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 27 

Abstract 28 

Differentiating microbial communities among samples is a major objective in biomedicine. 29 

Quantifying the effect size of these differences allows researchers to understand the factors 30 

most associated with communities and to optimize the design and clinical resources required to 31 

address particular research questions. Here, we present Evident, a package for effect size 32 

calculations and power analysis on microbiome data and show that Evident scales to large 33 

datasets with numerous metadata covariates. 34 

Main text 35 

The microbiome has been implicated as a crucial factor in a broad range of health and disease 36 

outcomes. Differences in microbial communities have been linked to differential metabolic 37 

regulation, often resulting in drastic phenotypic changes. One of the key computational methods 38 

for quantifying these community changes is diversity analysis. Alpha diversity measures the 39 

overall breadth of microbial features represented in a single sample, while beta diversity 40 

quantifies the pairwise community differences between samples via some choice of distance 41 

metric. Determining the magnitude of diversity differences among groups of samples is one of 42 

the objectives of computational microbiome analysis. 43 

 44 

Evaluating the putative differences among groups is most often performed through null 45 

hypothesis significance testing (NHST). Under this framework, researchers quantify the 46 

probability that an observed difference (or one more extreme) would be observed due to chance 47 
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(p-value). This value is often used as a measure of significance of diversity differences. 48 

However, p-values by themselves are not enough. A significant p-value on its own does not 49 

provide any information about the magnitude of a given effect1. 50 

 51 

In addition to p-values, we suggest reporting the effect size of microbial community differences. 52 

Effect sizes quantify differences among sample groups and can be used to describe the 53 

magnitude of biological effects. Importantly, standardized effect sizes are dimensionless and 54 

can be compared between datasets and experiments2. Additionally, effect sizes allow 55 

researchers to determine the statistical power of new experimental designs. Statistical power is 56 

used to quantify the probability of making a Type II error (false negative) given that the 57 

alternative hypothesis is true3. Provided an effect size, desired significance level, and sample 58 

size, researchers can calculate the statistical power of experimental designs. 59 

 60 

Large scale microbiome data collection efforts, such as the American Gut Project (AGP)4, 61 

TEDDY5, and FINRISK6 provide a unique opportunity to explore effect sizes across a wide 62 

variety of biological factors such as age, obesity, etc. These datasets contain dozens or even 63 

hundreds of metadata categories. Determining which covariates contribute the most to microbial 64 

diversity is crucial for prioritization of resources. Researchers interested in designing new 65 

experiments can keep these effect sizes in mind to efficiently allocate resources to maximize the 66 

chances of finding significant biological signal7. 67 

 68 

Here we introduce Evident, a new open source tool for efficient effect size and power 69 

calculations of microbiome data. Evident is available both as a standalone Python package as 70 

well as a QIIME 2 plugin8. With Evident, researchers can seamlessly explore the effect size of 71 

community differences in dozens of metadata columns at once. 72 

 73 
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Fig 1: Evident workflow and interactive visualizations 75 

a, Graphical overview of Evident usage. Sample metadata with categorical groups are used to 76 

determine differences among samples. Effect size calculation can be performed and used to 77 

generate power curves at multiple statistical significance levels and sample sizes. b,c 78 

Screenshots of interactive webpage for dynamic exploration of effect sizes and power analysis. 79 

Summarized effect sizes of all columns can be used to inform interactive power analysis on 80 

multiple groups (b). The underlying grouped data can be visualized with boxplots and, 81 

optionally, the raw data as scatter plots (c). Data shown is from McClorry et al. (Qiita study ID: 82 

11402)9.  83 

 84 

Figure 1a shows an overview of the Evident workflow. As input, Evident takes a sample 85 

metadata file and a data file. Both univariate data (in vector form such as alpha diversity) and 86 

multivariate data (as a distance matrix such as beta diversity) are supported. For univariate 87 

measures, the differences in means among groups are considered. For multivariate measures, 88 

the difference in means among within-group pairwise distances are considered. It is important to 89 

note that Evident does not perform formal hypothesis testing of community differences, only 90 

effect size calculations. While we highlight diversity differences in this work, we note that 91 

Evident can also be used for other sample-level quantitative metrics such as log-ratios10. 92 

 93 

Evident supports both binary categories and multi-class categories. For binary categories, 94 

Cohen’s d is calculated between the two levels. For multi-class categories, Cohen’s f is 95 

calculated among the levels11. Users can specify pairwise effect size calculations between 96 

levels of a multi-class category rather than a single group-wise effect size. Effect size 97 

calculations can be performed on multiple categories at once with simple parallelization by 98 

providing the number of CPUs to use. This architecture allows us to decrease the runtime of 99 
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effect size calculations for 9495 samples comprising 69 categories from over 12 minutes to 3.5 100 

minutes using 4 CPUs in parallel. 101 

 102 

Evident also provides an interactive component by which users can dynamically explore sample 103 

groupings. In Figure 1b,c, we show a screenshot of a web app users can access with Evident. 104 

Metadata categories are pre-sorted by effect size, allowing efficient determination of interesting 105 

categories. Power analysis is implemented dynamically - multiple categories can be visualized 106 

simultaneously for a specified significance level and number of observations. 107 

 108 

As a demonstration of Evident, we reprocessed 9495 samples from the AGP to compare the 109 

published effect sizes with those from a new analysis with Evident4. We downloaded the same 110 

samples from the original paper and reprocessed the data and metadata in the same manner, 111 

focusing on within-group UniFrac12 distances. First, we compute the group-wise effect sizes for 112 

all valid metadata categories. The top ten binary categories and multi-class effect sizes are 113 

shown in Figure 2a,c, respectively. Using these effect sizes, we performed power analyses for 114 

each category at a significance level of 0.05 for a range of sample sizes from 20 to 1500 (Figure 115 

2b,d). We plot the distribution of the highest effect size binary and multi-class categories in 116 

Figure 2e. Finally, we compute the pairwise effect sizes as performed in the original paper to 117 

verify that Evident returns the same values. Figure 2f shows that the effect sizes map extremely 118 

closely between the published data and the newly reprocessed data. The values of effect size 119 

differences in Figure 2g are distributed around 0, indicating that there is very little difference 120 

between effect size calculations. 121 

 122 
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 123 

Figure 2: Analysis of American Gut Project data 124 

a, Top 10 binary categories by group-wise effect size. b, Two-sample independent t-test power 125 

analysis of selected binary category effect sizes for significance level of 0.05. c, Top 10 multi-126 

class categories by group-wise effect size. d, One-way ANOVA F-test power analysis of 127 

selected multi-class category effect sizes at significance level of 0.05. e, Distributions of within-128 

group pairwise UniFrac distances for highest effect size binary category (top) and multi-class 129 

category (bottom). f, Comparison of pairwise effect sizes between reprocessed data from 130 
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redbiom and published effect sizes from McDonald et al. g, Boxplot of differences in effect sizes 131 

between published and reprocessed effect sizes. 132 

 133 

We encourage microbiome researchers to incorporate Evident into their workflows for both 134 

reporting effect sizes of microbial community differences and planning experimental designs. In 135 

the future, we hope to enhance flexibility by including quantitative metadata categories and 136 

variable sample size power analyses. 137 

Methods 138 

Overview of Evident  139 

Evident requires a diversity file and its associated sample metadata for a microbiome 140 

sequencing experiment. Both univariate and multivariate data are supported as an input pandas 141 

Series and scikit-bio DistanceMatrix respectively13. When evaluating multivariate differences 142 

among sample groups, Evident calculates the difference among pairwise within-group sample 143 

distances. 144 

Effect size calculations 145 

Effect size calculations are available for both binary metadata categories (e.g. Yes vs. No) or 146 

multi-class categories (e.g. diet 1, diet 2, diet 3). For binary categories, Evident calculates 147 

Cohen’s d; for multi-class categories, Evident calculates Cohen’s f according to a one-way 148 

ANOVA. For both types of categories, the pooled standard deviation ( ) is computed as follows 149 

for  groups where  and  are the sample size and sample variance of group , respectively: 150 

 151 
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 152 

 153 

Cohen’s d is calculated by the difference in means of the two groups divided by the pooled 154 

standard deviation by the following equation: 155 

 156 

 157 

 158 

As a rule of thumb, Cohen’s d values of 0.2, 0.5, and 0.8 are generally considered “small”, 159 

“medium”, and “large” effect sizes, respectively11. 160 

 161 

Cohen’s f is calculated by the following equation, where  is the total number of samples, and 162 

 is the weighted average of all groups by sample size: 163 

 164 

 165 

 166 

Cohen’s f values of 0.1, 0.25, and 0.4 are generally considered “small”, “medium”, and “large” 167 

effect sizes, respectively11. For the case of two groups of equal sample size, Cohen’s f is equal 168 

to Cohen’s d divided by two.  169 

 170 

In Evident, the determination of which effect size measure to use is performed automatically 171 

given the number of groups within the chosen metadata column(s). Effect size calculations are 172 

performed using NumPy14 and SciPy15. Calculations in Evident assume that quantitative data is 173 

normally distributed and that population variances are homogenous among groups16. 174 
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 175 

Evident allows users to specify the maximum number of levels in a category for the category to 176 

be considered. This is useful for ignoring categories with many levels that may not be of interest 177 

(e.g. sample identifier). Additionally, one can provide a minimum number of samples in a 178 

category level so that rare groups are excluded. 179 

Power analysis 180 

With computed effect sizes, Evident is able to compute statistical power given significance 181 

level(s) and sample size(s). Additionally, Evident allows users to input a target difference (effect 182 

size numerator) to use in lieu of automatic computation. This is useful for researchers interested 183 

in designing experiments with specific effect sizes in mind7. Power analysis assumes that the 184 

number of samples is the same in each group for both of these statistical tests. These power 185 

analyses are calculated using the statsmodels package in Python17. 186 

 187 

Notably, Evident is designed for flexibility in power analysis. Users can compute either number 188 

of observations, effect size, or statistical power given the other two variables. Additionally, 189 

Evident is designed with generating power curves in mind. For example, with a Cohen’s d of 190 

0.4, a user can specify significance levels of 0.1, 0.05, and 0.01 from 20 total observations to 191 

100 in increments of 10. The statistical power will then be evaluated at each entry in the 192 

Cartesian product of these two parameter sets. These results can be directly plotted as a power 193 

curve using Evident, delineating the curves from different significance levels. 194 

Repeated measures 195 

Evident supports a limited implementation of repeated measures analysis. For datasets in which 196 

the same subject is measured more than once, statistical analysis must be performed with this 197 
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in mind to account for variation due to between and within subjects. Univariate data such as 198 

alpha diversity can be analyzed with repeated measures in mind by providing a mapping of 199 

sample to subject. 200 

 201 

For repeated measures datasets, Evident calculates eta squared ( ). This effect size can be 202 

used to calculate statistical power of a balanced repeated measures ANOVA. The number of 203 

subjects and number of measurements per subject are used to determine the total sample size. 204 

In addition to significance level, sphericity (variance between pairs of treatments18) and sample 205 

correlation parameters are used to calculate statistical power as described previously19,20. For 206 

convenience, subjects with missing values are removed. 207 

Interactive exploration of community differences 208 

The interactive visualization provided in Evident is created with Bokeh. Given microbiome data 209 

and sample metadata, Evident creates a Bokeh app that dynamically calculates effect sizes and 210 

power analysis for the chosen parameters. This view also shows the raw data values as 211 

boxplots with optional scatter points. 212 

Analysis of AGP data 213 

A sample ID list was generated from the original distance matrix used in the AGP study. 100 214 

nucleotide 16S-V4 data for these samples were downloaded from the AGP study on Qiita (study 215 

ID: 10317) using redbiom21,22. Both preparation and sample metadata were also retrieved with 216 

redbiom. Due to multiple preparations of some samples, we performed disambiguation by 217 

keeping the samples with the highest sequencing depth. 218 

 219 
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We then processed the feature table and metadata according to the original study. The original 220 

workflow used the default parameters in Deblur to remove features with fewer than 10 221 

occurrences in the data23. Because Qiita does not perform this filtering by default, we performed 222 

this filtering manually. To remove sequences associated with sample bloom, we performed 223 

bloom filtering24. We then rarefied the feature table to 1250 sequences as in the original 224 

analysis. 225 

 226 

We processed the sample metadata in accordance with the original study. Because of 227 

differences in self-reporting protocols from 2018, metadata categories associated with reported 228 

Vioscreen responses as well as those associated with alcohol consumption were removed. The 229 

following categories were removed due to mismatches in sample metadata: roommates, 230 

allergies, age_cat, bmi_cat, longitude, latitude, elevation, height_cm, collection_time, and 231 

center_project_name. Only the top four annotated countries were considered - US, UK, 232 

Australia and Canada. All other countries were ignored. Overall, 69 metadata categories 233 

common to both the original data and redbiom data were used for further analysis. 234 

 235 

Sequences from the feature table were placed into a 99% Greengenes25 insertion reference tree 236 

using SEPP26. We then used unweighted UniFrac to generate a sample-by-sample distance 237 

matrix27. This distance matrix was used as input to Evident along with the disambiguated, 238 

processed sample metadata. 239 

 240 

We used effect_size_by_category to calculate the whole-group effect sizes for each column in 241 

the metadata and pairwise_effect_size_by_category to calculate the group-pairwise effect sizes 242 

for multi-class categories. For each whole-group effect size, we computed a power analysis for 243 

alpha values of 0.01, 0.05, and 0.1. Power was calculated on total sample size values from 20 244 

to 1500 in increments of 40 samples. Evident analyses were performed in parallel on a high 245 
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performance computing environment. Group-wise and pairwise effect size calculations both took 246 

under 4 minutes for 94 metadata categories on 9495 samples using 4 CPUs (we note the AGP 247 

paper used n=9511 but operated at 125nt; we observe a slightly reduced number of samples at 248 

100nt). We also benchmarked group-wise effect size calculations using only a single CPU as 249 

comparison; this process took 12.4 minutes - meaning the parallelization decreased runtime by 250 

approximately 3.5x. Power analysis calculation took 2 minutes for 94 categories using 8 CPUs 251 

in parallel. 252 

Code availability 253 

The latest version of Evident is available at https://github.com/biocore/evident under the BSD-3 254 

license. Evident is installable from PyPI both as a standalone Python 3 package and a QIIME 2 255 

plugin. The scripts used to download and analyze AGP data as well as the processed Evident 256 

results are available at https://github.com/knightlab-analyses/evident-analyses. Analysis of AGP 257 

data in this study was performed with Evident version 0.2.0. 258 

Data availability 259 

Data for the demonstration in Figure 1 were downloaded from Qiita (study ID: 11402)9 at 90 260 

nucleotides using the deblur23 pipeline. AGP data were downloaded from Qiita (study ID: 10317) 261 

using redbiom with context “Deblur_2021.09-Illumina-16S-V4-100nt-50b3a2”. The original 262 

pairwise effect sizes, sample metadata, and unweighted UniFrac distance matrix were 263 

downloaded from the original McDonald et al. study for comparison. 264 
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