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A totally involutional, highly scalable PP-1 cipher is proposed, evaluated and discussed. Having very low memory require-
ments and using only simple and fast arithmetic operations, the cipher is aimed at platforms with limited resources, e.g.,
smartcards. At the core of the cipher’s processing is a carefully designed S-box. The paper discusses in detail all aspects
of PP-1 cipher design including S-box construction, permutation and round key scheduling. The quality of the PP-1 cipher
is also evaluated with respect to linear cryptanalysis and other attacks. PP-1’s concurrent error detection is also discussed.
Some processing speed test results are given and compared with those of other ciphers.
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1. Introduction

Block ciphers constructed as a product of involutions are
not new in cryptography. In fact, one of the most po-
pular constructions, the Feistel permutation, is an invo-
lution. However, substitution and permutation encryption
networks (SPNs) resulting from a product of involutions
(e.g., both the nonlinear S-box layer and the affine bit per-
mutation layer are involutions (Biryukov, 2003)) have not
been intensively studied.

In this paper, we propose an n-bit (n =
64, 128, 192, . . . ) scalable block cipher which is an invo-
lutional SPN. We use one S-box which is an involution
and one bit permutation which is also an involution. As a
result, we get a totally involutional cipher. This means that
we use the same network, in particular, the same S-box S
(S = S−1) and the same permutation P (P = P−1) in
both encryption and decryption phases.

Partial results were published in (Bucholc and Idzi-
kowska, 2007; Chmiel et al., 2008a; 2008b). The paper is
organized as follows: Section 2 describes basic assump-
tions which lay at the base of the PP-1 project. The algo-
rithm is described in detail in Sections 3–5. Quality eva-
luation of the PP-1 cipher is presented in Section 6. In
Section 7, resistance against various attacks (differential,
linear and algebraic cryptanalysis) is discussed. Avalan-
che and statistical properties of PP-1 are presented in Sec-

tion 8. Section 9 presents processing speed obtained in
test implementations of PP-1. In Section 10, concurrent
error detection in hardware implementations of the cipher
is considered. Final remarks are presented in Section 11.

2. Basic assumptions of the PP-1 cipher
project

The main objective of the PP-1 project was to develop
a block cipher which can be implemented on a platform
with limited resources. Two other important requirements
were

• scalability, which allows using different data block
sizes and key sizes,

• easy and efficient implementation in software and
hardware.

The ability to implement the algorithm on platforms with
limited resources implies that operations should be sim-
ple and memory requirements as low as possible. One S-
box is preferred, and the same resources (e.g., round keys)
should be used for encryption and decryption. Since so-
me simple processors, especially those used in embedded
systems, do not support multiplication and division, these
operations are costly because, to perform them, a sequ-
ence of more elementary instructions must be executed.
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Therefore, multiplication and division should be avoided.
Floating point operations are even more expensive when
implemented in software and should also be avoided. The-
refore, the preferred operation set contains sum modulo 2,
addition and subtraction modulo 256, and shifts.

3. Processing path

Let n = t · 64, where t = 1, 2, 3, . . . . The scalable PP-1
cipher is a symmetric block cipher that in r rounds proces-
ses data blocks of n bits, using cipher keys with lengths of
n or 2n bits. Let m denote the plaintext and let c be the
ciphertext. Both the input (m or c) and output (c or m)
of the PP-1 algorithm consist of sequences of n bits cal-
led blocks. The subblock is understood in the paper as a
sequence of 64 or eight bits.
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Fig. 1. One round of PP-1 (i = 1, 2, . . . , r).

The PP-1 algorithm is an SP network. One round of
the algorithm is presented in Fig. 1. It consists of t = n/64
parallel processing paths. A 64-bit nonlinear operation NL
is performed in each path. Additionally, the n-bit permu-
tation P that is an involution is used, i.e., P−1 = P . In the
last round, called output transformation, the permutation
P is not performed (i.e., in round #r, the permutation P =
identity). Two n-bit round keys are used in each round.

The nonlinear element NL is shown in Fig. 2. In each
round (#1 to #r), a 64-bit subblock is processed as eight
8-bit subblocks by four types of transformations, 8 × 8
S-boxes S, XOR (⊕), addition (�) and subtraction (�)
modulo 256 of integers represented by respective bytes.
S-box S is an involution, i.e., S−1 = S.

Two n-bit round keys k′
i = k2i−1 and k′′

i = k2i are
used in round i, i = 1, 2, . . . , r. Let us denote the parallel
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Fig. 2. Nonlinear element NL (j = 1, 2, . . . , t).

processing paths from left to right as j = 1, 2, . . . , t. Then

k′
i = k′

i,1‖k′
i,2‖ . . . ‖k′

i,t, k′′
i = k′′

i,1‖k′′
i,2‖ . . . ‖k′′

i,t.

The 64-bit round subkeys k′
i,j and k′′

i,j used in the element
NL #j consist of eight 8-bit elementary keys

ki,j,l (l = 1, 2, . . . , 8),

so that
k′

i,j = k′
i,j,1‖k′

i,j,2‖ . . . ‖k′
i,j,8

and
k′′

i,j = k′′
i,j,1‖k′′

i,j,2‖ . . . ‖k′′
i,j,8.

The same algorithm is used for encryption and de-
cryption. However, if in the encryption process we use
round keys k1, k2, . . . , k2r, then in the decryption pro-
cess these keys must be used in reverse order, i.e.,
k2r, k2r−1, . . . , k1.

4. Elementary components of PP-1

     0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 
  ------------------------------------------------- 
0 | 9E BC C3 82 A2 7E 41 5A 51 36 3F AC E3 68 2D 2A 
1 | EB 9B 1B 35 DC 1E 56 A5 B2 74 34 12 D5 64 15 DD 
2 | B6 4B 8E FB CE E9 D9 A1 6E DB 0F 2C 2B 0E 91 F1 
3 | 59 D7 3A F4 1A 13 09 50 A9 63 32 F5 C9 CC AD 0A 
4 | 5B 06 E6 F7 47 BF BE 44 67 7B B7 21 AF 53 93 FF 
5 | 37 08 AE 4D C4 D1 16 A4 D6 30 07 40 8B 9D BB 8C 
6 | EF 81 A8 39 1D D4 7A 48 0D E2 CA B0 C7 DE 28 DA 
7 | 97 D2 F2 84 19 B3 B9 87 A7 E4 66 49 95 99 05 A3 
8 | EE 61 03 C2 73 F3 B8 77 E0 F8 9C 5C 5F BA 22 FA 
9 | F0 2E FE 4E 98 7C D3 70 94 7D EA 11 8A 5D 00 EC 
A | D8 27 04 7F 57 17 E5 78 62 38 AB AA 0B 3E 52 4C 
B | 6B CB 18 75 C0 FD 20 4A 86 76 8D 5E 01 ED 46 45 
C | B4 FC 83 02 54 D0 DF 6C CD 3C 6A B1 3D C8 24 E8 
D | C5 55 71 96 65 1C 58 31 A0 26 6F 29 14 1F 6D C6 
E | 88 F9 69 0C 79 A6 42 F6 CF 25 9A 10 9F BD 80 60 
F | 90 2F 72 85 33 3B E7 43 89 E1 8F 23 C1 B5 92 4F 

Fig. 3. S-box S.
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4.1. Substitution S. The S-box S in Fig. 3 is a sub-
stitution function taking eight inputs and producing eight
outputs. It is selected in such a way that it is its own inver-
se, i.e., S−1 = S.

This S-box has been generated using the multiplica-
tive inverse procedure similar to AES (Daemen and Rij-
men, 1999) with a randomly chosen primitive polynomial
defining a Galois field. The nonlinearity of this S-box is
110 and its nonlinear degree is 7. Eight Boolean functions
that constitute this S-box have nonlinearities equal to 110
or 112 and are all of degree 7.

According to recent studies (Fuller and Mil-
lan, 2002; 2003), S-boxes based on a multiplicative in-
verse in a finite field have a peculiar property that all com-
ponent functions of the S-box are from the same affine
equivalence class (all the output functions of the S-box
can be mapped onto one another using affine transforma-
tions). Our S-box has been processed to remove this li-
near redundancy, so that all Boolean functions are now
from different affine equivalence classes, while still main-
taining the exceptionally high nonlinearity of the inverse
mapping. The proposed S-box has a maximum XOR dif-
ference distribution table value of 4, which is extremely
good.

Removing this linear redundancy is carried out by ta-
king at random a pair of S-box elements and rearranging
four (because of the self-inverse property) corresponding
S-box entries in such a way that the S-box still remains its
own inverse. After such a change, a test for linear redun-
dancy is performed.

So how to check if an affine equivalence exists in an
S-box? Many properties of Boolean functions covered by
various cryptographic criteria remain unchanged by the
affine transform, such as the algebraic degree and nonli-
nearity. The absolute values of the Walsh transform and
the autocorrelation function are both only rearranged by
affine transforms. The frequency distribution of the ab-
solute values in these transforms is invariant under such
affine transforms. To prove that two functions are from
different equivalence classes it is then sufficient to show
that either of their respective Walsh transform and auto-
correlation function frequency distributions are different.

The S-box table can be represented as a two-
dimensional table (Fig. 3). The input represented as a two-
digit hexadecimal number is divided—the low order digit
is on the horizontal axis, and the high order digit is on the
vertical one. For example, to see what is the S-box output
at input 6F, take 6 on the vertical axis and F on the hori-
zontal axis. The S-box output is DA. As this S-box is its
own inverse, it is easy to check that the S-box output at
input DA is of course 6F.

4.2. Permutation P . The permutation P of the PP-1
block cipher is an n-bit involution, i.e., P−1 = P . Its
main role is to scatter 8-bit output subblocks of S-boxes S

in the n-bit output block of a round. The permutation P
of PP-1 used in round #r is the identity operation.

For round #i, where i = 1, 2, . . . , r−1, the permuta-
tion P is constructed using two algorithms, i.e., the auxi-
liary algorithm (Fig. 4) to compute auxiliary permutation
Prm, and the main algorithm (Fig. 5) to compute permu-
tation P .

Prm(x, nBb, nSb) {argument, number of block bits (e.g., 128), 
   number of S-box bits (e.g., 8)} 
1.  nS � nBb div nSb                  {number of S-boxes} 
2.  Sno � x mod nS +1            {S-box number (from 1)} 
3.  Sb � (x � 1) div  nS + 1   {S-box bit (from 1)} 
4.  y � (Sno � 1)� nSb + Sb     {value of auxiliary permutation} 
5.  return y 

Fig. 4. Algorithm which computes auxiliary permutation Prm .

P(pno, nBb, nSb)  {pair number (from 1), number of block bits 
    (e.g., 128), number of S-box bits (e.g., 8)} 
1.  y � Prm(pno, nBb div 2, nSb div 2) {value of auxiliary permutation} 
2.  px � 2� pno � 1         {odd argument (value) of involution} 
3.  py � 2� y    {even value (argument) of involution} 
4.  return (px, py) 

Fig. 5. Algorithm which computes permutation P for rounds #1
to #r − 1.

Algorithm Prm calculates bit mappings in permuta-
tion Prm , to scatter 4-bit subblocks in the n/2-bit block.
Algorithm P calculates involutional pairs of bit mappings,
in the n-bit permutation P . For each bit mapping in Prm ,
is constructed an involutional pair of bit mappings in P
(Fig. 6).

The 128-bit permutation P is obtained as a result of
64 calls of Algorithm P for a pair numbered as pno from
1 to 64, the number of block bits nBb = 128 and the
number of S-box bits nSb = 8. For example, for pno =
2, the value y of permutation Prm is equal to 9 and the
resultant pair (px, py) = (3, 18). Bit No. 18 in the output
of P permutation has the same value as the third bit of
its input and, moreover, since P is an involution, the third
bit in the output has the same value as the 18-th bit of the
input.

5. Round key scheduling

Round key scheduling is performed in 2r + 1 iterations
(i = 0, 1, . . . , 2r), where r is the number of rounds. One
iteration of key scheduling is presented in Fig. 7. The ro-
und keys k1, k2, . . . , k2r are produced on outputs of itera-
tions #1 to #2r.

The element KS of the iteration, shown in Fig. 8, is
composed of substitution S, XOR (⊕), addition (�) and
subtraction (�) modulo 256. The operations are analogous
to those in the data processing path described in Section 3.
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Fig. 6. Illustration for the construction of permutation P for
n = 128.

The operation RR(ei) is the rotation of an n-bit
block Vi by ei bits to the right. The 4-bit integer ei is ob-
tained as the result of the XOR operation on four most
significant bits (4MSBs) of the output of the two leftmost
S-boxes. Thus for Vi = b1b2 . . . bn, where b1 is the most
significant bit, the value of ei is calculated as follows:

ei = E(b1, b2, . . . bn)
= (b1 ⊕ b9)(b2 ⊕ b10)(b3 ⊕ b11)(b4 ⊕ b12). (1)

The entry X0 of iteration #0 is supplied by an n-bit
constant:

B = B1‖B2‖ . . . ‖Bt, (2)

where 64-bit B1 = 912B4769B2496E7C (in the hexade-
cimal form), Bj = Prm(Bj−1) for j = 2, 3, . . . , t and
Prm is the auxiliary permutation calculated for parame-
ters nBb = 64 and nSb = 8.

The inputs Ki for the iterations #0 and #1, i = 0, 1,
are calculated in the following way. The cipher key k for
the PP-1 algorithm is a sequence of n or 2n bits. If the
key k has the length equal to n, then we put K0 = k and
K1 = 0n, where 0n denotes the concatenation of n zeros
(analogously, the concatenation of n 1’s will be denoted
by 1n). Otherwise, if the key k has the length equal to
2n, then k is divided into two parts, kH and kL, of equal
length (k = kH‖kL), and we set K0 = kH and K1 = kL.

The values of Ki for the iterations #2 to #2r (i =
2, 3, . . . , 2r) are defined as follows:

• for the iteration #2 we take K2 = RL(B ⊕ (A ∧
(K0⊕K1))), where ∧ is the Boolean AND function,
RL is the rotation by one bit to the left, and

A =
{

0n if |k |= 2,
1n if |k |= 2n,

(3)

• for the iterations #3 to #2r we take Ki = RL(Ki−1).
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6. Evaluation of PP-1 cipher quality with
respect to linear cryptanalysis

In the case of ciphers using sufficiently large S-boxes that
are most resistant against differential and linear cryptana-
lysis (like our S-box S), linear cryptanalysis is more ef-
fective than differential one. Therefore, as an evaluation
criterion of the PP-1 cryptographic quality we have cho-
sen the upper bound of the effectiveness |Δp+

a| of the best
nonzero linear approximation of the cipher. It is assumed
that the PP-1 cipher quality is not worse than that of a
comparative cipher with the same block length. For a gi-
ven quality of the round function h of the PP-1 cipher,
the evaluation of cipher quality reduces in fact to verifi-
cation whether a sufficient number r of rounds is applied
(Chmiel, 2006a; 2006b; 2006c).

6.1. Definitions. The basic idea of linear cryptanalysis
is to describe a cipher by a linear approximate expression,
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the so-called linear approximation. In general, the line-
ar approximation of a function y = f(x) : {0, 1}n �→
{0, 1}m is defined as an arbitrary equation of the form:

⊕
i∈y′

yi =
⊕
j∈x′

xj , (4)

which is fulfilled with approximation probability p =
N(x′, y′)/2n, where x′ ⊆ {1, 2, . . . , n}, y′ ⊆
{1, 2, . . . , m} and N(x′, y′) denotes the number of pairs
(x, y) for which the equation holds. In particular, distin-
guish the zero approximation for which x′ = y′ = Φ. The
probability p of the zero approximation is equal to 1 for
an arbitrary function f .

The effectiveness of the linear approximation of the
function f is represented by the magnitude |Δp|=|p−1/2|.
Approximations with a positive value of the effectiveness
measure are said to be effective. The effectiveness of the
zero approximation | Δp0 |= 1/2; for the effectiveness of
the nonzero approximation | Δp+ |≤ 1/2.

For an arbitrary function f , the only effective appro-
ximation such that y′ = Φ is the zero approximation. A
function f is said to be properly constructed if the only
effective approximation such that x′ = Φ is the zero ap-
proximation.

We say that a given S-box is of quality class q, if
for the effectiveness of the nonzero approximation of its
function f the following holds:

|Δp+|≤ q/2�n/2�+1. (5)

6.2. Comparative algorithm. The comparative algori-
thm (Fig. 9) is a block cipher with a single round, which
encrypts the n-bit plaintext m into the n-bit ciphertext c
using n-bit key k in the following way:

c = Sp(m ⊕ k). (6)

Decryption is performed as follows:

m = S−1
p (c) ⊕ k. (7)

The quality of the comparative algorithm depends on
that of the S-box Sp. Assuming that the S-box Sp is of
quality class qp, we have

|Δp+
p |≤ qp/2�n/2�+1. (8)

6.3. Quality of the PP-1 cipher. For a properly con-
structed round function h of a block cipher with r rounds,
an effective nonzero approximation of the cipher is a com-
position of r effective nonzero approximations of func-
tion h. Then the following formula holds:

Δp+
a = 2r−1

r∏
i=1

Δp+
i . (9)
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Fig. 9. Encryption and decryption performed by the comparati-
ve algorithm.

Assume that for the round function h, the following con-
dition is fulfilled:

|Δp+
i |≤ qa/2�s/2�+1, (10)

where i = 1, 2, . . . , r and s is a constant. This assumption
means that the effectiveness |Δp+

i | of function h approxi-
mation is not greater than the effectiveness |Δp+| of the
best nonzero approximation of the S-box of quality class
qa, with s input bits. Then we obtain

|Δp+
a |≤ (1/2) · (qa/2�s/2�)r. (11)

Let us determine the number r of rounds required for
a block cipher to reach the quality of the comparative algo-
rithm. For the best nonzero approximations of the cipher
and algorithm, the following should hold:

|Δp+
a |≤|Δp+

p | . (12)

Substituting upper bounds of effectiveness |Δp+
a | and ef-

fectiveness |Δp+
p |, we have

(qa/2�s/2�)r ≤ qp/2�n/2�. (13)

Thus, for the number r of rounds, we obtain

r ≥ (
n/2� − log qp)/(
s/2� − log qa). (14)

The lower bound of r, for various n, s = 8, qa = 2
and qp = 1, is presented in Table 1.

Table 1. Lower bound of r for block length n (s =
8, qa = 2, qp = 1) and the number r of rounds.

n 64 128 192 256

Lower bound of r 10.7 21.3 32.0 42.7

r 11 22 32 43
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7. Resistance against other attacks

The cipher key k for PP-1 is a sequence of n or 2n bits.
We will use a general symbol κ to denote the length of the
cipher key, κ = n or 2n. Let us consider the brute force
attack and its time and memory complexities. The plain-
text attack requires time O(2κ). Alternatively, the time for
finding the key is O(1), and the creation of the table for
storing all keys requires κ ·2κ bits of memory. If n ≥ 128,
then the brute force attack is inefficient. If we use the ci-
pher with the block of the length n = 64, then the length
of the key should be equal to 128.

From Section 6 it follows that the cipher is resistant
against linear cryptanalysis. The resistance of PP-1 aga-
inst differential cryptanalysis follows from the fact that
both for randomly chosen and best constructed S-boxes of
size s × s, starting from some value of s, the linear ap-
proximation of S-box functions becomes more effective
than differential approximation. This advantage of linear
approximation rises with the increase in s. For DES size
S-boxes it is not yet visible but for the S-box S of PP-1 it
is (Chmiel, 2006a).

The best nonzero linear approximation of the S-box
S of PP-1 has effectiveness |Δp+

S |= 18/256. The effecti-
veness of the best nonzero differential approximation of
the S-box is π+

S = 4/256. Assume that for the round
function h we obtain the same values for the effective-
ness of the best linear and differential approximation, i.e.,
|Δp+

h |= 18/256 and π+
h = 4/256. Moreover, assume

that the best nonzero approximations of PP-1 are compo-
sed of r best nonzero approximations of function h. Then
for the best nonzero approximations of PP-1 the values of
effectiveness |Δp+

a | and π+
a presented in Table 2 are ob-

tained. The best nonzero linear approximation of PP-1 is
evidently more effective than the differential one.

Table 2. Upper bounds of the effectiveness of PP-1 nonzero li-
near and differential approximations.

(n, r) (64,11) (128,22) (192,32) (256,43)

|Δp+
a | 1.83/233 1.67/264 1.35/292 1.24/2123

π+
a 1/266 1/2132 1/2192 1/2258

The PP-1 cipher is also resistant against algebraic at-
tacks. Every S-box of dimension s × s can be described
by e algebraic equations of multiple variables (Courtois
and Pieprzyk, 2002). For a specific degree d of equations
(usually d = 2) we can determine the actual number e of
such equations E(x1, . . . , xs, y1, . . . , ys). We are also in-
terested in the number v of monomials that appear in the-
se equations. Such a system of algebraic equations can be
(approximately) sufficient (if it fully describes the S-box;
this is the case if e = s), overdefined (if e � s) or sparse
(if v  (

s
d

)
).

For this reason it is possible to use the ratio v/e to
estimate the quality of the system of equations. If v/e
is close to 1, the S-box is considered bad. From this po-
int of view, both overdefined systems (large e) and spar-
se systems (small v) will be bad. Otherwise, if the sys-
tem is not overdefined and not sparse, v/e ∼= O(sd−1),
then the S-box will be good. In the case of PP-1 we ha-
ve e � s = 8. The complexity of the XSL attack de-
scribed in (Courtois and Pieprzyk, 2002) with respect to
PP-1, with block length n, equals C(n) = vP ·ω(

u
P

)ω
,

where u is the total number of S-boxes used in the ci-
pher. As in (Courtois and Pieprzyk, 2002), we can com-
pute other values: v = 81, P = 8, and ω = 2.3. Hence,
C(n) = 8118.4

(
u
8

)2.3
. In Table 3 we present the resul-

ting complexities for different n (see Table 1). Theoretical
analysis shows that algebraic attacks are not effective for
PP-1.

Table 3. Complexity C(n) of algebraic attacks.

n 64 128 192 256

C(n) 2199 2236 2257 2273

8. Avalanche and statistical properties
of PP-1

8.1. Introduction. A number of statistical tests were
carried out to check the quality of PP-1. We investiga-
ted the quality of the ciphertext and statistical properties
of generated round keys. The avalanche effect was also
studied. Three versions of the PP-1 were considered: 64-
bit data block—128-bit key (PP-1/64_128), 128-bit da-
ta block—256-bit key (PP-1/128_256), and 256-bit data
block—512-bit key (PP-1/256_512). The statistical test
suite STS v. 1.8 (NIST, 2005), consisting of 15 tests, was
used to check statistical properties of generated cipherte-
xts and round keys.

8.2. Testing ciphertext quality. Three modes of ope-
ration were considered: ECB, CBC and OFB. For ECB
we used tests with a variable plaintext and a variable key.
One bit was changed and the process of encryption was
compared with the previous one to check if there are any
regularities. For CBC and OFB modes, a message consi-
sting of 1048576 bits (220), all zeros, was encrypted. The
ciphertext was examined using the NIST test suite. This
procedure was repeated for seven different keys. None of
the executed tests showed any regularity.

8.3. Avalanche effect. For each version of the cipher,
1000 keys and 1000 plaintexts were generated random-
ly. Encryption was performed for each plaintext–key pa-
ir. As the next step, one bit in the plaintext was changed.
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The modified plaintext was encrypted again. The encryp-
ted text in each round was compared with that before the
bit flip. The average Hamming distance (in per cents) for
consecutive rounds is shown in Table 4. We can see that
it takes five, six, and seven rounds, respectively, to have
more than 49.9% of changed bits. We apply 11, 22, and
43 rounds. This means that the avalanche criterion is sa-
tisfied.

Table 4. Avalanche effect—the percentage of changed bits.

Round
Cipher version

PP-1/64_128 PP-1/128_256 PP-1/256_512

1 6.22 3.11 1.55

2 21.58 11.61 5.99

3 41.30 29.58 17.25

4 48.83 45.40 35.43

5 49.90 49.50 47.18

6 49.98 49.96 49.74

7 50.00 50.01 49.98

8 49.99 49.99 49.99

9 50.02 50.02 49.99

10 50.03 50.01 50.00

11 50.00 50.00 49.99

12 50.01 50.00

21 . . . . . .

22 50.02 50.00

42 . . .

43 50.01

8.4. Testing of round keys. The round key scheduling
procedure should generate round keys which are statisti-
cally independent. To test the round keys, we concatenated
all round keys generated for a given key. Such a sequence
was tested using the STS 1.8 package. Due to the small
sequence length (1408, 5632, and 22016 bits), not all te-
sts could be carried out. We used seven tests out of 15:
Block Frequency, Serial, Approximate Entropy, Cumula-
tive Sums, Runs, Spectral DFT, and Frequency tests. The
procedure was repeated for seven different keys. No regu-
larities in the tested sequences were found.

8.5. Conclusion. None of the tests we carried out in-
dicated any regularity, either in round keys or in encryp-
ted messages, which could cause hazard for PP-1 cipher
safety.

9. Reference implementations

For test purposes, the PP-1 cipher was implemented in se-
veral programming languages (C++, Python, ZC-Basic)
and environments (PC, Nokia 6600 mobile phone, Basic-
Card Pro) (Socha, 2008). As a reference, the Khazad ci-
pher was implemented in two versions: one optimized for
speed and the other optimized to run in a limited resources
environment.

The test procedure involved running a full cipher cyc-
le (in the case of the 64-bit version of PP-1 this was 11 ro-
unds, based on results from Section 6.3, Table 1) and the
result was the average speed of that iteration. Between 102

and 108 iterations were run to calculate the average speed,
depending on the tested language/environment combina-
tion. Test results are summarized in Table 5.

Table 5. Speed results of the test implementation of PP-1.

Phone c| Card

C++ Python ZC-Basic

PP-1 2 Mb/s 4 kb/s 164 b/s

PP-1 (no perm) 4 Mb/s 7 kb/s 275 b/s

Khazad 1 Mb/s 2 kb/s 10 b/s

Khazad (opt.) 7 Mb/s 13 kb/s —

PC

C++ Python ZC-Basic

PP-1 83 Mb/s 232 kb/s 243 b/s

PP-1 (no perm) 269 Mb/s 534 kb/s 402 b/s

Khazad 23 Mb/s 140 kb/s 14 b/s

Khazad (opt.) 301 Mb/s 533 kb/s —

Clearly, the very visible difference in speed between
the full PP-1 cipher and the version without permutation
shows that the permutation operation is very costly in so-
ftware implementations but in a hardware implementation
it is negligible.

The full version of PP-1 is clearly faster than the si-
milar Khazad cipher in its limited resources version, par-
ticularly in the case of the smart card implementation.

10. Concurrent error detection

10.1. Introduction. Several attacks on symmetric and
public-key cryptosystems have been described in the lite-
rature and some dedicated error-detection techniques have
been proposed to foil them. Various schemes for detec-
ting faults in hardware implementations of several sym-
metric key encryption algorithms have been developed.
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The motivation behind the increased interest in such de-
tection schemes is based on two important observations.

First, ciphered communication is very sensitive to er-
rors in input data or faults occurring during computation
due to strong nonlinearity of encryption functions. The
analysis of the effect of faults occurring during the encryp-
tion process for the advanced encryption standard algori-
thm (Bertoni et al., 2003b) for RC5 (Bertoni et al., 2003a)
and for PP-1 (Bucholc and Idzikowska, 2007) has shown
that even a single-bit error leads, after a few rounds of the
algorithm, to a completely corrupted result. The second
reason for the increased importance of error detection is
the observation that attacks based on fault injection are
feasible. In (Biham and Shamir, 1992), it is shown that
a cryptographic device computing the Data Encryption
Standard (DES) can be compromised by injecting a fault
during computation. Depending on the cipher employed,
useful data can be extracted by analyzing the resulting er-
roneous output.

The attacker induces a fault during cryptographic
computations and the faulty results are used for key reco-
very. Concurrent Error Detection (CED) followed by the
suppression of the corresponding faulty output can thwart
fault injection attacks on symmetric block ciphers. By de-
tecting the fault, either the output can be blocked (by pro-
ducing a constant value such as all zeros) or a random
output can be generated, misleading the attacker.

The feasibility of a fault attack or at least its efficien-
cy depends on the exact capabilities of the attacker and
the type of faults he or she can induce. Concurrent error
detection techniques are widely used to enhance system
dependability. All CED techniques introduce some form
of redundancy. It may be noted that the general architec-
ture of CED relies on the use of hardware redundancy for
error detection, but time redundancy techniques (alternate
data-retry and recomputation with shifted operands) can
also be used for concurrent error detection. The hardwa-
re cost of time redundancy techniques is generally smaller
than that of hardware redundancy, but system performan-
ce is directly affected.

The PP-1 cipher was designed for platforms with li-
mited resources. Therefore it can be implemented in em-
bedded systems, e.g., in simple smart cards, where a small
area overhead and high reliability are very important.

10.2. Analysis of the influence of errors on PP-1 ci-
pher behaviour. Errors in digital circuits can be either
permanent or transient. Transient error detection methods
also detect permanent errors. As the technology shrinks
the circuit dimension, the probability of transient errors
increases. Therefore in this section we will focus on tran-
sient error detection. We will present a detailed analysis
for a 64-bit data block 128-bit key version of the PP-1
cipher.

Let us consider the data path of the PP-1 cipher

shown in Fig. 10. We inserted and observed errors at fi-
ve levels (0 to 4). Level 4 for round #i is the same as level
0 for round #(i + 1).
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Fig. 10. Levels at which errors were inserted and observed.

To analyze errors distribution, a single transient error
was induced. Then the state of signal lines was compared
with those for an error-free circuit. This was repeated for
all signal lines and all levels. Results are shown in Fig. 11.
We can see that, due to the diffusion properties of the ci-
pher, after about four rounds nearly half of the bits are
faulty. The influence of the error during encryption on the
decryption process is shown in Fig. 12.
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Fig. 11. Number of erroneous bits in the encrypted data block.
Single error inserted in round #1 level 0.

From Figs. 11 and 12 we see that a faulty bit inser-
ted in the first round of encryption causes a large number
of erroneous bits in the final encrypted data. Applying de-
cryption to the corrupted data reconstructs the data block
containing one faulty bit. Injecting a single error in the en-
crypted data block in rounds #2–#11 results in a decrypted
block which significantly differs from the original messa-
ge.

The influence of multiple errors on the encrypted da-
ta was analyzed by the insertion of two, three and four
errors. Results are shown in Fig. 13. In comparison with
a single error, multiple errors inserted in round #1 lead to
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Fig. 12. Number of erroneous bits in the decrypted data block
versus the injection round of the faulty bit. Error injec-
ted during encryption.

more erroneous data bits. But there is no significant dif-
ference in the number of erroneous bits in the encrypted
message.
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Fig. 13. Number of erroneous bits in the encrypted data block.
Multiple errors and a single error inserted in round #1
level 0.

10.3. Faults in S-boxes. The S-box is a basic compo-
nent of block ciphers, used to obscure the relationship be-
tween the plaintext and the ciphertext. It is an important
element of the cryptographic algorithm and it should po-
ssess some properties which make linear and differential
cryptanalysis as difficult as possible. Concurrent error de-
tection in S-boxes of cryptographic hardware is very im-
portant.

In our discussion we use a realistic fault model in
which either transient or permanent faults are induced ran-
domly into the device. For example, a transient fault di-
sturbs the smart card during its processing and affects a
single execution of the algorithm. We speak about a per-
manent fault if there is a permanent damage of the smart
card, such as cutting a wire or destroying a memory cell.
We analysed the possibilities of detecting errors in the
S-box of PP-1 block cipher implementation.

Let D1
m−1, . . . , D

1
1, D

1
0 be an error-free input vector

of bits, and let D3
m−1, . . . , D

3
1, D

3
0 be an output vector.

Let Em−1, . . . , E1, E0 be an error vector, where Ei ∈
{0, 1}; Ei = 1 indicates that bit i is faulty; the fault
flips the bit. The number of ones in this vector is equ-
al to the number of inserted faults. As a result, vector
D2

m−1, . . . , D
2
1, D

2
0 is the erroneous vector, where D2

i =
D1

i ⊕ Ei, and the error is observable only on the S-box
output (Idzikowska and Bucholc, 2007).

10.4. Parity prediction and simulation results. Parity
prediction is a widely used CED technique. The even/odd
parity function indicates whether the number of 1’s in a
set of binary digits is even or odd. The idea of using a sin-
gle parity bit can be extended to multiple parity bits. This
technique partitions the primary outputs into different pa-
rity groups. There is a parity bit associated with outputs
in each parity group. The outputs of each parity group are
checked using a parity checker.

We considered parity based CED schemes with one,
two, four and eight parity bits. Particularly interesting re-
sults were observed for the scheme Par0_8 with eight pa-
rity bits P0, . . . , P7 (Fig. 14). The bits are calculated in
the following way:

Pj =
7∑

i=0

D3
i·8+j mod 2, j = 0, 1, . . . , 7. (15)

S1 S0 S3 S2 S5 S4 S7 S6 

D2
63...D2

56 D2
7...D2

0 
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56 D3
7...D3

0 
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� � � � � � P6 

P0 
� 

Fig. 14. Parity bit prediction scheme—Par0_8.

This means that one parity bit Pj controls outputs
belonging to all boxes S0 − S7.

We used VHDL to model the S-box, and simula-
tion was realized using Active-HDL simulation and veri-
fication environment. The results, i.e., the dependence of
the error detection probability on the number of injected
faults, are presented in Fig. 15 and compared with results
obtained for only one parity bit (Par1) and those for for
eight parity bits organized in such a way that there is one
parity bit for each of S-boxes (Par8).

One of the conclusions of our work is that error de-
tection using the parity code based approach can be suc-
cessfully used in concurrent error detection in substitution
blocks. It is possible to detect not only single but also mul-
tiple errors.

Another conclusion is that it is not the number of pa-
rity bits that is most important, but how the parity is pre-
dicted. Scheme Par0_8 with eight parity bits detects errors
much better than Par8, which also has eight parity bits.
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Fig. 15. Percentage of detected faults.

The proposed solution can be very useful for concur-
rent checking of cryptographic chips. We have shown that
multiple errors in S-boxes can be detected with very high
probability. Using the Par0_8 scheme of parity prediction,
we achieved error detection which is close to 100%.

11. Final remarks

A new scalable block cipher was described in this pa-
per.It is a simple, efficient and secure block cipher. Sca-
lable PP-1 is aimed to be used on platforms with limi-
ted resources, and especially with a very limited amount
of memory. Due to the fact that it uses only very simple
arithmetic operations, the cipher can be implemented on
different platforms such as smart cards, TV decoders, mo-
biles, etc. We could not find any significant constraint in it
and did not insert any hidden weakness.
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