 0 1 0 1 4
2 0 11 1 1 1 0
3 1 11 1 1 0 4
4 0 0 1 0 0 0
5 0 11 1 1 1 0
6 … … … … … …

scenario BB1 BB2 BB3 BB4

1 2 0 14 6
2 2 1 14 6
3 0 0 14 6
4 0 1 0 0
5 0 1 0 6
6 … … … …

Table 1. Example of a "work unit" list

• Create a list of "processing units". Each

"processing unit" will contain a vector in the
same length as the vectors in the "work unit" list.
In the beginning, these vectors are zeroed.

• Allocate q scenarios for each "processing unit" in

this way:
o For each "work unit" in the processing

queue, the q free scenarios that are most
similar to the "work unit" vector will be
selected. The most similar scenarios can be
chosen by the well-known VS tactic [19] i.e.
a scalar multiplication of the scenario vector
and the "processing unit" vector.

o These q scenarios will be allocated for these
q "processing units" and will be removed
from the "work unit" list.

o The "processing unit" vector will be update
by a switch of 0 to 1 for any Bounding
Volume that was added by the new q
scenarios.

• Any "processing unit" finds the collision points

of the two geometry models for any scenario that
was allocated for this specific "processing unit".
If the "processing unit" needs more information
on the primitive polygons and it does not have
the information, the "processing unit" will call
the parent process and will get this information
from it. The "processing unit" will cache this
information for a possible future use.

• When a "processing unit" finishes its jobs, the

"processing unit" will call the parent process and
will return the results about the intersections that
were found in each scenario. The parent process
will add the "processing unit" to the free
"processing unit" queue.

• This procedure will be repeated until the "work

unit" list is empty.

Figure 2 depicts an example of a node indexing getting to
level 4 in the tree. Each of the filled squares leaves
represent one single polygon. The white nodes represent
internal nodes whereas the black nodes are the nodes that
will be indexed and will be put in the geometry vector.
The number within the node indicate the number of the
polygons within the volume that the node bounds. The
number beside the node is the index of the node in the
vector.

Figure 2. Example of a node indexing

5.2 Simulation Analysis

It can be seen that the "work unit" splitting mechanism
enables the simulation to keep the locality principle,
because the splitting of a job that contains information on
parts of the geometry model is similar to the information
that the "processing unit" has worked on it. In this way,
the overhead of transferring the geometry models to all
the machines in the cluster is prevented. If the geometry
models are very complex (This is very common in many
simulation tools) and the communication line speed is the
common 1Gb/sec, the execution time can be improved
significantly.

The simulation keeps the load balancing in the
"processing units" by managing a dynamic queue and

 6

allocation of a small work portion in each iteration for
each "processing unit". In this way, an optimal
computation time will be obtained even if the simulation
is executed on a complex parallel infrastructure.

The simulation allocates the needed memory for each
work portion in each "processing unit" and in that way the
simulation saves unnecessary memory allocations in other
machines in the cluster.

The simulation is generic and it can be independently
implemented on any Operating System, Middleware,
Hardware or Framework. The simulation is fully portable
and can be used in any environment.

These is no harm for the simulation performance in any
geometry models. The simulation can handle flawlessly
geometry of different sizes or shapes.

6 Conclusions

Given complex geometry models, the simulation can
detect an intersection in an efficient execution time. The
suggested simulation is another level to the parallel
infrastructure and can be easily installed on any parallel
architecture. The suggested simulation does not require
special resources or extensive needs; hence, many parallel
machines can easily adapt it. Moreover, there is no
obstruction to implement the suggested simulation on
either clusters or SMP machines and the suggested
simulation overcomes the initial overhead stemmed from
the test of a parallel collision between complicated
geometries on a computer cluster.

7 References

[1] P. Jiménez, F. Thomas, and C. Torras, "3d collision
detection: A survey", Computers and Graphics, Vol.
25(2), pp. 269-285, 2001.
[2] S. Brown, S. Attaway, S. Plimpton, and
B. Hendrickson, "Parallel strategies for crash and impact
simulations" Computer Methods in Applied Mechanics
and Engineering, Vol. 184, pp. 375-390, 2000.
[3] B. Curless and M. Levoy. "A volumetric method for
building complex models from range images", In
Proceedings of ACM Siggraph '96, pp. 303-312, 1996.
[4] Cohen, J. D., Lin, M. C., Manocha, D., and Ponamgi,
M., "I-COLLIDE: An Interactive and Exact Collision
Detection System for Large-Scale Environments", In
Proceedings of the 1995 Symposium on interactive 3D
Graphics (Monterey, California, United States, April 09 -
12, 1995). SI3D '95. ACM Press, New York, NY, pp.
189-end, 1995.

[5] G. van der Bergen . "Collision Detection in interactive
3D Environments" Spatial Data Structures, pp. 171-217,
2004.
[6] T. M. Ghanem, R. Shah, M. F. Mokbel, W. G. Aref,
and J. S. Vitter. ``Bulk Operations for Space-Partitioning
Trees,'' Proceedings of the 20th Annual IEEE
International Conference on Data Engineering
(ICDE '04), Boston, March-April 2004.
[7] B. Trumbore, “Rectangular Bounding Volumes for
Popular Primitives”, in Graphics Gems III, edited by D.
Kirk, Academic Press, pp. 295-300, 1992.
[8] D.L. James, D.K. Pai, BD-Tree: Output-Sensitive
Collision Detection for Reduced Deformable Models,
ACM Transactions on Graphics (TOG), Vol. 23(3), pp.
391-396, 2004.
[9] James T. Klosowski, Martin Held, Joseph S.B.
Mitchell, Henry Sowizral, Karel Zikan, "Efficient
Collision Detection Using Bounding Volume Hierarchies
of k-DOPs", IEEE Transactions on Visualization and
Computer Graphics, vol. 4, no. 1, pp. 21-36, Jan-Mar,
1998.
[10] Gottschalk, S. A. "Collision Queries Using Oriented
Bounding Boxes". Doctoral Thesis University of North
Carolina at Chapel Hill, 2000.
[11] G. van den Bergen, Efficient collision detection of
complex deformable models using AABB trees. J. Graph.
Tools Vol. 2(4), pp. 1-13, Jan. 1998.
[12] C. Funfzig, T. Ullrich, D.W. Fellner, "Hierarchical
spherical distance fields for collision detection", IEEE
Computer Graphics and Applications, Vol. 26(1), pp. 64-
74, Jan.-Feb. 2006.
[13] Tan T., Chong, K. and Low K., "Computing
Bounding Volume Hierarchies Using Model
Simplification", In Proceedings of the 1999 Symposium
on interactive 3D Graphics, Atlanta, Georgia, USA, April
26 - 29, pp.63-69, 1999.
[14] M. Figueiredo and T. Fernando. "An Efficient
Parallel Collision Detection Algorithm for Virtual
Prototype Environments". ICPADS'04. 2004.
[15] O. Lawlor and L. Kale. A Voxel-Based Parallel
Collision Detection Algorithm. Proceedings of the 16th
international conference on Supercomputing. 2002.
[16] U. Assarsson and P. Stenstr. A Case Study of Load
Distribution in Parallel View Frustum Culling and
Collision Detection. Lecture Notes in Computer Science
Vol. 2150, pp. 663 - end, 2001.
[17] O. Lawlor. "A grid-based parallel collision detection
algorithm", Master's thesis, University of Illinois at
Urbana-Champaign, March 2001.
[18] Salton, G., Wong, A., and Yang, C. S.. A vector
space model for automatic indexing. Commun. ACM vol.
18(11), pp. 613-620, Nov. 1975.
[19] G. van der Bergen, "Collision Detection in
interactive 3D Environments", Support Mapping, pp. 130-
139, 2004.

