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Abstract—The problem of binary hypothesis testing is consid-

ered in a bandwidth-constrained densely populated low-power

wireless sensor network operating over insecure links. Ob-

servations of the sensors are quantized and encrypted before

transmission. The encryption method maps the output of the

quantizer to one of the possible quantizer output levels randomly

according to a probability matrix. The intended (ally) fusion

center (AFC) is aware of the encryption keys (probabilities) while

the unauthorized (third party) fusion center (TPFC) is not. A

constrained optimization problem is formulated from the point

of view of AFC in order to design its decision rule along with the

encryption probabilities. The objective function to be minimized is

the error probability of AFC and the constraint is a lower bound

on the error probability of TPFC. In the binary case the optimal

solution is found and in the nonbinary case a good suboptimal

solution is analytically obtained. Numerical results are presented

to show that it is possible to degrade the error probability of TPFC

significantly and still achieve very low probability of error for

AFC. The proposed method which may be considered a PHY-layer

security scheme is highly scalable since it does not increase the

packet overhead or transmit power of the sensors and has very low

computational complexity. A scheme is described to randomize

the keys so as to defeat any key space exploration attack.

Index Terms—Decentralized detection, decision fusion rule, in-

formation security, soft decision, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSN) have applications

in many military and civilian areas including intrusion

detection and surveillance, medical monitoring, emergency

response, environmental monitoring, target detection and

tracking, and battlefield assessment. Providing security in

WSNs is a challenging task. In the sensor nodes the resources

such as energy supply, processing power, memory size and

communication bandwidth are severely limited. Another dif-

ficulty arises from the large number of nodes in the network.

Future networks are envisioned to consist of hundreds or thou-

sands of nodes to implement ubiquitous networks. To keep the

network cost down, as the number of nodes increases, the cost

per node must be reduced. Therefore, it is unlikely that in the

near future, technological advances will alleviate the scarcity

of resources at the nodes. Despite these difficulties in many
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applications of WSNs security is as important as performance,

if not more [1]. This calls for scalable security protocols with

minimal resource requirements and low communication over-

head.

Several security protocols have been recently proposed for

WSNs to combat eavesdropping [1]–[4]. These schemes are

mostly independent of the application at hand and adapt the tra-

ditional network security protocols using cryptography, authen-

tication, and key management techniques to provide security at

the link and network layer, albeit with more efficient implemen-

tation and resource utilization. However, the issue of scalability

remains since these techniques provide security at the expense

of increased energy consumption and bandwidth [5]. In this

paper we consider a specific application of WSNs, namely the

problem of distributed detection of the state of a phenomenon

in an environment, and propose a security scheme which may

be considered a physical layer technique since it only random-

izes the content of sensor messages. Our method can be used

in conjunction with other security protocols at higher layers to

enhance the integrity of the network operation.

Distributed detection using WSNs has been extensively in-

vestigated [6]. In particular, optimal design of the fusion rule

under different conditions of quantization at the individual sen-

sors, topologies of the network, and channel conditions have

been investigated in [7]–[11].

Mission-critical applications of WSNs involving distributed

detection demand operational security [11]. On the other hand,

networks must cope with insecure links. Due to the limited

power and low bandwidth, we assume that nodes transmit a

quantized version of their observations to their intended (ally)

fusion center (AFC). In addition to the AFC, an unauthorized

(third-party) fusion center (TPFC) may also be observing

the sensor transmissions and attempting to detect the state

of the unknown hypothesis. In order to deteriorate the error

probability of TPFC, each node uses a simple encryption

mechanism whereby it maps the quantizer output level to one

of the possible output levels randomly similar to the operation

of a discrete memoryless channel (DMC). In the case of a

binary quantizer this approach is similar to that in [12] where it

is used for secure estimation over insecure links. It is assumed

that AFC is aware of the encryption probabilities matrix and

can minimize its probability of error accordingly. On the other

hand, TPFC does not have access to the encryption matrix. To

ensure that the encryption matrix cannot be estimated from the

sensor nodes’ transmissions, this matrix is (pseudo) randomly

selected from a set of designed matrices. Therefore, TPFC has

to perform distributed detection without any knowledge of the

distributions of the transmitted messages (see Sections VI and

VIII for more detail).

1556-6013/$31.00 © 2012 IEEE
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The remainder of this paper is organized as follows. In

Section II we consider sensors with binary quantization (hard

decision) and formulate the optimization problems from the

point of view of AFC and TPFC. Then the optimization

problems are solved analytically in Section III. In Section IV

we study the case of sensors using M-ary quantization (soft

decision). Subsequently, in Section V we derive a subop-

timal solution for the AFC. Numerical results are presented

in Section VI. Section VIII includes a method to prevent the

TPFC from estimating the encryption keys from the sensors’

transmitted messages. Finally, concluding remarks are given in

Section IX.

II. PROBLEM STATEMENT (HARD DECISION)

We consider a network of sensors observing the state of an

unknown hypothesis where and with prior

probabilities of and being and , respectively. Let

denote the observation of the th sensor, .

It is assumed that given the hypothesis , ( 0, 1), the ob-

servations are independent and identically dis-

tributed. The conditional PDF of under the hypothesis is

denoted by .

Each sensor makes a decision regarding the

state of the hypothesis using the likelihood ratio test

(1)

where is a threshold which is assumed to be identical for all

the sensors. The false alarm and detection probabilities of indi-

vidual sensors, denoted by and , respectively, are given by

(2)

The decisions of individual sensors are to be transmitted to

the AFC which must detect the state of from the received

bits. However, the sensors’ transmissions may be observed by

a third-party (enemy) fusion center (TPFC) who also wishes

to detect the state of . In order to protect the decisions of

the sensors from this unauthorized party, we employ the fol-

lowing simple probabilistic cipher. The decision of sensor

is encrypted to obtain , where

and , and where it is assumed that

. The encrypted bit is then transmitted to the

AFC and may also be observed by TPFC. We assume that the

channel between the sensors and the fusion centers is error free.

The conditional probabilities of given or are given by

(3)

It is assumed that AFC has prior knowledge of the encryp-

tion probabilities (keys) and . On the other hand, TPFC

cannot reliably estimate the encryption keys and must perform

the distributed detection assuming that it has received the orig-

inal decisions , (see Section VIII).

We consider a Bayesian detection problem where the perfor-

mance criterion for each of the fusion centers is the probability

of error. Specifically, our goal is to design the system parameters

so as to minimize , the probability of error for AFC, subject

to a lower bound on , the probability of error for TPFC.

The likelihood ratio test for each of the fusion centers AFC

or TPFC leads to a -out-of- rule given by [13]

if

if
(4)

where is an integer-valued fusion threshold to be chosen by

AFC and TPFC. The error probability for both fusion centers

has the same formula given by

(5)

Considering (3) and (4) we can write

(6)

where is given by

(7)

and where the dependence of on , and is shown ex-

plicitly.

We would like to note that as evident from (5), the formulas

for the false alarm and detection probabilities and the probabil-

ities of error for the two fusion centers are the same. However,

these two fusion centers have different views of the network.

Consequently, their thresholds [ in (4)] and their performances

are different.

Before studying AFC and TPFC error probabilities, we note

that and both depend on and whose values de-

pend on the choice of . Unlike the cipher parameters which

are assigned during message transmission, is a built-in param-

eter of the individual sensors and is usually assigned during the

manufacturing. In particular, is often chosen to minimize the

probability of error in the absence of any encryption [7]. Conse-

quently, hereafter we assume that is the fixed parameter cal-

culated accordingly. This implies that and are also fixed.

A. Optimization From TPFC’s Point of View

As mentioned previously, TPFC is assumed to be unaware of

the encryption keys and therefore assumes that .

Note that it is not assumed here that TPFC is unaware of the en-

cryption process but only the keys. In light of the discussion in

Section VIII this assumption is valid. TPFC is, however, aware

of the threshold value and chooses its fusion threshold, de-

noted , to minimize its probability of error. Since is also

chosen to minimize the probability of error in the absence of

any encryption, then the optimal and are obtained from the

solution of the following problem:

subject to

where the objective function above is obtained from (6) for

( , ). We denote the optimal

and obtained from P1 by and , respectively. The AFC

can also solve this problem independently and so it is aware of
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the values of and . This problem has been investigated in

detail in [7] where the following theorem is proved.

Theorem 1: Given , is a quasi-

convex function of and there is a unique that minimizes it.

This theorem ensures that the optimal can be calculated

from gradient-based numerical algorithms. An algorithm is then

proposed in [7] in two steps. First, for each , , the

optimal threshold which minimizes

is computed. Then the optimum (denoted here)

along with the corresponding are selected which achieve the

minimum probability of error.

Note that in the presence of encryption ( , and

, ), the actual performance of TPFC is given by

(8)

B. Optimization From AFC’s Point of View

The allied fusion center must choose its fusion threshold

along with the encryption parameters and (or equivalently

and ), so as to minimize its probability of error. In addi-

tion it must ensure that the performance of TPFC is degraded

through the application of the encryption process. Therefore,

AFC attempts to solve the following constrained optimization

problem:

(9)

subject to (10)

(11)

(12)

(13)

(14)

In the above, (11) is due to the fact that in (3), . In (12),

is a design parameter to ensure a minimum probability of

error for TPFC. Moreover, since TPFCmakes a binary decision,

the case of is of no interest. Finally, (13) and (14)

correspond to the fact that and , respectively.

These can be simply derived from (3).

Having computed the optimal values of and from P2,

the cipher probabilities and can be obtained from (3). In

the following we pursue an analytical solution to P2.

III. OPTIMIZATION FOR AFC (HARD DECISION)

The optimization for AFC is more complicated than the op-

timization for TPFC due to the additional constraints. A graph-

ical representation of the constraints is provided below which

helps us in obtaining the optimal solution analytically. Given

and , the shaded area in Fig. 1 demonstrates the feasible

values for and with respect to the constraints in (11)–(14).

As depicted in Fig. 1, the three constraints in (11), (13) and

(14) form the triangle in which the set of feasible points

must reside. The dashed trajectory represents the curve

(as varies) and the point corre-

sponds to . This triangle is always obtuse and resides above

the dashed curve due to the concavity of this curve. The three

sides , , and correspond to the boundaries of the three

Fig. 1. Feasible region for AFC optimization defined by (11)–(14).

constraints in (11) , (13) , and (14) ,

respectively. In Fig. 1 we have also included the contours of

constant such that depending on the value of in (12),

one of these contours may play an active role on the set of fea-

sible . A typical example of such a constraint is indicated

by the arc in Fig. 1. Considering this constraint some por-

tion of around the vertex is excluded from the fea-

sible set of . Before proposing an analytical optimiza-

tion, we can further trim the feasible region through the fol-

lowing lemma.

Lemma 1: An optimal pair of meets at least one of

the three constraints in (12), (13) and (14), with equality.

Proof: Calculating the partial derivatives of

with respect to and , one can show that it is a mono-

tone decreasing function of and a monotone increasing func-

tion of . Suppose the point in the shaded region is op-

timal where all the constraints are met with inequality. Now any

change towards south east (see the arrows in Fig. 1) reduces

. This violates the optimality of . Clearly such

changes are possible unless satisfies one of the constraints

(12)–(14) with equality.

The previous lemma limits the optimal solution for

to reside on the two lines and and an arc such as

(e.g., a path like ).

The solution to P2 must satisfy the Karush-Khun-Tucker

(KKT) conditions. Avoiding trivial solutions and considering

Lemma 1, the augmented objective function is written as

(15)

where , are the multipliers corresponding to the

constraints in (12)–(14), respectively. From KKT conditions,

implies that the optimal solutionmeets the corresponding

constraint with inequality (inactive constraint). Then an optimal

pair must satisfy the following equations along with the

constraints:

(16)

for (17)
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Here, the constraint on cannot be included by calculating

partial derivatives since it is an integer variable. Thus, a routine

approach is to perform the above KKT optimization for a fixed

. Once the optimal are evaluated the op-

timal can be computed from the MAP rule as discussed in

the following.

The following two lemmas and Theorem 2 completely char-

acterize the optimal solution for . The proofs are pro-

vided in the Appendix.

Lemma 2: An optimal cannot satisfy only (12) with

equality and (13), (14) with inequality, i.e., in (15) we cannot

have , and .

Using the illustration in Fig. 1, Lemma 2 implies that if the

optimal solution resides on the arc , then it can only be at

or .

Lemma 3: An optimal cannot only satisfy either (13)

or (14) with equality and the remaining constraints with in-

equality, i.e., in (15) we cannot have ,

or .

Again Lemma 3 implies that if the optimal solution resides

on line , (respectively, ), then it must be at the point

(respectively, ). The following theorem summarizes the

lemmas and completely characterizes the optimal solution to

(9)–(14).

Theorem 2: The optimal solution for satisfies (12)

and either (13) or (14) with equality.

According to Theorem 2 the optimal solution to P2 lies where

contour intersects the lines and

, i.e., the point or in Fig. 1. Depending on

the choice of there are one or two such intersection points.

Therefore, the optimal solution can be obtained by solving the

following two nonlinear equations simultaneously using some

efficient numerical method:

(18)

Having obtained the optimal values of and , the value

of the optimal is unique and can be calculated from the fol-

lowing equation according to the MAP rule [13]:

(19)

where .

IV. PROBLEM STATEMENT (SOFT DECISION)

In this section it assumed that sensor quantizes its observa-

tion using an -level quantizer where

for . The quantizer uses thresh-

olds , such that if

, For and let

(20)

Since the quantization process depends on the sensors’ built-in

technology, hereafter it is assumed that for and

, are fixed and known to both the AFC and TPFC.

The optimal selection of the quantizer is investigated in [14].

We assume that the channel between the sensors and the FCs

is error free and employ the following simple probabilistic ci-

pher at the sensors where the decision of sensor is ran-

domly encrypted to obtain , such that:

(21)

for some . The encrypted messages , are

then transmitted to AFC over an insecure link. For let

, . We define

(22)

Then where is an matrix. Again it

is assumed that AFC has a priori knowledge of the encryption

matrix , but TPFC is not aware of the value of and there-

fore, it can only assume that it has received the original deci-

sions , , i.e., it assumes (see

Section VIII). Our goal is to design so as to minimize , the

probability of error for AFC, subject to a lower bound on ,

the probability of error for TPFC.

The optimum decision rule for the two fusion centers is given

by the log-likelihood ratio test [13], where for a received vector

(23)

where for the AFC

and (24)

and for the TPFC

and (25)

The error probability for the two fusion centers is given by

(26)

where AFC and TPFC use their respective decision statistic

and threshold . It can be seen that the values of the quan-

tization levels, , , do not affect the error prob-

abilities. Invoking the central limit theorem [15] for large and

conditioned on

(27)

where for the AFC

(28)

and for the TPFC

(29)

The subscripts for the operators and indicate the distribu-

tions under which these are computed. However, note that TPFC

does not adjust its fusion rule according to the statistics in (28)
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nor in (29). In the absence of knowledge of it has to assume

that , and it views (27) with the following statistics:

(30)

For ease of notation let and

where

(31)

Then for we get

(32)

and

(33)

The probability of error for the two fusion centers can be ap-

proximated by

(34)

where , and take on the values corresponding to each

fusion center.

A. Optimization from TPFC’s Point of View

The TPFC chooses its fusion threshold to minimize its

probability of error. Therefore the optimal is obtained from

the solution of the following problem. Considering (34), optimal

threshold is given by

(35)

The AFC can also solve this problem independently and so it

is aware of the value of . The actual performance of TPFC,

however, is given by

(36)

The performance of TPFC is degraded since in (36), is not

matched to the mean and variances , , and .

B. Optimization from AFC’s Point of View

The optimization problem for AFC is stated as follows:

(37)

subject to

and (38)

(39)

where indicates a column vector of all 1’s. Note that the

threshold in (37) is absent from the constraints. Therefore, for

any given values of the optimal can be

calculated from the following:

(40)

Generally the optimization problem is not mathematically

tractable. In the following section we simplify the cost function

and trim the feasible region to obtain a good suboptimal solu-

tion.

V. OPTIMIZATION FOR AFC (SOFT DECISION)

The steps that follow will help us to obtain a mathematically

tractable suboptimal solution to .

A. Reducing Number of Variables

From (28), (29), (37), and (39), the given statistics and the

error probabilities are all functions of which is obtained from

a linear transformation of . Since contains fewer vari-

ables, it is more convenient to find the optimal in and

compute the optimal from it with no loss in optimality. To this

end, we need to express the linear constraints in (38) in terms of

. The linear constraints in (38) form a convex polyhedral set

which can be denoted by

and (41)

According to [16], there is an equivalent (image) convex poly-

hedral set for in domain. For , let

(42)

denote the equivalent set. Similar to , this is associated with

some linear constraints on which can be simply calculated

using the instructions in [16].

B. Simplifying Constraints

For a given satisfying (39), only needs

to satisfy the linear equations in (32). Since and are

linear transformation of , similarly to Section V-A, one can

find the convex polyhedral set of and corresponding to

(43)

For , let us define

(44)

Thus the constraint in (39) can be replaced with

(45)

Our goal is to select and to satisfy (45). However, this

selection substitutes the constraint in (39) with a few equality

constraints as in (32). As a result the optimal solution to may

not be achievable. In fact the computed cost function may be far

from optimal with these new constraints associated with arbi-

trary and . A judicious choice for and is needed
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to ensure that the suboptimal solution computed with the new

constraints is close to the optimal. The lemma that follows al-

lows us to formulate an upper bound on the cost function based

on and .

Lemma 4: For any given and , ,

(46)

where is given in (40) and is obtained from

(47)

Proof: For a fixed , the minimum achievable error

probability according to the MAP rule is represented by

for the test statistics described in

(23) and (24). On the other hand, will be the

minimum achievable error probability where the terms in the

test statistic are given in (25). However, this does not corre-

spond to the MAP rule. Due to the optimality of the MAP rule,

the inequality in (46) holds.

The judicious choice of denoted by is

now computed using the following optimization problem:

(48)

subject to

(49)

(50)

Considering the fact that is monotonic with re-

spect to and , the previous problem can be efficiently

solved using the KKT method. These optimal values are then

used in the optimization problem in the next section.

C. Simplifying Cost Function

For large , is a decreasing function of and an in-

creasing function of . It can also be inferred that for large ,

the impact of becomes small compared to . Thus one is

motivated to maximize instead of the cost function in

. In [14] the same idea is used to find the optimal quantizer

without the security issue. From (28), it can be seen that

and are associated with Kullback-Leibler divergence

(51)

Then can be written in form of J-divergence [14]

(52)

Finally, using the results from Sections V-A and B, the opti-

mization problem is stated as

(53)

subject to (54)

(55)

(56)

Theorem 3: is a convex function with respect to

and .

TABLE I
PERFORMANCE OF PROPOSED METHOD IN HARD-DECISION CASE

To prove the previous theorem one needs to show that the

Hessian matrix is positive definite. It is easy

to show that it is a tridiagonal matrix with all positive eigen-

values.

Let represent the feasible region for determined by the

constraints in (55) and (56). It is easy to verify that is still a

convex polyhedral set. Now our goal is to maximize a convex

function within a polyhedral region. This maximummust be ex-

plored among the extreme points of the region [17]. In other

words, we only need to examine the vertices of to find the

global maximum [18]. In [19], Balinsky has proposed an effi-

cient algorithm to trace all the vertices of a convex polyhedral

set. Having computed the optimal and , the optimal can

now be calculated accordingly. There are many solutions for

and we choose the one with the fewest number of nonzero

elements so as to minimize the storage requirements. Next we

obtain from (40).

VI. NUMERICAL RESULTS AND COMPARISON

We assume that the signal received by sensor is given by

where under , under , and where

are independent identically distributed Gaussian random vari-

ables with mean zero and variance .

A. Hard Decision

In this case each sensor uses its observation to make a deci-

sion according to (1) with the preassigned threshold . Detec-

tion and false alarm probabilities for an individual sensor are

given by

(57)

We define as the sensors’ signal-to-noise ratio

(SNR). Table I shows the performance of the proposed algo-

rithm for several values of , and in the binary case. It can

be seen that using the proposed method, very low error proba-

bilities can be achieved at AFC while imposing high error prob-

abilities on TPFC. For smaller values of , the constraint for

error probability of TPFC is less stringent and therefore in such

cases lower values of can be achieved. We note that in the

optimal solution for , only one of the elements of

is nonzero.

We have assumed that TPFC is aware of the priors and .

Therefore, the worst case error probability for TPFC is given by
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TABLE II
AFC-OPTIMIZED ERROR PERFORMANCE (SOFT DECISION VERSUS HARD DECISION)

, which results if TPFC completely ignores

the sensors’ transmissions and chooses the more likely hypoth-

esis. Table I shows that this worst case scenario can be imposed

on TPFC to ensure that . This implies that TPFC

gains no information from the observation of sensors’ transmis-

sions.

B. Soft Decision

Table II shows the error probability of the soft decision quan-

tizers for , denoted by , for several values of ,

and . The quantizers have been designed according to [14].

For comparison we have also listed the performance of the hard

decision scheme denoted by . In Table II denotes the

number of nonzero elements of where the soft decision with

levels is employed, i.e., can be thought as the hash

to store the encryption parameters and is generally smaller than

.

We introduce the cost of security denoted by which

indicates the increase in the AFC error probability due to the

protection against TPFC for a system with quantization

levels by

(58)

where is the minimum achievable error probability

with no encryption and quantization levels. The value of

is indicated in Table II. It can be seen that applying en-

cryption in the binary case drastically increases the AFC error

probability. However, as increases this increase is dimin-

ished. This is better illustrated in Figs. 2 and 3, where the error

probabilities of the secure and insecure systems are compared

versus SNR and versus the number of sensors , respectively. It

can be seen that the secure system can provide acceptable error

probability for most applications even in cases of low SNR or

small network sizes.

VII. RESOURCE USAGE AND COMPLEXITY

To implement the proposed encryption method each sensor

requires a random number generator. Several random number

generators for low-power sensor networks have been proposed

in recent years [20]–[22]. Each sensor node encrypts its quan-

tized decision by comparing the output of the random number

generator with the entries of the cipher matrix. This requires

fewer than (the number of quantization levels) comparisons.

Fig. 2. Comparing AFC error performance versus SNR.

Fig. 3. Comparing AFC error performance versus number of nodes.

A table lookup is then used to choose the encrypted message. It

can be seen that the increase in processing load due to the pro-

posed method is small.

Additional memory is required to store the cipher matrix

(fewer than ). The implementation of the random number

generator and the encryption algorithm also requires some

additional memory. These requirements are also fairly modest

and can be easily accommodated given the current state of

sensor hardware technology [23], [24].

Of the three main operations of a sensor node, namely

sensing, data processing and communication, the latter con-

sumes the maximum energy [23]. Our proposed method does

not increase the communication overhead which is the main
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cause of energy consumption. The increase in energy consump-

tion due to the modest processing and memory requirements is

minor.

VIII. RANDOMIZATION OF ENCRYPTION MATRIX

Given a fixed encryption matrix , a TPFC with enough re-

sources may attempt an attack through key space exploration by

trying to estimate and the AFC’s corresponding threshold de-

noted by from the transmitted symbols of

all the sensors.

As shown in Section VI, for different values of the error prob-

ability of TPFC, , our optimization algorithm results in dif-

ferent optimal matrices and thresholds for the AFC. Therefore

by selecting two or more values of we can design sev-

eral matrices and AFC thresholds. Suppose for some integer

we have designed key/threshold pairs , , for

. Note that can be as small as one. Each time

the state of is observed, one matrix is selected (pseudo) ran-

domly by all the nodes and used to transmit the decisions of

the sensors to the AFC. AFC is also aware of the matrix being

used and will set its thresholds accordingly. This strategy can be

implemented using a pseudo noise (PN) sequence generated by

a long maximal length (linear feedback) shift register (MLSR)

[25]. All the sensor nodes and AFC are equipped with identical

MLSRs which start with the same initial state. Every time the

state of is detected, the sensors use output bits fromMLSR

to select the matrix and encrypt their decisions before transmis-

sion to the AFC. This strategy can also be employed in the bi-

nary case.

Applying multiple cipher matrices changes the distributions

of the transmitted messages. As a result TPFC has to perform

distributed detection without any knowledge of the distributions

of the transmitted symbols. For this reason we have assumed

that TPFC assumes that no encryption has been used. However,

other strategies of TPFC, whereby it may assume an arbitrary

distribution will not improve its performance because the op-

timal will be very sensitive to the choice of . For example,

in Table II, if AFC implements c5, and the TPFC modifies its

decision rule suspecting c6 is in use, then the error probability of

the TPFC (assuming no key randomization) will be still around

0.26.

IX. CONCLUSION

The problem of binary hypothesis testing is considered in

a bandwidth-constrained low-power wireless sensor network

operating over insecure links. Observations of the sensors are

quantized and encrypted before transmission. We consider both

hard decision (binary quantization) and soft-decision cases

(multilevel quantization). The encryption method maps the

output of the quantizer to one of the quantizer output levels

randomly according to a probability matrix similar to the oper-

ation of a discrete memoryless channel. The AFC is aware of

the encryption keys (probabilities) and can design its decision

rule along with the encryption probabilities so as to impose

a high probability of error on the unauthorized TPFC. The

fusion rules are derived from the viewpoint of the two fusion

centers and the encryption keys are designed so as to achieve

a small probability of error for AFC with a lower bound on

the error probability of TPFC. It is shown that by appropriate

selection of the encryption parameters it is possible to impose

a high error probability on TPFC while achieving low error

probability for AFC. The proposed method which may be con-

sidered a PHY-layer security scheme for distributed detection

is highly scalable due to its low computational complexity and

no communication overhead.

APPENDIX

Proof of Lemma 2: Suppose that is

the only constraint met with equality. Thus the KKT augmented

cost function in (15) is reduced to the following:

(59)

We now set the partial derivatives of with respect to and

to zero, as in (16). This yields the following pair of equations:

(60)

(61)

Then dividing (60) by (61) we get

(62)

Since , the previous equation implies that

which, in view of the fact that , cannot hold. Thus

it is impossible for the optimal solution to solely meet (12) with

equality.

Proof of Lemma 3: Suppose that (13) is the only constraint

met with equality implying that . Thus, the KKT

augmented objective function in (15) is now given by

(63)

Again we calculate the partial derivatives of with respect to

and and set them to zero. Dividing the resulting equations,

we get

(64)

Moreover, from we get

(65)

Therefore

(66)

This, however, implies that

(67)
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which contradicts (19). Consequently, the initial assumption is

incorrect so (13) cannot be the only constraint met with equality

by the optimal solution. A similar argument can be used in the

case of (14).
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