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Abstract: Population size estimates for stream fishes are important for conservation and 19 

management but sampling costs limit the extent of most estimates to small portions of river 20 

networks that encompass 100s–10,000s of linear kilometers. However, the advent of large fish 21 

density datasets, spatial0stream0network (SSN) models that benefit from non0independence 22 

among samples, and national geospatial database frameworks for streams provide the 23 

components to create a broadly scalable approach to population estimation. We demonstrate such 24 

an approach with trout density surveys from 108 sites in a 735 kilometer river network. 25 

Universal kriging was used to predict a continuous map of densities among survey locations and 26 

block kriging (BK) was used to summarize discrete map areas and make population estimates at 27 

stream, river, and network scales. The SSN models also accommodate covariates, which 28 

facilitates hypothesis testing and provides insights about factors affecting patterns of abundance. 29 

The SSN0BK population estimator can be applied using free software and geospatial resources to 30 

develop valuable information at low cost from many existing fisheries datasets. 31 

 32 

Keywords: spatial0stream0network, block kriging, fish density, population estimate, geospatial 33 
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Introduction 34 

Answering the question “How many fish live in that stream, river, or lake?” is of 35 

fundamental importance to fisheries management and species conservation efforts. Estimation 36 

methods addressing that question form an extensive literature and many sampling techniques 37 

have been developed to collect datasets for use with estimators (Hilborn and Walters 1992; Zale 38 

et al. 2013). In lotic systems, fish are often sampled by electrofishing, angling, or snorkeling 39 

(Dunham et al. 2009) and population estimates are obtained for short reaches of stream using 40 

mark0recapture (Peterson 1896; Lincoln 1930) or depletion0removal estimators (Zippin 1958). 41 

For nest0building species like salmon and trout, it is also common to conduct visual surveys 42 

during the spawning season and use nest counts as a density index or measure of population size 43 

(Al0Chokhachy et al. 2005; Falke et al. 2013). Collectively, those estimates form the core 44 

datasets that state and federal management agencies use to monitor the status and trends of many 45 

species and fisheries throughout North America and Europe. Thousands of stream and river sites 46 

have been sampled in previous decades to estimate local population sizes (Wenger et al. 2011; 47 

Meyer et al. 2013; Millar et al. 2016) and as these databases grow, so too do opportunities to 48 

mine them for novel information (Isaak et al. 2014). 49 

What is considered a “population” when applying traditional estimators to short sections 50 

of stream rarely matches the spatial scales at which habitats are occupied by reproducing 51 

populations. Most reproducing populations of stream fishes occupy 1s–10s of network 52 

kilometers and are affected by natural gradients and anthropogenic stressors occurring over 53 

similar scales (Schlosser 1991). The mismatch between measurement scale and biological reality 54 

lies at the heart of the Riverscapes paradigm articulated by Fausch et al. (2002) and creates the 55 

fundamental need for spatially continuous broad0scale information to better understand and 56 

conserve freshwater fishes. Spatial sampling strategies like that espoused by Hankin and Reeves 57 

(1988) or more recent attempts (Stevens and Olsen 2004; Torgerson et al. 2006; Korman et al. 58 

2016) partially address information needs but are costly and difficult to implement in hundreds 59 

of streams throughout the ranges of species or across the 100s–10,000s of linear kilometers that 60 

constitute river networks. Another critical and largely unrecognized impediment to developing 61 

spatial fisheries information has been the lack of consistent geospatial database frameworks for 62 

streams to enable efficient organization, summarization, and sharing of data within or among 63 

agencies (Cooter et al. 2010). Such frameworks would provide a database structure wherein each 64 
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stream reach within a river network is assigned a unique identifier, attributed with topological 65 

information (e.g., up0 and downstream flow0routing), and georeferenced in a cartographic 66 

projection system. Networks with those properties could bridge between relational databases 67 

(e.g., Access or Oracle) that are used to store large fisheries datasets and geographic information 68 

systems (GIS) that would be used to manipulate and visualize data associated with broadscale 69 

population estimation. Also required are flexible analytical tools for data collected from stream 70 

networks, especially those capable of accommodating the clustered, non0independent sample 71 

locations that inevitably arise during the history of resource agencies or when data are 72 

aggregated from multiple sources.  73 

In recent years, key statistical and technical advances addressed many of the preceding 74 

issues to provide the basic elements for creating a broadly scalable approach to population 75 

estimation. The development of spatial0stream0network (SSN) models (Ver Hoef et al. 2006; Ver 76 

Hoef and Peterson 2010) based on covariance structures for network topology (Peterson and Ver 77 

Hoef 2010) and that rely on assumptions about the stochastic processes generating observable 78 

data (Schabenberger and Gotway 2005), facilitates valid inference from non0independent stream 79 

samples. As extensions of the linear0mixed model, SSNs accommodate covariates to describe 80 

relationships with response variables and simulation studies indicate their accuracy in fixed 81 

effect parameter estimation and confidence interval coverage for a wide range of conditions 82 

(Som et al. 2014; Rushworth et al. 2015). Concerns have been raised about "spatial confounding" 83 

in the estimation of fixed effect parameters (Hodges and Reich (2015) but see Hanks et al. 84 

(2015) for a counter0argument) but such confounding is of limited relevance for making accurate 85 

spatial predictions. Like other spatial statistical models (Ver Hoef 2002; Beale et al. 2010; 86 

Temesgen and Ver Hoef 2015), SSNs consistently improve predictive performance relative to 87 

non0spatial models when used with spatially dense datasets that contain non0independent 88 

samples (Isaak et al. 2010; Brennan et al. 2016; Turschwell et al. 2016). Classical geostatistical 89 

techniques (Cressie 1993) have also been adapted for implementation with the SSN models 90 

based on stream distances rather than Euclidean distances, which enables kriging and block091 

kriging predictions to be made throughout river networks with spatially explicit errors (Ver Hoef 92 

et al. 2006). 93 

Paralleling the development of SSN models has been the development of nationally 94 

consistent geospatial frameworks for stream data (Cooter et al. 2010; Moore and Dewald 2016). 95 
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Most notably for Canada, lotic systems are represented by the National Hydro Network (NHN; 96 

http://ftp2.cits.rncan.gc.ca/pub/geobase/official/nhn_rhn/doc/NHN.pdf), and within the United 97 

States by the National Hydrography Dataset (NHD; www.horizon098 

systems.com/NHDPlus/NHDPlusV2_home.php). The NHD is available in several resolutions, 99 

but of particular value is the medium resolution version (1:100,0000scale) because of the reach 100 

descriptor variables (e.g., elevation, slope, watershed size, and many others) that have been 101 

incorporated as Value Added Attributes to create NHDPlus (McKay et al. 2012). The reach 102 

descriptors can be used to query stream networks, visualize results within a GIS, and as 103 

covariates in predictive models. As the user0community associated with NHDPlus has grown, 104 

dozens of additional reach descriptors have been developed by groups like the National Fish 105 

Habitat Partnership (Wang et al. 2011) and the Environmental Protection Agency (Hill et al. 106 

2016).  107 

In this paper, we integrate SSN models and the geospatial resources described above with 108 

a fish density dataset to develop a scalable approach to population estimation. Models that 109 

predict fish density are developed based on different combinations of covariates and 110 

autocovariance functions that account for non0independence among samples. The models are 111 

used to predict continuous density maps, which are then summarized to make population 112 

estimates at stream, river, and network scales. For comparison to non0spatial analogues, 113 

estimates are also made using multiple linear regression (MLR) and simple random sampling 114 

(SRS). The dataset and statistical code used in the analysis are included as supplemental 115 

materials so that interested readers may explore these topics in detail.  116 

 117 

Materials and methods  118 

Study area and dataset 119 

A dataset of trout density estimates at 108 sites was obtained from the 2,300 km
2
 Salt 120 

River watershed on the border between Idaho and Wyoming in the western U.S. The area is 121 

mountainous and 11 major tributaries drain north0south trending ranges at the eastern and 122 

western extents of the watershed (Figure 1). Tributaries and several spring streams that originate 123 

from the main valley floor were sampled at 104 locations during summer low0flow conditions 124 

(stream widths: 1.2–8.8 m, reach lengths: 63–465 m) in 1996 and 1997 by electrofishing within 125 

block0netted reaches to obtain local population estimates for age01+ trout using depletion 126 
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methods (Zippin 1958; Isaak and Hubert 2004). Samples were spaced at 500m elevation intervals 127 

along most tributaries with additional samples taken near tributary confluences or upstream and 128 

downstream of abrupt contrasts in channel slope. Those data were supplemented with population 129 

estimates from four sites on the Salt River mainstem (river widths: 20 – 32 m, reach lengths: 130 

4.4–4.8 km) that were repeated in 1995, 1996, and 1998 by raft electrofishing using mark0131 

recapture methods (Pollock et al. 1990; Gelwicks et al. 2002). For current purposes, the Salt 132 

River estimates were averaged across years. Species composition, based on approximately 5,000 133 

trout captured at the 108 sites, was 82.6% native Yellowstone cutthroat trout (Oncorhynchus 134 

clarkii bouvieri), 12.7% non0native brown trout (Salmo trutta), 4.6% non0native brook trout 135 

(Salvelinus fontinalis), and 0.1% non0native rainbow trout (O. mykiss). Population estimates at 136 

the 108 sites were standardized as trout•100 m
01

 length of stream. Additional details about the 137 

dataset and study area are provided elsewhere (Gelwicks et al. 2002; Isaak and Hubert 2004). 138 

A digital stream network for the NHD processing unit (Pacific Northwest 17) that 139 

encompassed the Salt River watershed was downloaded from the National Stream Internet 140 

website (NSI; www.fs.fed.us/rm/boise/AWAE/projects/NationalStreamInternet.html; Isaak et al. 141 

2013) and clipped using the watershed boundary. The NSI network is derived from the 142 

1:100,0000scale NHDPlus Version 2 network, has been topologically adjusted to facilitate SSN 143 

analysis using the Spatial Tools for the Analysis of River Systems software (STARS; Peterson 144 

and Ver Hoef 2014), and is available for all streams and rivers in the coterminous U.S. A one0to0145 

one relationship between reaches in the NSI and NHDPlus networks facilitates the use of NHD 146 

reach descriptors as covariates in SSN models. Here, we considered only a small number of 147 

covariates (reach slope, summer temperature, and stream canopy density), which have previously 148 

been associated with trout densities (Chisholm and Hubert 1986; Fausch et al. 1988; Isaak and 149 

Hubert 2004) and were available as reach descriptors in geospatial formats (Table 1). The NHD 150 

and NSI networks contain many reaches that do not support fish populations because of 151 

intermittent flow or excessive steepness, so the original Salt River network of 1,901 km was 152 

trimmed to a 7350km network prior to analysis by deleting reaches with >10% slope, those coded 153 

as intermittent in the NHDPlus dataset (e.g., Fcode = 46003), and based on observations made by 154 

the lead author during field sampling. We processed the final dataset using the current version of 155 

STARS (Peterson and Ver Hoef 2014, Version 2.0.4 downloaded from the SSN/STARS website: 156 

www.fs.fed.us/rm/boise/AWAE/projects/SpatialStreamNetworks.shtml) and output the spatial, 157 
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topological, and attribute information as a Landscape Network object (LSN; available as 158 

Supplemental A) suitable for spatial analysis. The SSN package (Ver Hoef et al. 2014; Version 159 

1.1.7) for the R statistical software (R Development Core Team 2014) was downloaded from the 160 

Comprehensive R Archive Network website (www.r0project.org/) and used with the LSN object 161 

to conduct all subsequent analyses.  162 

To describe spatial similarity, often referred to as autocorrelation, in the trout density 163 

dataset, a type of semivariogram called a Torgegram was initially calculated (Zimmerman and 164 

Ver Hoef 2017). The semivariance is one0half of the average squared difference between random 165 

variables separated by some intervening distance (Matheron 1963). If si and sj contain the spatial 166 

coordinates for the ith and jth locations, and y(si) and y(sj) are the measured values at those 167 

locations, then an empirical estimator of the semivariance, γ(h), is 168 

(1) ��ℎ� = 12��ℎ� 	 
���� − �������,�������∈����
 

where h is the distance, ||si −sj ||, between locations, c(h) is the distance bin representing the 169 

interval around h (chosen to be mutually exclusive and exhaustive so that all distances h fall into 170 

one of the bins), and N(h) is the number of data pairs (si, sj) in distance bin c(h). The 171 

semivariogram provides a graphical representation of spatial autocorrelation in the measured 172 

data; when semivariance values are low (high) it indicates that sample pairs within a distance bin 173 

are similar (dissimilar). If positive autocorrelation occurs within a dataset, the semivariance 174 

values are smallest at short distance lags and increase as distance increases. The Torgegram is 175 

similar to a traditional semivariogram except that semivariance values are plotted separately for 176 

site0pairs with flow0connected (e.g. water flows from an upstream site through a downstream 177 

site) and flow0unconnected (e.g. sites reside on the same network but do not share the same flow) 178 

relationships because these patterns usually differ on stream networks (Peterson et al. 2013; 179 

Zimmerman and Ver Hoef 2017). As expected, given the density of the trout samples, the 180 

Torgegram showed strong similarities among site estimates in close proximity and weaker 181 

similarities as separation distances increased (Figure 2). Semivariance among flow0unconnected 182 

sites plateaued at approximately 10 km while semivariance among flow0connected sites steadily 183 

increased to the maximum distance of 50 km. Those patterns indicated that trout densities 184 

became dissimilar among adjacent headwater streams (i.e., flow0unconnected relationships) over 185 
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shorter geographic distances than did densities along flow0connected pathways from headwaters 186 

to the river mainstem.  187 

 188 

SSN trout density models 189 

Five SSN models were fit to the trout density dataset in R using the SSN package (a copy 190 

of the R script is provided as Supplemental B). Three of those models included reach covariates 191 

and two models used only an intercept (i.e., mean trout density) with an autocovariance function 192 

(Table 2), which was equivalent to ordinary kriging. In all cases, the basic linear mixed model 193 

we used was 194 

(2) � = �� + !"# + !"$ + !%#& + ', 

where � is a vector of measured trout densities, �	is a matrix of covariate values, β is a vector of 195 

regression coefficients, and ε is a vector of independent and normally distributed random errors. 196 

The spatial structure in residuals was described using vectors of zero0mean random variables 197 

(zTU, zTD, and zEUC) with a autocorrelation structure based on tail0up (TU), tail0down (TD), and 198 

Euclidean (EUC) covariance functions (Peterson and Ver Hoef 2010, Ver Hoef and Peterson 199 

2010). Each random variable (zTU, zTD, zEUC) in the autocorrelation structure can be represented 200 

by one of several different covariance models (e.g., linear0with0sill, Mariah, exponential, 201 

Epanechnikov, spherical models; Chiles and Delfiner 2009, Garreta et al. 2010). Moreover, one 202 

or more classes of covariance function (TU, TD, EUC) may be chosen to represent the properties 203 

of the stream attribute being modeled (e.g. patterns created by passive downstream diffusion or 204 

upstream and downstream movement processes). The choice of covariance function(s) is 205 

important because each represents spatial relationships in a different way. The tail0up function 206 

restricts correlation to sites that are flow0connected and uses spatial weighting based on user0207 

specified stream attributes (e.g., watershed area, stream order, segment slope) to up0 or down0208 

weight samples that occur upstream of a location (Frieden et al. 2014). The tail0down function, in 209 

contrast, permits correlation between both flow0connected and flow0unconnected locations and a 210 

spatial weighting scheme is not necessary. For simplicity, we drew on previous results that 211 

suggest a mixed covariance construction usually performs best (Peterson and Ver Hoef 2010; 212 

Frieden et al. 2014) and used exponential models for the TD, EUC, and TU functions, with the 213 

TU weighting scheme based on watershed area. 214 
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The five SSN models were compared using the Akaike Information Criterion (AIC, 215 

Akaike 1974), penalizing for the number of covariate and autocovariance parameters. Leave0216 

one0out cross0validation (LOOCV) was used to assess the predictive performance of models in 217 

two ways. We computed r
2
 for a linear model that related LOOCV predictions to observed trout 218 

densities, and we computed the root mean square prediction error as 219 

(3) )*+,- = .∑ 0�1��� − ����2�345 6 , 
where y(si) is the observation at location si, ŷ(si) is the LOOCV prediction value for si, and n is 220 

the total number of observed data values. Maximum likelihood (ML) estimation was used for 221 

parameter estimation so that AIC values were valid for model comparisons but restricted 222 

maximum likelihood (REML) was used for all other estimation purposes (Ver Hoef et al. 2014). 223 

As a baseline for comparison with the SSN models, we also fit a non0spatial MLR model to the 224 

trout density dataset, which was based on the assumption that residual errors were spatially 225 

independent. The same set of performance metrics was also calculated for the MLR model. 226 

 227 

Block�kriging population estimates 228 

The SSN models were used to predict trout densities at 100 m intervals throughout the 229 

Salt River network using universal kriging (Cressie 1993). The kriging equations have two parts, 230 

predictions based on the linear regression model and adjustments based on local spatial 231 

autocorrelation, 232 

(4) �1��7� = 8��7�9:; + <��7�′>?5�� − �:;�, 
where x(s0) is a vector containing the covariate values at prediction location s0 and the vector :; 233 

contains the estimated regression coefficients using REML, so 8��7�′:; forms the linear 234 

regression prediction. The remaining portion of equation 4 is an adjustment for spatial 235 

autocorrelation, where c(s0) is a vector of covariances among observed data and the prediction 236 

site, and Ʃ is the covariance matrix among observed data. This kriging formulation provides 237 

exact interpolations that "honor the data" in contrast to alternatives based on splines 238 

(Schabenberger and Gotway 2005). Local prediction variances (Ver Hoef 2008) are given by 239 

(5) va1r0�1��7�2 = @7� − <��7�9>?5<��7� + A9��9>?5��?5A, 
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where @7� = var0���7�2 (including all of the variance components) and A = 8��7�9 −240 

�9>?5<��7�. 241 

Population estimates were developed from the network predictions using block kriging 242 

(BK), which predicts an average value from an integral of a random surface. The mean integral 243 

for a portion of a stream network, E7, is 244 

(6) �1�E7� = 1F − GH ��I�JIK
L  

If the integral is over a stream network, then integrals are done piece0wise for each stream 245 

segment, added together, and then divided by the total length of integrated stream. In practice, 246 

the integral is approximated using a grid of evenly0spaced prediction points along the network. 247 

Block0kriging predictions and variances require modification of equations 4 and 5 wherein c(s0) 248 

is replaced by c(B0) and all pairwise covariances are computed between the observed data and 249 

the points on the grid used to approximate an integral. Similar modifications are required for @7� 250 

in equation 5, and covariates need to be integrated as well. The necessary two0dimensional 251 

formulas are given in Ver Hoef (2008), have been adapted for streams (Ver Hoef et al. 2006), 252 

and the functionality is included in the SSN package so that BK predictions and variances can be 253 

easily generated by users (Ver Hoef et al. 2014).  254 

To approximate the integrals for population estimates in the Salt River network, we 255 

created a grid of points at 100 m intervals throughout the network. The BK estimate of trout 256 

density over any network subset then yielded an estimate of the mean trout density, so the 257 

population estimate was this density times the length of the network subset. Figure 1 shows the 258 

locations where population estimates were made in tributaries and the Salt River mainstem. The 259 

same BK procedure was conducted for the full network that supported fish populations to obtain 260 

a grand population estimate for the watershed. When making the grand estimate, we excluded 261 

downstream sections of some tributaries that are dewatered for irrigation purposes during the 262 

summer. As a baseline for comparison, we also derived population estimates for the same areas 263 

using a non0spatial SRS estimator with the observed densities (as in classical design0based 264 

surveys (Thompson 1992)), which were then expanded based on appropriate stream0length 265 

factors.  266 

 267 

Results 268 
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Trout densities at the 108 sites ranged from 0 to 132 trout•100 m
01

 and showed 269 

geographic clustering of similar densities (Figure 1) that corroborated the Torgegram results 270 

(Figure 2). Densities were usually lowest in the highest elevation stream sites along the eastern 271 

portion of the watershed and higher in most western tributaries and the Salt River mainstem. The 272 

five SSN models had similar predictive accuracies (LOOCV r
2
 ~ 0.49; RMSPE ~ 21.0) and 273 

showed considerable performance gains relative to the MLR (LOOCV r
2
 = 0.19; RMSPE = 26.3; 274 

Table 2). Both types of models overestimated low densities and underestimated high densities 275 

but the SSN models did so to a lesser degree (Figure 3). The SSN models had AIC scores that 276 

were 20–27 points lower than the MLR, despite requiring the estimation of 2–7 additional 277 

parameters for the autocovariance functions (Table 2). The temperature covariate was 278 

statistically significant in the models where it appeared (p < 0.05) and reach slope was never 279 

significant. The canopy covariate was significant in the MLR (p = 0.02) but not in the SSNs (p > 280 

0.14). Within the SSN model set, SSN3 that used a temperature covariate and TU, TD 281 

autocovariance function had the lowest AIC value. Two models without covariates (SSN4 and 282 

SSN5) has similar predictive performance as SSN3 but had AIC scores 5–7 points higher. A 283 

trout density map predicted using SSN3 showed how abundance varied throughout the network 284 

(Figure 4). Noteworthy was that predictions matched observed densities at the 108 sample sites, 285 

which is a property of the kriging formulation that was implemented. Also noteworthy was the 286 

spatial variation in the size of the prediction standard errors, which were smaller near sample 287 

sites because the SSN model used the fitted autocovariance function and local empirical support 288 

when making predictions. 289 

Population estimates based on SRS and the five SSN models showed several interesting 290 

properties when examined for four representative tributaries (Figure 5). First, SSN0BK estimates 291 

could be made for all streams, which was not the case with the SRS estimator in Swift Creek 292 

where only one density sample was available (two samples are needed to calculate a variance 293 

and confidence interval). Second, results from Willow Creek support the notion that SSN0BK 294 

estimates may often be more accurate than those from SRS. Five density samples were available 295 

in that stream but only one occurred in the downstream segment where trout densities were high, 296 

so the SRS population estimate of ~4,000 trout was biased low compared to the BK estimate of 297 

~7,000 trout made from a spatially balanced set of predictions throughout the stream. Third, 298 
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SSN0BK estimates for individual streams were similar regardless of the model chosen, which 299 

suggested robustness to different specifications.  300 

A full set of SRS and SSN30BK population estimates for streams in the Salt River 301 

network is provided in Figure 6. The SSN30BK estimates were usually more precise and showed 302 

that eastern tributaries had smaller trout populations (612–7,128 trout) than western tributaries 303 

(12,963–27,216 trout) and the Salt River mainstem (42,987 +/011,894 trout (95% CI)). The 304 

difference in population estimates was primarily due to the shorter networks that comprised 305 

eastern tributaries, but those streams were also especially cold and may have been too 306 

unproductive to support high trout densities as indicated by the positive effect of the temperature 307 

covariate in the SSN models. The grand SSN30BK population estimate for the Salt River 308 

network was 184,030 +/027,263 trout; whereas the SRS estimate was 155,828 +/0 26,514 trout. 309 

Similar to the bias associated with the Willow Creek estimate, the SRS estimate for the full 310 

network may have been biased by the large proportion of samples from high elevation tributaries 311 

where trout densities were lower (Figure 1). That bias could have been addressed using a 312 

stratified random sampling estimator wherein each tributary was treated as a stratum but single 313 

samples from some strata would have made variance calculations impossible without ad hoc 314 

combinations of multiple streams into workable strata.  315 

 316 

Discussion 317 

Combining fish density surveys and SSN models with broadly available geospatial data 318 

frameworks creates a powerful and flexible approach to population estimation for streams and 319 

rivers. As we demonstrate, population estimates can be derived at virtually any spatial scale, 320 

thereby allowing biological information to be matched with relevant land0uses, landscape 321 

features, or jurisdictional and biogeographic boundaries to address conservation and 322 

management needs. For example, population estimates at stream or network scales are key for 323 

species’ conservation assessments (e.g., the 50/500 rule, Franklin 1980), but have rarely been 324 

available or are based on extrapolations from a small number of non0random samples 325 

(Hilderbrand and Kershner 2000; Cook et al. 2010). Estimates like those developed here for the 326 

Salt River basin, which hosted ~150,000 of the native Yellowstone cutthroat trout (a species of 327 

conservation concern), can now be repeated elsewhere to inform status assessments where 328 

sufficient data exist. Although 50–100 samples are desirable to estimate parameters for the SSN 329 
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models (Isaak et al. 2014), datasets of this size are common within research and management 330 

agencies, especially when data are aggregated across multiple projects or agencies. One example, 331 

the MARIS database (Multistate Aquatic Resources Information System: www.marisdata.org; 332 

Loftus and Beard 2009), contains >1,000,000 fisheries surveys for >1,000 species in the eastern 333 

U.S., an impressive total that nonetheless represents a small fraction of extant data. Another 334 

potential application of the SSN0BK estimator was presented by the dewatered stream reaches in 335 

the Salt River network, where estimates could have been made for the number of trout those 336 

areas would support if perennial flows were restored. Block kriging also has obvious utility for 337 

making reference site comparisons used in biological and habitat condition assessments 338 

(Kershner and Roper 2010; Hawkins et al. 2010) or within the regulatory arena to determine 339 

where standards are exceeded if SSN models are applied to water chemistry attributes (Birkeland 340 

2001).  341 

A key difference between SSN0BK and previous estimators (e.g., Hankin and Reeves 342 

1988; Stevens and Olsen 2004) is that the SSN estimator relies on model0based inference and 343 

does not require random sampling (Ver Hoef 2008). Even when designs are randomized, better 344 

estimates are often possible using spatial models because random designs have some degree of 345 

clustering and ancillary spatial information exists that is useful for estimation (Ver Hoef 2002). 346 

The SRS and MLR estimators used in our examples were unweighted, so clustered trout density 347 

samples over0represented conditions in some areas and biased results due to spatial unbalance. 348 

Although it would have been possible to weight samples in an ad hoc fashion, block0kriging 349 

finds an optimal weighting scheme within the blocking area. The SSN0BK estimator is accurate, 350 

therefore, because it replaces the average of the observations with an average from an evenly0351 

spaced grid of model predictions that achieves spatial balance. Each prediction is simply a 352 

weighted average that has optimality properties, in the sense that it minimizes the mean0squared 353 

prediction error (Ver Hoef 2008).  354 

Another important feature of the SSN models is their ability to incorporate covariates and 355 

assess effect sizes and statistical significance in the presence of spatial autocorrelation. Although 356 

the inclusion of covariates in our Salt River dataset provided only small model improvements, 357 

developing fully descriptive density models here was not our goal. Those models are a logical 358 

next step, however, and one that will be enhanced by the availability of dozens of reach 359 

descriptors for the NHD and NSI networks (Wang et al. 2011; Hill et al. 2016) and the increasing 360 
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technical proficiency of users in developing custom covariates (Peterson et al. 2011; Nagel et al. 361 

2014). But as our results also demonstrate, informative covariates are not prerequisite to 362 

developing accurate prediction maps with SSN models if datasets are spatially dense and 363 

samples are autocorrelated. Those maps can provide detailed information about patterns of 364 

abundance and help identify fish density hotspots, which could be useful for directing 365 

conservation efforts even without a complete understanding of the processes that create spatial 366 

patterns. In the Salt River watershed, for example, the data visualization provided by the 367 

prediction maps added considerable depth to our view of the landscape despite a previous 368 

familiarity with it. Moreover, the depiction of spatial variation in SSN model prediction 369 

precision could be used to guide subsequent sampling efforts to locations that reduced the 370 

greatest amount of uncertainty. The Torgegram description of spatial autocorrelation among trout 371 

densities might also be useful for designing sampling campaigns in other networks that lack data 372 

by providing a first approximation of the stream distances over which samples are partially 373 

redundant (Som et al. 2014; Zimmerman and Ver Hoef 2017). 374 

There are three caveats regarding the use of the SSN0BK estimator. First, population 375 

estimates for headwater streams will be sensitive to errors associated with the length of stream 376 

estimated to support fish, which may be problematic in that headwater reaches are often 377 

imprecisely mapped (Bishop et al. 2008). Our familiarity with the Salt River study site allowed 378 

us to trim the network based on field observations so that it closely approximated fish habitat, 379 

but the size of this reduction was substantial (61%) and would have inflated population estimates 380 

if not addressed. For applications where investigators lack direct knowledge of local conditions, 381 

rulesets to trim the network based on defensible criteria should be developed and applied. Two 382 

obvious criteria when using the NHDPlus dataset are intermittency and stream slope. In the latter 383 

case, fish densities are low in steep reaches (Chisholm and Hubert 1986; Isaak et al. 2017) so 384 

exclusion of these areas in mountain landscapes has minor effects on population estimates. In 385 

arid landscapes like much of the American West, the network extent shown by NHDPlus is often 386 

far more extensive than the actual length of perennial streams, let alone those large enough to 387 

support fish populations (Fritz et al. 2013). Intermittent reaches are coded in NHDPlus (McKay 388 

et al. 2012), albeit inconsistently in different river basins, so may sometimes be identified and 389 

excluded from analysis. A second caveat pertains to preferential sampling and the possibility that 390 

strongly clustered sample locations could bias SSN model estimates (Diggle et al. 2010). 391 
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Simulation results suggest SSN models perform well with many non0random samples (Falk et al. 392 

2014; Som et al. 2014; Rushworth et al. 2015), but practitioners should always be cautious with 393 

ad hoc databases and avoid situations where models are fit to geographically restricted data and 394 

then extrapolated across a much larger network extent. In addition to clustered samples, it is 395 

desirable to have some sample sites spread throughout the network to encompass a broad range 396 

of environmental conditions and ensure that parameter estimates and kriging predictions are 397 

robust (Courbois et al. 2008; Elith and Leathwick 2009). The third caveat associated with the 398 

SSN0BK estimator is that any systematic bias in local population estimates will translate to 399 

broad0scale estimates, and the depletion estimator commonly used in small streams is negatively 400 

biased (Cook et al. 2010; Meyer and High 2011). That bias could be remedied by using mark0401 

recapture techniques, conducting more electrofishing passes, incorporating detection efficiencies, 402 

or applying post0hoc corrections (Peterson et al. 2004; Cook et al. 2010). Accurate local density 403 

estimates are desirable but increasing accuracy also comes at a cost when it requires longer 404 

sampling durations at individual sites (e.g., mark0recapture estimates). However, if the greatest 405 

uncertainty in a broad0scale population estimate stems from sampling a small proportion of the 406 

total area, then sampling more sites less accurately could be optimal. That is especially true if the 407 

decrease in local accuracy is small, as is often the case with removal estimators because the 408 

number of fish captured during the first pass correlates strongly with final estimates based on 409 

multiple passes (Cook et al. 2010; Meyer and High 2011). Similar tradeoffs are what ultimately 410 

motivated the systematic, broad0scale sampling approach of Hankin and Reeves (1988) and a re0411 

examination of this issue using the spatial statistical simulation capabilities provided in SSN 412 

software would be timely (Ver Hoef et al. 2014).  413 

Spatial0stream0network models are powerful tools for stream scientists but the recency of 414 

their development also means that work remains to develop additional statistical theory and 415 

software that broadens their application. Most relevant to abundance estimation would be SSN 416 

models that incorporate habitat0related detection efficiencies (Peterson et al. 2004). However, 417 

application of those models, or any others, to large datasets aggregated from many sources face 418 

challenges associated with inconsistent field habitat measurement protocols (Millar et al. 2016). 419 

Standardization of protocols is needed but geospatial representations of habitat conditions that 420 

affect detection efficiency (e.g. stream size, reach slope, habitat complexity) may also be an 421 

effective alternative that could be implemented consistently across large areas as stream 422 
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covariate databases and remote sensing applications continue to grow (Carbonneau et al. 2012; 423 

Hill et al. 2016). Space0time models are another logical extension of SSN models because repeat 424 

sampling of sites is fundamental to many fisheries monitoring programs (Thorson et al. 2015). 425 

Geostatistical space0time models have been developed for non0network systems (Cressie and 426 

Wikle 2011) but their adaption to streams with appropriate covariance structures is a nontrivial 427 

task that requires additional research.  428 

We are not the first to recognize the potential benefits of geostatistical methods for 429 

stream and river data (Ganio et al. 2005; Durance et al. 2006), nor is this the first attempt to use 430 

geospatial technologies to derive population estimates at broader scales (Wyatt 2003; Webster et 431 

al. 2008). Only recently, however, has the statistical theory for stream networks developed 432 

sufficiently (Peterson et al. 2010; Ver Hoef et al. 2010) and been integrated into robust software 433 

(Peterson and Ver Hoef 2014; Ver Hoef et al. 2014) to make the methods broadly accessible to 434 

users. The timing is opportune given the increasing availability of large, spatially dense fisheries 435 

datasets and geospatial frameworks for organizing data (Cooter et al. 2010; McKay et al. 2012). 436 

Developing initial SSN0BK population estimates may require a few weeks of work by those with 437 

complementary GIS and statistical skills but it then is possible to derive population estimates at 438 

any scale within the modeling domain and to later refine population estimates with additional 439 

data. The insights yielded by these new spatial analyses regarding the distribution and abundance 440 

of stream fishes should prove useful in addressing many conservation and management issues.  441 
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Table 1. Summary statistics for trout densities and geospatial representations of habitat characteristics at 108 reaches across the Salt 695 

River network. 696 

Variable Mean Median SD Minimum Maximum Data source 

Trout•100 m
01

 32.6 25.0 29.4 0 132 Gelwicks et al. (2002); Isaak and Hubert (2004) 

August mean stream 

temperature (�C) 

11.1 11.5 2.42 5.06 15.6 NorWeST 

(www.fs.fed.us/rm/boise/AWAE/projects/NorWeST.html; 

Isaak et al. 2016)  

Reach slope (%) 3.00 2.70 2.60 0.015 10.0 NHDPlus Value Added Attribute (www.horizon0

systems.com/NHDPlus/index.php; McKay et al. 2012) 

Canopy (%) 30.7 31.9 16.9 0 80.1 National Land Cover Dataset 

(www.mrlc.gov/nlcd2001.php; Homer et al. 2015) 

  697 
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Table 2. Summary statistics for multiple linear regression (MLR) and spatial0stream0network (SSN) models fit to trout density data at 698 

108 sites in the Salt River network. 699 

Model Covariates b (SE) p0value Autocovariance p
*
 aAIC CV r

2†
 RMSPE

‡
 

MLR Intercept 055.0 (20.5) < 0.01 00 4 27 0.19 26.3 

 Slope 36.7 (126) 0.77      

 Temperature 6.75 (1.43) < 0.01      

 Canopy 0.379 (0.163) 0.02      

SSN1 Intercept 051.6 (29.1) 0.08 TU, TD 9 1 0.49 21.0 

 Slope 103 (103) 0.32      

 Temperature 6.61 (2.22) < 0.01      

 Canopy 0.255 (0.173) 0.14      

SSN2 Intercept 051.4 (29.7) 0.09 TU, TD, EUC 11 5 0.49 20.9 

 Slope 104 (104) 0.32      

 Temperature 6.60 (2.27) < 0.01      

 Canopy 0.249 (0.18) 0.16      

SSN3 Intercept 018.3 (19.1) 0.34 TU, TD 7 0 0.49 20.8 

 Temperature 4.57 (1.67) < 0.01      

SSN4 Intercept 31.9 (5.69) < 0.01 TU, TD 6 5 0.49 20.9 

SSN5 Intercept 31.4 (9.00) < 0.01 TU, TD, EUC 8 7 0.50 20.5 
*
Number of model parameters. In addition to covariate parameters, SSN models include 3–7 parameters associated with the 700 

autocovariance construction (Ver Hoef and Peterson 2010). 701 
†
Squared correlation between the leave0one0out cross0validation prediction and observed trout densities. 702 

‡
Root mean square prediction error. 703 
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Fig. 1. Salt River watershed in the western U.S. and locations of trout density estimates at 108 704 

sites. Population estimates were subsequently made for areas upstream of the green bars on 705 

tributaries and downstream of the green bar on the Salt River mainstem. 706 

 707 

Fig. 2. Empirical Torgegram describing patterns in spatial similarity among trout densities at 108 708 

sites. Symbol sizes are proportional to the number of data pairs averaged for each semivariance 709 

value. 710 

 711 

Fig. 3. Comparison of leave0one0out cross validation (LOOCV) predictions for trout density 712 

derived from a multiple linear regression (A) and a spatial0stream0network model (SSN3, B). 713 

Dashed line indicates 1:1 relationship. 714 

 715 

Fig. 4. Trout density map predicted by universal kriging and a spatial0stream0network model 716 

(SSN3) fit to 108 samples. Stream lines are colored by predicted values and the width of the 717 

black stream border is proportional to prediction standard errors. Population estimates were 718 

made for areas upstream of the green bars on tributaries and downstream of the green bar on the 719 

Salt River mainstem. Predictions were not made in the downstream extents of several eastern 720 

tributaries and an upper section of the Salt River where channels are dewatered during the 721 

summer.  722 

 723 

Fig. 5. Trout population estimates for four tributary streams derived from simple random sample 724 

(SRS) and spatial0stream0network (SSN) block0kriging estimators. Error bars denote 95% 725 

confidence intervals; sample sizes are the number of fish density surveys conducted within each 726 

tributary. A SRS estimate was not possible for Swift Creek where a single site was sampled. 727 

 728 

Fig. 6. Trout population estimates from simple random sample (SRS) and spatial0stream0network 729 

(SSN3) block0kriging estimators for the Salt River mainstem and tributary streams draining the 730 

western (A) and eastern (B) sides of the watershed. Error bars denote 95% confidence intervals; 731 

SRS estimates were not possible for Strawberry Creek and Swift Creek where single sites were 732 

sampled. 733 
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