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Private set intersection (PSI) allows two parties to compute the intersection of their sets without revealing any
information about items that are not in the intersection. It is one of the best studied applications of secure
computation and many PSI protocols have been proposed. However, the variety of existing PSI protocols
makes it difficult to identify the solution that performs best in a respective scenario, especially since they
were not compared in the same setting. In addition, existing PSI protocols are several orders of magnitude
slower than an insecure naïve hashing solution, which is used in practice.

In this article, we review the progress made on PSI protocols and give an overview of existing protocols
in various security models. We then focus on PSI protocols that are secure against semi-honest adversaries
and take advantage of the most recent efficiency improvements in Oblivious Transfer (OT) extension, pro-
pose significant optimizations to previous PSI protocols, and suggest a new PSI protocol whose runtime is
superior to that of existing protocols. We compare the performance of the protocols, both theoretically and
experimentally, by implementing all protocols on the same platform, give recommendations on which pro-
tocol to use in a particular setting, and evaluate the progress on PSI protocols by comparing them to the
currently employed insecure naïve hashing protocol. We demonstrate the feasibility of our new PSI protocol
by processing two sets with a billion elements each.
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1 INTRODUCTION

Private set intersection (PSI) allows two parties, P1 and P2, holding sets X and Y , respectively, to
identify the intersection X ∩ Y without revealing any information about elements that are not in
the intersection. The basic PSI functionality can be used in applications where two parties want
to perform JOIN operations over database tables that they must keep private, e.g., private lists of
preferences, properties, or personal records of clients or patients. PSI was used in several research
projects for privacy-preserving computation of functionalities such as relationship path discovery
in social networks (Mezzour et al. 2009), botnet detection (Nagaraja et al. 2010), testing of fully
sequenced human genomes (Baldi et al. 2011), proximity testing (Narayanan et al. 2011), or cheater
detection in online games (Bursztein et al. 2011).

PSI has been a very active research field, and there have been many suggestions for PSI pro-
tocols. The large number of proposed protocols makes it non-trivial to perform comprehensive
cross-evaluations. This is further complicated by the fact that many protocol designs have not
been implemented and evaluated, were analyzed under different assumptions and observations,
and were often optimized w.r.t. overall run-time while neglecting other relevant factors such as
communication. Furthermore, even though several PSI protocols have been introduced, practical
applications that need to compute the intersection of privacy-sensitive lists often use insecure
solutions. The reason for the poor acceptance of secure solutions is, among others, the poor effi-
ciency of existing schemes, which have more than two orders of magnitude more overhead than
insecure solutions.

In this article, we give an overview on existing efficient PSI protocols, optimize exiting PSI
protocols, and describe a new PSI protocol based on efficient oblivious transfer (OT) extensions.
We compare both the theoretical and empirical performance of all protocols on the same platform
and evaluate their cost compared to the insecure hash-based solution used in practice. We show
that our new PSI protocol achieves a reasonable overhead compared to solutions used in practice.

1.1 Motivating Applications

The motivation for our work comes from several practical applications that require the PSI func-
tionality. In the following, we list three of these applications:

Measuring Ad Conversion Rates. Measuring ad conversion rates is done by comparing the list of
people who have seen an ad with those who have completed a transaction. These lists are held
by the advertiser (say, Google or Facebook), and by merchants, respectively. It is often possible to
identify users on both ends, using identifiers such as credit card numbers, email addresses, and
the like. A simple solution, which ignores privacy, is for one side to disclose its list of customers
to the other side, which then computes the necessary statistics. Another option is to run a PSI
protocol between the two parties. (The protocol should probably be a variant of PSI, e.g., compute
total revenues from customers who have seen an ad. Such protocols can be derived from basic
PSI protocols.) In fact, Facebook is running a service of this type with Datalogix, Epsilon, and
Acxiom, companies which have transaction records for a large part of loyalty card holders in the
U.S. According to reports,1 the computation is done using a variant of the insecure naïve hashing
PSI protocol that we describe in Section 1.2. Our results show that it can be computed using secure
protocols even for large data sets.

Security Incident Information Sharing. Security incident handlers can benefit from information
sharing since it provides them with a global view during incidents. However, incident data is often

1See, e.g., https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-
how-you-can-opt.
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sensitive and potentially embarrassing. The shared information might reveal information about the
business of the company that provided it, or of its customers. Therefore, information is typically
shared rather sparsely and protected using legal agreements. Automated large-scale sharing will
improve security, and there is, in fact, work to that end, such as the IETF Managed Incident Light-
weight Exchange (MILE) effort. Many computations that are applied to the shared data compute
the intersection and its variants. Applying PSI to perform these computations can simplify the legal
issues of information sharing. Efficient PSI protocols will enable it to be run often and in large scale.

Private Contact Discovery. When a new user registers to a service it is often essential to identify
current registered users who are also contacts of the new user. This operation can be done by
simply revealing the user’s contact list to the service, but can also be done in a privacy preserving
manner by running a PSI protocol between the user’s contact list and the registered users of the
service. This latter approach is used by the Signal and Secret applications, but for performance
reasons they use the insecure naïve hashing PSI protocol.2 Signal is planning to use a solution
based on Intel SGX for scalability reasons as proposed in Tamrakar et al. (2017).3

In these cases, each user has a small number of records n2, e.g., n2 = 256, whereas the service
has millions of registered users (in our experiments we use n1 = 16,777,216). It therefore holds
that n1 � n2. In our best PSI protocol, the client needs only O(n2 logn1) memory, O(n2) sym-
metric cryptographic operations, and O(n1) cheap hash table lookups, and the communication is
O(n1 logn1). (The communication overhead is indeed high as it depends on n1, but this seems
inevitable if brute force searches are to be prevented.)

1.2 Classification of PSI Protocols

Securely intersecting two sets without leaking any information except the result of the intersec-
tion is one of the most prominent problems in secure computation. Several techniques have been
proposed that realize the PSI functionality, such as the efficient but insecure naïve hashing solution,
protocols that require a semi-trusted third party, or two-party PSI protocols. The earliest proposed
two-party PSI protocols were special-purpose solutions based on public-key cryptography. Later,
solutions were proposed using circuit-based generic techniques for secure computation that are
mostly based on symmetric cryptography. The most recent developments are PSI protocols that
are based on OT alone, and combine the efficiency of symmetric cryptographic primitives with spe-
cial purpose optimizations. PSI protocols have been implemented and evaluated on smartphones
(Huang et al. 2011; Asokan et al. 2013; Kiss et al. 2017).

A Naïve Solution. When confronted with the PSI problem, most novices come up with a solution
where both parties apply a cryptographic hash function to their inputs and compare these hashes.
Although this protocol is very efficient, it is insecure if the input domain is small or has low entropy,
since one party could easily run a brute force attack that applies the hash function to all items that
are likely to be in the input set and compare the results to the received hashes. (When inputs to PSI
have high entropy, a protocol that compares hashes of the inputs can be used (Nagy et al. 2013).)

Third Party-Based PSI. Several PSI protocols have been proposed that utilize additional parties,
e.g., Baldwin and Gramlich (1985). In Hazay and Lindell (2008), a trusted hardware token is used
to evaluate an oblivious pseudo-random function (OPRF). This approach was extended to multiple
untrusted hardware tokens in Fischlin et al. (2011). Several efficient server-aided protocols for PSI,
which use a third party that holds no inputs, receives no outputs, and is assumed not to collaborate

2See https://whispersystems.org/blog/contact-discovery/ and https://medium.com/@davidbyttow/demystifying-secret-
12ab82fda29f, respectively.
3See https://signal.org/blog/private-contact-discovery/.
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with any of the parties were presented and benchmarked in Kamara et al. (2014). Outsourced PSI
protocols, e.g., Abadi et al. (2015, 2017) and Oksuz et al. (2017), allow for reuse of encrypted datasets
that are outsourced to the cloud, but are less efficient than Kamara et al. (2014) for a single run.

Public-Key-Based PSI. A PSI protocol based on Diffie-Hellmann (DH) key agreement was pre-
sented in Meadows (1986) (related ideas were presented in Shamir (1980) and Huberman et al.
(1999)). Their protocol is based on the commutative properties of the DH function and was used
for private preference matching, which allows two parties to verify if their preferences match to
some degree.

Freedman et al. (2004) introduced PSI protocols secure against semi-honest and malicious
adversaries in the standard model (rather than in the random oracle model (ROM) assumed in the
DH-based protocol). This protocol was based on polynomial interpolation, and was extended in
Freedman et al. (2016), which presents protocols with simulation-based security against malicious
adversaries, and evaluates the practical efficiency of the proposed hashing schemes. We discuss
the proposed hashing schemes in Section 3. A similar approach that uses OPRFs to perform PSI
was presented in Freedman et al. (2005). A protocol that uses polynomial interpolation and differ-
entiation for finding intersections between multi-sets was presented in Kissner and Song (2005).

Another PSI protocol that uses public-key cryptography (more specifically, blind-RSA opera-
tions) and scales linearly in the number of elements was presented in Cristofaro and Tsudik (2010).
In Debnath and Dutta (2015), a family of Bloom filter-based PSI protocols was introduced that real-
ize PSI, PSI cardinality, and authenticated PSI functionalities. These protocols also use public-key
operations, linear in the number of elements.

Circuit-Based PSI. Generic secure computation protocols have been subject to substantial ef-
ficiency improvements in the last decade. They allow the secure evaluation of arbitrary func-
tions, expressed as arithmetic or Boolean circuits. Several Boolean circuits for PSI were proposed
in Huang et al. (2012) and evaluated using the Yao’s garbled circuits. The authors showed that
their Java implementation scales very well with increasing security parameter and outperforms
the blind-RSA protocol of Cristofaro and Tsudik (2010) for larger security parameter. We reflect
on and present new optimizations for circuit-based PSI in Section 4.

OT-Based PSI. A Bloom-filter-based protocol PSI based on OT extension that achieves security
against semi-honest and malicious adversaries has been given in Dong et al. (2013) and optimized
for semi-honest adversaries in Pinkas et al. (2014). Recently in Lambæk (2016) and Rindal and
Rosulek (2017a), it was shown that the Bloom filter-based protocol is insecure with respect to
malicious adversaries. The authors of Rindal and Rosulek (2017a) showed how to fix the malicious
secure Bloom filter-based protocol and gave the first implementation of a malicious secure PSI
protocol, which computes the intersection of two sets with a million elements each in ∼200 s.

In Rindal and Rosulek (2016), our OT-based PSI protocol of Pinkas et al. (2014) was extended
to security against weakly malicious adversaries and used as a building block in a batch dual-
execution Yao’s garbled circuits protocol. In Lambæk (2016), our OT-based PSI protocol of Pinkas
et al. (2015) was secured against a semi-honest P1 and malicious P2. An improved version of our
OT-based PSI protocol in Pinkas et al. (2015) is given in Kolesnikov et al. (2016), which presents an
efficient construction of an OPRF using the OT extension protocol of Kolesnikov and Kumaresan
(2013) (cf. Section 2.2.3). The main observation of the authors is that the Kolesnikov and Kumaresan
(2013) OT extension does not require an error correcting code but can instead use a pseudo-random
code, which can be generated from a pseudo-random generator. The authors then apply their effi-
cient OPRF construction to our Pinkas et al. (2015) protocol to greatly reduce the communication
in the OTs, which is equal to the code length. In particular, the authors show that their construc-
tion achieves performance independent of the bit-length of elements σ . The OPRF construction
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Table 1. Bit-Length of the Underlying Codes (Equal to the Communication per OT in Bit)

for Different Values of σ − log2 (n)

Bit-Length

σ − log2 (n) 8 9 10 11 12 13 Arbitrary

Kolesnikov et al.
(2016) comm. per OT [bits] 424-448 (depending on n)

Our comm. per OT [bits] 255 256 264 268 270 271 512

of Kolesnikov et al. (2016) is similar to our new OPRF construction described in Section 5. The
idea of both works is to instantiate the OPRF that is implicitly used in the Pinkas et al. (2015) OT-
based PSI protocol using larger codes. However, while Kolesnikov et al. (2016) replace the error
correcting code with a pseudo-random code, we keep the error correcting code but use smaller,
custom-tailored codes. We compare the code sizes for small values of σ − log2 (n) using the code
table from Schürer and Schmid (2006) with the pseudo-random code size of Kolesnikov et al. (2016)
in Table 1. While our instantiation requires less communication for small values of σ − log2 (n),
it does not achieve performance independent of σ and generating such a small custom-tailored
code is a non-trivial problem. In the remainder of this article, we fix one error correcting code
with bit-length 512 that supports all currently practical applications of PSI and which results in a
communication overhead of factor 1.10 × −1.15× for the full PSI protocol compared to Kolesnikov
et al. (2016). Overall, we view our work as complementary to the work of Kolesnikov et al. (2016),
where one can instantiate the underlying code based on the parameters to achieve the best overall
performance. In fact, it has been shown in another independent and parallel work (Orrù et al. 2017)
that our method of instantiating the underlying code enables an extension of the PSI protocol to
malicious receivers, which does not work for the instantiation method of Kolesnikov et al. (2016).
Finally, note that the work of Kolesnikov et al. (2016) and Orrù et al. (2017) also benefit from our
improved hashing analysis of Section 3.

1.3 Our Contributions

We survey existing PSI protocols with security against semi-honest adversaries and solutions
with a trusted third party. We then describe in detail the semi-honest secure PSI protocols and
improve the performance of some protocols using carefully analyzed features of OT extension.
We introduce a new OT-based PSI protocol, perform a detailed experimental comparison of
the most promising semi-honest secure PSI protocols, and evaluate their overhead compared
to the insecure naïve hashing protocol that is currently used in real-world applications. Our
contributions are as follows.

Concrete Parameter Estimation for Hashing. In Freedman et al. (2004) the use of hashing-to-bins
was suggested in the context of PSI to reduce the overhead for pairwise-comparisons. However,
their analysis of the involved parameters was only asymptotic. In Section 3, we empirically analyze
the hashing-to-bins techniques that were suggested in Freedman et al. (2004) and identify concrete
parameters for the schemes. In addition, in Section 3.3 we utilize the permutation-based hashing
techniques of Arbitman et al. (2010) to reduce the bit-length of the representations that are stored
in the bins. This improves the performance of PSI protocols that require an overhead linear in the
bit-length of elements, e.g., the protocols in Section 4.2 and Section 5.

Optimizations of Existing Protocols. We improve the circuit protocols using recent optimizations
for OT extension (Asharov et al. 2013). In particular, in Section 4 we evaluate the circuit-based
solution of Huang et al. (2012) on a secure evaluation of the GMW protocol, and utilize features of
random OT (cf. Section 2.2) to optimize the performance of multiplexer gates (which form about
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Table 2. Runtime and Transferred Data for Private Set Intersection Protocols on Sets with 220 σ = 32-Bit

Elements and 128-Bit Security with a Single Thread over Gigabit LAN

Server-Aided Public Key Circuit OT+Hashing

PSI Protocol Hashing

(Kamara et al.
2014)

(Meadows
1986)

PWC Section 4.2/
OPRF Section 4.3

Section 3+
Section 5

Equal set sizes n1 = n2 = 220

Runtime(s) 0.7 1.3 818.3 124.7 5.8

Comm. (MB) 10 20 74 14,014 111

Unequal set sizes 224 = n1 � n2 = 212

Runtime(s) 6.1 7.6 12,712.3 7.3 42.6

Comm. (MB) 160 160 593 947 480

two thirds of the circuit). Furthermore, in Section 4.2 we outline how to use the permutation-based
hashing techniques to improve the performance of circuit-based PSI even further.

A Novel OT-Based PSI Protocol. We present a new PSI protocol that is based on OT (Section 5)
and directly benefits from improvements in efficient OT extensions (Kolesnikov and Kumaresan
2013; Asharov et al. 2013). Our PSI protocol uses an efficient OPRF that is instantiated based on
the ( N

1 )-OT extension protocol of Kolesnikov and Kumaresan (2013) and uses the hashing tech-
niques from Section 3 to reduce the communication overhead from O (n2) to O (n). The resulting
protocol has very low computation complexity since it mostly requires symmetric key operations
and has even less communication than some public-key-based PSI protocols, which had the lowest
communication before.

A Detailed Comparison of PSI Protocols. We implement the most promising SI protocols using
state-of-the-art cryptographic techniques and compare their performance on one platform. Our
implementations are available as open source at http://encrypto.de/code/JournalPSI. As far as
we know, this is the first time that such a wide comparison has been made, since previous
comparisons were either theoretical, compared implementations on different platforms or
programming languages, or used implementations without state-of-the-art optimizations. Our
implementations and experiments are described in detail in Section 6. Certain experimental
results were unexpected. We give a partial summary of our results in Table 2. We briefly describe
our most prominent findings next.

—The Diffie-Hellman-based protocol (Meadows 1986), which was the first PSI protocol, is
actually the most efficient w.r.t. communication (when implemented using elliptic-curve
crypto). Therefore, it is suitable for settings with distant parties which have strong compu-
tation capabilities but limited connectivity.

—Generic circuit-based protocols (Huang et al. 2012) are less efficient than the newer, OT-
based constructions, but they are more flexible and can easily be adapted for computing vari-
ants of the set intersection functionality (e.g., computing whether the size of the intersection
exceeds some threshold). Our experiments also support the claim of Huang et al. (2012) that
circuit-based PSI protocols are faster than the blind-RSA-based PSI protocol of Cristofaro
and Tsudik (2010) for larger security parameters and given sufficient bandwidth.

—Compared to the insecure naïve hashing solution, previous PSI protocols are at least two
orders of magnitude less efficient in runtime or communication. Our OT-based PSI protocol
reduces this overhead to only one order of magnitude in both runtime and communication.
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—When intersecting sets with unequal sizes (n1 � n2), the runtime difference between most
protocols remains similar to the runtime difference for equal set sizes (n1 = n2). The only
exception is the newly added circuit-based OPRF protocol (Section 4.3), which achieves
similar performance as the naïve hashing and server-aided solutions for unequal set sizes.

1.4 Additions to Conference Versions

This article is a significantly extended and improved version of the conference papers (Pinkas et al.
2014) and Pinkas et al. (2015). Compared to these papers, we add the following contributions:

Broader Scope. We broadened the scope of the work by describing and benchmarking the circuit-
based OPRF protocol of Pinkas et al. (2009) in Section 4.3.

Extended Hashing Parameter Analysis. We extend the hashing parameter analysis for schemes
that are using pairwise comparison. In our previous work, we only bounded the hashing failure for
one particular set of parameters that is tailored to one use-case. However, the hashing parameters
for which PSI protocols perform well change depending on the settings (unequal set sizes, different
networks, and so on). We show a trade-off between different parameters, resulting in a large variety
of parameters that perform well for different settings.

Optimizations. In previous work, our OT-based PSI protocol scaled linear in the bit-length of the
inputs, which decreased its performance on arbitrary input data. We now outline how to achieve
performance independent of the bit-length in Section 5 by using more efficient instantiations of
underlying primitives (cf. Section 2.2.3).

Unequal Set Sizes. We extend the focus of the work to unequal set sizes where n1 � n2. This
setting is relevant for use-cases where, e.g., an end user wants to compare its data (few hundred
elements) to a company’s database (several million elements). We show how to modify the circuit-
based protocols (Section 4.3) as well as our OT-based protocol (Section 3.2.2) to efficiently extend
to this setting, and perform experiments for the protocols (Section 6.2.3).

Scalability. The largest sets on which secure two-party PSI protocols were evaluated until now
were of size 224 (Pinkas et al. 2015). We demonstrate the scalability of our novel OT-based PSI
protocol by processing two sets of a billion σ = 128-bit elements each (Section 6.2.4).

2 PRELIMINARIES

We give our notation and security definitions in Section 2.1, review recent relevant work on OT
in Section 2.2, and outline how to hash large inputs into smaller domains in Section 2.3.

2.1 Notation and Security Definitions

We denote the parties as P1 and P2, and their respective input sets as X and Y with |X | = n1 and
|Y | = n2. We refer to elements from X as x and elements from Y as y and each element has bit-
length σ (cf. Section 2.3 for the relation between n and σ ). We write b[i] for the i-th element of
a list b, denote the bitwise-AND between two bit strings a and b of equal length as a ∧ b and the
bitwise-XOR as a ⊕ b. We denote a constant string of m zeros (or ones) as 0m (or 1m ). We use a
correlation robust function (CRF) (cf. Section 2.1), a pseudo-random generator (PRG), a pseudo-
random permutation (PRP), and an OPRF (see definitions below). We write ( N

1 )-OTm
� form parallel

1-out-of-N OTs on �-bit strings, and write OTm
�

for ( 2
1 )-OTm

�
. In a similar fashion, we denote the

random OT functionality (cf. Section 2.2.2), where the functionality choosesm N -tuples of random
�-bit strings as ( N

1 )-ROTm
� . We fix the key sizes to a 128-bit security level according to the NIST

guidelines (NIST 2012): symmetric security parameter κ = 128, asymmetric security parameter
ρ = 3,072, statistical security parameter λ = 40, and elliptic curve size φ = 284 for Koblitz curve
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K-283 when using point compression (this is the number of bits for one coordinate and a sign-bit).
We denote and fix the hashing failure parameter, which affects the correctness of some protocols
as η = 40, meaning that hashing failures occur with probability <2−40.

Adversary Definition. The secure computation literature considers two types of adversaries with
different strengths: A semi-honest adversary tries to learn as much information as possible from a
given protocol execution but is not able to deviate from the protocol steps. The semi-honest adver-
sary model is appropriate for scenarios where execution of the intended software is guaranteed
via software attestation or where an untrusted third party is able to obtain the transcript of the
protocol after its execution, either by stealing it or by legally enforcing its disclosure. The stronger,
malicious adversary extends the semi-honest adversary by being able to deviate arbitrarily from
the protocol.

Most protocols for PSI, as well as this article, focus on solutions that are secure against semi-
honest adversaries. PSI protocols for the malicious setting exist, but they are less efficient than
protocols for the semi-honest setting (see, e.g., Freedman et al. (2004), Cristofaro et al. (2010), and
Rindal and Rosulek (2016, 2017a, 2017b)). Currently, the fastest protocol with malicious security
(Rindal and Rosulek 2017b) is only 3x slower than the semi-honest protocol of Kolesnikov et al.
(2016). We also note that circuit-based PSI protocols that are evaluated with Yao’s protocol can
efficiently be secured against a malicious client by using OT extension with malicious security
(e.g., Asharov et al. (2015)), which adds very little overhead: the OPRF-based protocol directly and
the SCS-based protocol requires us to add a small circuit that makes sure that the inputs are sorted.

Security Definition. Following the definitions of Goldreich (2004), a protocol is secure if what-
ever can be computed by a party participating in the protocol can be computed based only on the
input and output of this party. Namely, the actual messages delivered during the protocol provide
no additional information beyond the input and output. This definition is formalized based on the
simulation paradigm: it is required that a party’s view in a protocol execution (namely, all messages
sent and received by the party in the protocol) can be simulated given only its input and output.
We note that in the case of semi-honest adversaries, and a protocol computing deterministic
functionalities (as is the intersection functionality), it suffices that the simulator outputs the view
of the party that is controlled by the adversary. See Goldreich (2004) for the detailed definition of
security.

The Random Oracle Model (ROM). As most previous works on efficient PSI, we use the ROM to
achieve more efficient implementations (Bellare and Rogaway 1993). The security of cryptographic
constructions can be proven in the “standard model,” where security is based on well-researched
complexity assumptions, or in the ROM, which is based on modeling a hash function as a random
function (Bellare and Rogaway 1993). There are many criticisms about the ROM and in the theory
of cryptography proofs this model is considered heuristic. Yet, protocols in the ROM are often
more efficient than protocols that are proven in the standard model.

The efficiency gain in using the ROM is particularly true with regards to protocols for PSI. The
only semi-honest protocol that we describe that is in the standard model is the protocol based on
oblivious polynomial evaluation by Freedman et al. (2004, 2016), but that protocol is less efficient
than the other protocols that we present. The public-key-based protocols (based on Diffie-Hellman
and blind RSA) use a hash function H () that must be modeled as a random oracle, or modeled
using another non-standard assumption. The other protocols (the generic protocol, as well as the
protocol based on Bloom filters and the new OT-based protocol) can be implemented without a
random oracle assumption, but to speedup the computation of OT in these protocols we must use
random OT extension, whose efficient implementation relies on a function that must be modeled
as a random oracle.

ACM Transactions on Privacy and Security, Vol. 21, No. 2, Article 7. Publication date: January 2018.



Scalable PSI Based on OT Extension 7:9

Correlation Robustness. A CRF H : {0, 1}κ �→ {0, 1}� is a function for which, given uniformly
and randomly chosen t1, . . . , tm , s ∈ {0, 1}κ , an adversary is unable to computationally distinguish
t1, . . . , tm ,H (t1 ⊕ s ), . . . ,H (tm ⊕ s ) from a uniform distribution. It is a weaker assumption than the
ROM and is used in OT extension as well as Yao’s garbled circuit protocol. Traditionally, many im-
plementations use a hash function (e.g., SHA) to increase the performance. An instantiation of the
CRF in Yao’s garbled circuit protocol that uses fixed-key AES and greatly improves performance
was proposed in Bellare et al. (2013) and refined in Zahur et al. (2015) for use in the half-gates
scheme. In this article, we use both optimizations.

Oblivious Pseudo-Random Functions. An OPRF (Freedman et al. 2005) is a function F :
({0, 1}κ , {0, 1}σ ) �→ (⊥, {0, 1}� ) that, given a key k from P1 and an input element e from P2, com-
putes and outputs Fk (e ) to P2. P1 obtains no output and learns no information about e while P2

learns no information about k . OPRFs can be used for PSI by first evaluating the OPRF protocol on
the set of P2 and then having P1, who knows the secret key k , evaluate the OPRF locally on its own
set, and send the OPRF output to P2, who computes a plaintext intersection. There exist several
instantiations for OPRFs, described in Freedman et al. (2005): based on generic secure computation
techniques (using an AES circuit (Pinkas et al. 2009)), based on the Diffie-Hellman assumption, or
based on OT. In Section 4.3 we analyze the efficiency of generic secure computation-based OPRF
instantiations. In Section 5 we give a more efficient OT-based instantiation based on the ( N

1 )-ROT
protocol of Kolesnikov and Kumaresan (2013).

2.2 Oblivious Transfer

OT is a major building block for secure computation. When executing m invocations of 1-out-
of-2 OT on �-bit strings (denoted ( 2

1 )-OTm
�

), the sender S holds m message pairs (x i
0,x

i
1) with

x i
0,x

i
1 ∈ {0, 1}� , while the receiver R holds an m-bit choice vector b. At the end of the protocol, R

receives x i
b[i] but learns nothing about x i

1−b[i], and S learns nothing about b. Many OT protocols

have been proposed, most notably (for the semi-honest model) the Naor-Pinkas OT (Naor and
Pinkas 2001), which uses public-key operations and has amortized complexity of 3m public-key
operations when performingm OTs.

OT extension (Beaver 1996; Ishai et al. 2003) reduces the number of expensive public-key oper-
ations for OTm

�
to that of only OTκ

κ , and computes the rest of the protocol using more efficient
symmetric cryptographic operations that are faster by orders of magnitude. The security param-
eter κ is essentially independent of the number of OTs m, and can be as small as 128. Thereby,
the computational complexity for performing OT is reduced to such an extent that the network
bandwidth becomes the main bottleneck (Asharov et al. 2013).

Recently, the efficiency of OT extension protocols has gained a lot of attention. In Kolesnikov
and Kumaresan (2013), an efficient ( N

1 )-OT extension protocol was shown, that has sub-linear
communication in κ for short messages. Another protocol improvement is outlined in Asharov
et al. (2013) and Kolesnikov and Kumaresan (2013), which decreases the communication from R
to S by half. Additionally, several works (Asharov et al. 2013; Nielsen et al. 2012) improve the
efficiency of OT by using an OT variant, called random OT. In random OT, (x i

0,x
i
1) are chosen uni-

formly and randomly within the OT and are output to S , thereby removing the final message from
S to R. Random OT is useful for many applications, and we show how it can reduce the overhead of
PSI.

We describe the OT extension protocol of Asharov et al. (2013) and Ishai et al. (2003), the random
OT functionality, and the ( N

1 )-OT extension protocol of Kolesnikov and Kumaresan (2013) in more
detail next.
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2.2.1 1-out-of-2 OT Extension. (Ishai et al. 2003) describe a ( 2
1 )-OT extension protocol that ex-

tends OTκ
κ (κ OTs ofκ bits) to OTm

�
(m OTs of � bits). We describe the OT extension protocol of Ishai

et al. (2003) with optimizations of Asharov et al. (2013) in Prot. 1.

PROTOCOL 1 (OT Extension Protocol of Ishai et al. (2003)).

— Input of P1 :m pairs of �-bit strings (x j
0,x

j
1), 1 ≤ j ≤ m.

— Input of P2 : Choice vector b ∈ {0, 1}m .
— Common Input: Symmetric security parameter κ and number of base-OTs β = κ .

— Oracles and cryptographic primitives:Both parties have access to an OTβ
κ oracle, a

PRG G : {0, 1}κ �→ {0, 1}m , and a CRF H : {0, 1}β �→ {0, 1}� .

(1) P1 initializes a random vector s ∈ {0, 1}β and P2 chooses β random key pairs
(ki

0,k
i
1) ∈ {0, 1}2κ , for 1 ≤ i ≤ β .

(2) The parties invoke the OTβ
κ oracle where, in the i-th OT, P1 plays the receiver with

input s[i] and P2 plays the sender with inputs (ki
0,k

i
1).

(3) P2 computes t i = G (k0
i ) andui = t i ⊕ G (k1

i ) ⊕ b, and sendsui to P1 , for 1 ≤ i ≤ β . Let
T = [t1 | . . . |t β ] denote a randomm × β bit matrix that is generated by P2 where the
i-th column is t i and the j-th row is tj , for 1 ≤ i ≤ β and 1 ≤ j ≤ m.

(4) P1 defines qi = (s[i] · ui ) ⊕ G (ks[i]
i ) (note that qi = ((s[i] · b) ⊕ t i ).

(5) Let Q = [q1 | . . . |qβ ] denote the m × β bit matrix where the i-th column is qi . Let qj

denote the j-th row of the matrix Q (note that qj = (b[j] · s ) ⊕ tj .
(6) P1 sends (y0

j ,y
1
j ) for every 1 ≤ j ≤ m, where

y0
j = x0

j ⊕ H (qj ) and y1
j = x1

j ⊕ H (qj ⊕ s )

(7) P2 computes xb[j]
j = yb[j]

j ⊕ H (tj ), for 1 ≤ j ≤ m.

(8) Output: P1 has no output; P2 outputs (x1
b[1], . . . ,x

m
b[m]).

Efficiency. Overall, when using OT extension, the sender in OTm
�

has to evaluate 2m CRFs and
m PRGs, and send 2m� bits, while the receiver has to evaluate m CRFs and 2m PRGs, and send
mκ bits. (In addition, there is a preprocessing cost of OTκ

κ public-key-based OTs, which is negligible
compared to the main protocol if κ �m.)

2.2.2 Random OT Extension. To improve efficiency of OT extension protocols in specific set-
tings, several works (Nielsen et al. 2012; Asharov et al. 2013) use a special purpose OT function-
ality, called random OT. In a random OT, (x i

0,x
i
1) are chosen uniformly and randomly during the

OT and are output to P1. A random OT extension protocol can be obtained by leaving out the
last message from P1 to P2, containing (yi

0,y
i
1). In more detail, P1 has no input to the protocol and

sets (x j
0 = H (qj ),x

j
1 = H (qj ⊕ s )) in Step 6 in Prot. 1 while P2 sets x i

b[j] = H (tj ) in Step 7. P1 then

outputs m pairs of �-bit strings (x j
0,x

j
1) and P2 outputs x j

b[j]. This random OT extension protocol
reduces the bits that P1 has to send from 2m� to 0 at the expense of the stronger assumption that
H is modeled as a Random Oracle Model (ROM) instead of a CRF.

2.2.3 1-out-of-N OT Extension. In Kolesnikov and Kumaresan (2013), an efficient ( N
1 )-OT

extension protocol was introduced that allows for transfer of short messages with sublinear
communication inκ. The protocol builds on the original OT extension protocol of Ishai et al. (2003)
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and encodes the choices of R using an error correcting code CN = c0, . . . , cN−1, which encodes

log2 N �-bit words with p-bit codewords that have at least κ Hamming distance from each other.
We highlight the differences of the Kolesnikov and Kumaresan (2013) ( N

1 )-OT compared to the

Ishai et al. (2003) ( 2
1 )-OT in Prot. 2.

PROTOCOL 2 (Differences of 1-out-of-N over 1-out-of-2 OT Extension in Prot. 1).

— Input of P1 :m N -tuples of �-bit strings (x j
0, . . . ,x

j
N−1), 1 ≤ j ≤ m.

— Input of P2 : Choice integers bj ∈ {0,N − 1}, 1 ≤ j ≤ m.
— Common Input: Symmetric security parameter κ , β = 2κ , and error correcting code

CN = c0, . . . , cN−1.

(3) P2 computes t i = G (k0
i ),ui = G (k1

i ),vj = tj ⊕ uj ⊕ cbj
, and sendsvi to P1 , for 1 ≤ i ≤

β and 1 ≤ j ≤ m. Note thatT = [t1 | . . . |t β ] denotes a randomm × β bit matrix where
the i-th column is t i and the j-th row is tj (the same holds for U = [u1 | . . . |uβ ] and
V = [v1 | . . . |vβ ]).

(4) P1 defines qi = (s[i] · vi ) ⊕ G (ks[i]
i ) (note that qj = (s ∧ cbj

) ⊕ tj ).
(5) For each 0 ≤ w < N − 1 and 1 ≤ j ≤ m, P1 computes and sends

yw
j = xw

j ⊕ H (qj ⊕ (s ∧ cw ))

(8) Output: P1 has no output; P2 outputs (x1
b1
, . . . ,xm

bm
).

Two things are noteworthy in this ( N
1 )-OT extension protocol. First, we can also use the random

OT extension functionality by having S set x i
w = H (qi ⊕ (s ∧ cw )) and R set x i

b[i] = H (ti ). Second,

to achieve the same computational security level κ = 128 as in the original ( 2
1 )-OT extension pro-

tocol of Ishai et al. (2003), the parties have to increase the number of base-OTs β to the codeword
length p of the underlying code, which depends on N (cf. Kolesnikov and Kumaresan (2013)). The
reason for the increase in base OTs is that the Hamming distance between the codewords has to be
at leastκ. For 2 < N ≤ 2κ, Kolesnikov and Kumaresan (2013) proposes to use the Walsh-Hadamard
code, which encodes up to 2κ words to codewords of length 2κ with relative Hamming distance
κ. However, in our OT-based PSI protocol, we use σ -bit elements as input to the ( N

1 )-OT protocol
of Kolesnikov and Kumaresan (2013) and hence need to handle 2σ = N � 2κ. To process such a
σ -bit element, we need to find an error correcting code that processes 2σ input elements with code-
words of relative Hamming distance 128-bit and short codesize. As an example, when processing
σ = 13-bit elements, we could use a code of size 271-bit, as given in Schürer and Schmid (2006).

In the remainder of the article and for ease of presentation, we fix a linear BCH code, generated
from Morelos-Zaragoza (2006), which encodes up to 277 words to codewords of length 512 with
relative Hamming distance κ, which is denoted as a [277, 512, 129] code. Using the permutation-
based hashing techniques outlined in Section 3.3, and assuming a statistical security of λ = 40
bit, this allows us to process sets with up to 100 billion (237) elements independently of their bit-
length σ , which suffices for most applications.

Efficiency. Evaluating one ( N
1 )-ROT using the ( N

1 )-OT extension protocol of Kolesnikov and
Kumaresan (2013) and our linear BCH code requires 512 bits of communication and N CRF
evaluations. Note that, although the high number of CRF evaluations for the ( N

1 )-OT seems
prohibitive for large N , we only need to perform a constant number (say three) of CRF evaluations
in our protocol. In comparison, naïvely building ( N

1 )-ROT from ( 2
1 )-OT extension would require
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logN ( 2
1 )-OT invocations and hence require 128 logN bits of communication and 2 logN CRF

evaluations. More concretely, when computing the intersection between two million element sets
using our OT-based PSI protocol in Section 5, we would have N ≈ 260 and hence would require
512-bit communication using the ( N

1 )-OT extension protocol of Kolesnikov and Kumaresan (2013)

and 7,680 bits communication using the regular ( 2
1 )-OT extension protocol of Ishai et al. (2003)

with most recent optimizations of Asharov et al. (2013) and Kolesnikov and Kumaresan (2013).

2.3 Hashing Inputs to a Smaller Domain

The performance of some PSI protocols depends on the length of the representation of their inputs.
This is particularly true for protocols that run an OT for each bit of the input representation, e.g.,
the protocols described in Section 4.2 and Section 5.

When the original input representation is sparse, we can first use a hash function to map the
identities of the input items to identities from a smaller domain with a shorter representation. We
then run the original protocol on that representation, resulting in a more efficient execution. The
size of the new domain should be large enough so that no two different input items are mapped to
the same value. The theoretical analysis of this mapping, related to the birthday paradox, shows
that when n items are mapped to a domain of size D using a random hash function, the proba-
bility of experiencing a collision is p = 1 − e−n ·(n−1)/(2D ) , and can be approximated as p ≈ n2/(2D)
(see Motwani and Raghavan (1995, 45). Let us denote the length of the representation of items in
D as d = logD. Then p ≈ n2/(2 · 2d ), and therefore

d = 2 log(n) − 1 − log(p).

3 HASHING SCHEMES AND PSI

Computing the plaintext intersection between two sets is often done using hashing techniques.
The parties agree on a publicly known random hash function to map elements to a hash table,
which consists of multiple bins. If an input element is in the intersection, both parties map it to
the same bin. Hence, the parties only need to compare the elements that are in the same bin to
identify intersecting elements. Thereby, the average number of comparisons between elements
can be reduced from O (n2) to O (n) for pairwise comparisons.

In a similar fashion, PSI protocols that privately compute the equality between values can use
hashing techniques to reduce the number of comparisons (Freedman et al. 2004, 2016). Examples
for such private equality test protocols are Freedman et al. (2004), Huang et al. (2012), and Carter
et al. (2013), the circuit-based protocol in Section 4.2 or our OT-based protocol in Section 5. When
naïvely using hashing techniques, if n items are mapped to n bins, then the average number of
items in a bin is O (1), checking for an intersection in a bin takes O (1) work, and hence the total
number of comparisons is O (n). However, privacy requires that the parties hide from each other
how many of their inputs were mapped to each bin.4 As a result, we must calculate in advance the
number of items that will be mapped to the most populated bin (with high probability), and then
set all bins to be of that size. (This can be done by storing dummy items in bins which are not fully
occupied.) This change hides the bin sizes but also increases the overhead of the protocol, since the
number of comparisons per bin now depends on the size of the most populated bin (worst case)
rather than on the actual number of items in the bin (average case).

4Otherwise, and since the hash function is public, some information is leaked about the input. For example, if no items
of P1 were mapped to the first bin by the hash function h, then P2 learns that P1 has no inputs in the set h−1 (1), which
covers about 1/n of the input range.
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In fact, this worst case analysis is key to balancing security and efficiency. On one hand, if the
estimation is too optimistic, the probability of a party failing to perform the mapping becomes
intolerable. As a result, the output might be inaccurate (since not all items can be mapped to bins),
or one party needs to request a new hash function (a request that leaks information about the
input set of that party). On the other hand, the number of performed comparisons and hence the
protocol overhead can become prohibitive if the analysis is too pessimistic. The work of Freedman
et al. (2004, 2016) gave asymptotic values for this analysis and of the resulting overhead. They left
the task of setting appropriate parameters for the hashing schemes to future work.

In this section, we revisit the simple hashing (Section 3.1) and cuckoo hashing (Section 3.2)
schemes, used in Freedman et al. (2004, 2016). We describe how to use both hashing schemes in the
context of PSI and give a concrete parameter analysis that balances security and efficiency. Finally,
we show how the bit-length of the representations that are stored in the bins can be reduced using
permutation-based mapping, which improves the performance of some PSI protocols (Section 3.3).

Note that, for our hashing failure analysis, we use a dedicated hashing failure parameter η,
which is different from the statistical security parameter λ. We use a dedicated parameter since our
analysis requires running empirical experiments for determining concrete numbers, which would
have cost several hundred thousand USD for 240 iterations in the Amazon EC2 cloud. Hence, we
perform the experiments and give concrete numbers for η = 30 and interpolate from these results
to η = 40.

3.1 Simple Hashing

In the simplest hashing scheme, the hash table consists of b bins B1 . . . Bb . Hashing is done by
mapping each input element e to a bin Bh (e ) using a hash function h : {0, 1}σ �→ [1,b] that was
chosen uniformly at random and independently of the input elements. An element is always added
to the bin to which it is mapped, regardless of whether other elements are already stored in that bin.

3.1.1 Simple Hashing for PSI. To apply simple hashing in the context of PSI, both parties map
their elements to b bins. The intersection is then computed by having both parties separately
compare the items mapped to bin i ∈ [1, . . . ,b]. To hide the number of elements that were mapped
to a bin, the parties need to pad their bins using dummy elements to contain maxb elements. This
maximum bin size must ensure that, except with probability < 2−η , no bin will contain more than
maxb real elements.

3.1.2 Simple Hashing Parameter Analysis. Estimating maxb has been subject to extensive re-
search (Gonnet 1981; Raab and Steger 1998; Mitzenmacher 2001). When hashing n elements to
b = n bins, Gonnet (1981) showed that maxb =

ln n
ln ln n

(1 + o(1)) with high probability. In this case,
there is a difference between the expected and the maximum number of elements mapped to a bin,
which are 1 andO ( ln n

ln ln n
), respectively. Let us revisit the analysis of Motwani and Raghavan (1995)

that analyzes the probability of the following event, “n balls are mapped at random to b bins, and
the most occupied bin has at least k balls”:

P (“∃ bin with ≥ maxb elements”) ≤
b∑

i=1

P (“bin i has ≥ maxb elements”) (1)

= b · [P (“bin i has ≥ maxb elements”)] (2)

= b ·
[
(

n∑
i=maxb

(
n

i

)
·
(

1

b

) i

·
(
1 − 1

b

)n−i ]
. (3)
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Table 3. The Maximum Bin Sizes maxb Required to Ensure No Overflow Occurs When Mapping

n Items to b = n Bins, According to Equation (3)

Hash Failure Parameter η 30 40

Set Size n 28 212 216 220 224 28 212 216 220 224

Maximum Bin Size maxb (Equation 3) 13 15 16 17 18 16 17 18 19 20

Table 4. The Maximum Bin Sizes maxb Required to Ensure No Overflow Occurs When Mapping

n = 2n1 Items to b = 2.4n2 Bins for n1 � n2, According to Equation (3)

Set Size n2 28 212

Set Size n1 216 220 224 216 220 224

Hash Failure Parameter η = 30

Maximum Bin Size maxb (Equation 3) 323 3,825 56,196 48 329 3,852

Hash Failure Parameter η = 40

Maximum Bin Size maxb (Equation 3) 338 3,881 56,412 53 344 3,905

Case n = b. Using GMP with 1, 024-bit floating point precision, we calculate maxb when map-
ping n ∈ {28, 212, 216, 220, 224} elements to b = n bins using Equation (3), choose the minimal value
of maxb that reduces the failure probability to below 2−30, and 2−40 and depict the results in Table 3.

Case n � b. In certain settings, the server P1 has a much larger set than the client P2. For simple
hashing, this translates to the number of elements n being much larger than the number of bins b.
Later in the article, we perform experiments for this setting (cf. Section 6.2.3), where P2 has a set
of size n2 ∈ {28, 212}, while P1 has a set of size n1 ∈ {216, 220, 224} and both map n = 2n1 elements
into b = 2.4n2 bins. To determine maxb in this setting, we evaluate Equation (3) with these set
sizes and depict maxb for hashing failure probabilities 2−30 and 2−40 in Table 4. From the results,
we can observe that as the fraction n1/n2 grows, the maximum number of bin grows closer to the
expected number of bins.

3.2 Cuckoo Hashing

Cuckoo hashing (Pagh and Rodler 2001) uses k hash functions h1, . . . ,hk : {0, 1}σ �→ [1,b] to map
m elements to b = ϵn bins. The scheme avoids collisions by relocating elements when a collision is
found using the following procedure: An element e is inserted into a binBh1 (e ) . Any prior contentso
of Bh1 (e ) are evicted to a new bin Bhi (o) , using hi to determine the new bin location, where hi (o) �
h1 (e ) for i ∈ [1 . . .k]. The procedure is repeated until no more evictions are necessary or until a
threshold number of relocations has been performed. In the latter case, the last element is put in
a special stash. A lookup in this scheme is very efficient as it only compares e to the k items in
Bh1 (e ), . . . ,Bhk (e ) and to the s items in the stash. The size of the hash table depends on the number
of hash functions k as well as on the stash size s . The higher k is chosen, the more likely it is that
the insertion process succeeds and hence the smaller the number of bins b becomes. On the other
hand, the higher s is chosen, the more insertion failures can be tolerated.

3.2.1 Cuckoo Hashing for PSI. A major problem occurs when using cuckoo hashing for PSI:
every item can be mapped to one of k bins, and therefore it is unclear with which of P1’s bins
should P2 compare its own input elements. Furthermore, the protocol must hide from each party
the choice of bins made by the other party to store an element, since that choice depends on
other input elements and might reveal information about them. The solution to this is that P2 uses
cuckoo hashing whereas P1 maps each of its elements using simple hashing with each of the k
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hash functions. In addition, for cuckoo hashing, we must ensure that the hashing succeeds except
with probability <2−η , since a hashing error on the side of P2 reveals information about its set or
results in an incorrect result. As in PSI with simple hashing (cf. Section 3.1), P1 will need to pad its
bins to size maxb using dummy elements d1 � d2.

3.2.2 Cuckoo Hashing Parameter Analysis. Cuckoo hashing has three parameters that affect the
hashing failure probability: the stash size s , the number of hash functions k , and the number of
bins b = ϵn (Kirsch et al. 2009). It was shown in Kirsch et al. (2009) that cuckoo hashing of n ele-
ments into (1 + ζ )n bins with ζ ∈ (0, 1) for any k ≥ 2(1 + ζ ) ln( 1

ζ
) and s ≥ 0 fails with probability

O (n1−c (s+1) ), for a constant c > 0 and n �→ ∞. The constants in the big “O” notation are unclear,
which makes it hard to compute a concrete failure probability given a set of parameters.

In the following, we empirically determine the failure probability given the stash size s , the
number of hash functions k , and the number of bins b. We analyze the effect of all three param-
eters separately. We first fix the number of bins b = 2.4n and hash functions k = 2 (as was done
in Kirsch et al. (2009)) and determine the necessary stash sizes s . In order to improve performance,
we increase the number of hash functions k and determine the number of binsb for which no stash
is required (i.e., s = 0). While both approaches achieve good overhead when n1 = n2, they perform
poorly when the parties have unequal set sizes n1 � n2. Hence, in the last step, we show how to
obtain a low value for the stash size s and a low number of hash functions k by increasing the
number of bins b = ϵn, which results in a collection of trade-offs for unequal set size applications.

Adjusting the Stash Size s. In the following, we identify the exact stash size s that ensures
that the hashing failure probability is smaller than a given 2−η . To obtain concrete numbers,
we ran 230 repetitions of cuckoo hashing, where we mapped n items to b = ϵn = 2.4n bins, for
n ∈ {211, 212, 213, 214}, using k = 2 hash functions and recorded the stash size s that was needed for
cuckoo hashing to be successful. We fix ϵ = 2.4 as was done in the original cuckoo hashing with
a stash paper (Kirsch et al. 2009). The solid lines in Figure 1 depict the probability that a stash of
size s prevented a hashing failure.

From the results we can observe that, to achieve 2−30 failure probability of cuckoo hashing, we
require a stash of size s = 6 for n = 211, s = 5 for n = 212, and s = 4 for both n = 213 and n = 214

elements. However, in our experiments, we need the stash sizes for smaller as well as larger values
of n to achieve a cuckoo hashing failure probability of 2−30. To obtain the failure probabilities
for larger values of n, we extrapolate the results using linear regression and illustrate the results
as dotted lines in Figure 1. We give the extrapolated stash sizes for achieving a hashing failure
probability of 2−30 and 2−40 for n ∈ {28, 212, 216, 220, 224} in Table 5. We observe that the stash size
for achieving a failure probability of 2−30 is drastically reduced for higher values ofn: forn = 216 we
need a stash of size s = 4, forn = 220 we need s = 3, and forn = 224 we need s = 2. This observation
is in line with the asymptotic failure probability of O (n−s ).

Adjusting the Number of Hash Functions k . The original cuckoo hashing procedure (Pagh and
Rodler 2004) fixed the number of hash functions k = 2. It was later shown in Dietzfelbinger et al.
(2010) that increasing the number of hash functions k > 2 achieves much better utilization of bins
in the hash table, i.e., while the average utilization for k = 2 hash functions is around 50%, the
utilization increases to 91.8% for k = 3, 97.7% for k = 4, and 99.2% for k = 5. Hence, higher values
of k allow us to drastically decrease the number of bins. However, similar to the previous stash
allocation, the analysis in Dietzfelbinger et al. (2010) was only asymptotic and does not allow us
to compute the concrete hashing failure probability.

To determine the concrete failure probability, we again perform 230 iterations of cuckoo hashing
on n = 1,024 elements using k ∈ {2, 3, 4, 5} hash functions. Our goal in this analysis is to determine
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Fig. 1. Error probability when mapping n ele-

ments to 2.4n bins using cuckoo hashing with

k = 2 hash functions for stash sizes 1 ≤ s ≤ 6.

The solid lines correspond to actual measure-

ments, the dashed lines were extrapolated us-

ing linear regression.

Table 5. Required Stash Sizes s to Achieve 2−η Failure

Probability When Mapping n Elements Into 2.4n Bins

# Elements n 28 212 216 220 224

Stash s (η = 30) 8 5 3 2 1
Stash s (η = 40) 12 6 4 3 2

Table 6. Maximum Bin Sizes maxb Required to Ensure No Overflow Occurs When Mapping n Items

to b Bins Using k Hash Functions, According to Equation (3)

Hash Failure Parameter η 30 40

Set Sizes n1 = n2 28 212 216 220 224 28 212 216 220 224

maxb for k = 2 (n = 2n1,b = {2.4/2.4}n2) 13 14 15 16 17 15 16 17 18 19
maxb for k = 3 (n = 3n1,b = {1.20/1.27}n2) 19 21 22 23 25 22 23 25 26 27
maxb for k = 4 (n = 4n1,b = {1.07/1.09}n2) 23 25 26 28 29 27 28 29 31 32
maxb for k = 5 (n = 5n1,b = {1.04/1.05}n2) 26 28 29 31 32 30 31 33 34 36

the minimum number of bins bmin = ϵminn for which the hashing procedure succeeds without a
stash except with probability 2−30. To determine the value of bmin , we run cuckoo hashing on an
initialization value ϵmin = 1.0 and increase ϵmin by 0.01 each time more than one hashing fail-
ure has occurred. An interesting observation that we made during the experiments with multiple
hash functions was that after a certain threshold value, the hashing failure probability decreased
drastically, e.g., only increasing ϵ by as little as 0.1 when using k = 5 hash functions could re-
duce the required stash size from s = 2 to s = 0. Overall, we determined the following bin sizes
that resulted in a hashing failure probability of <2−30: ϵmin = 1.20 for k = 3, ϵmin = 1.07 for k = 4,
and ϵmin = 1.04 for k = 5. We extrapolate the values of ϵmin for η = 40 by adding an additional
security margin of factor 4/3 to the ϵmin values for η = 30 which results in ϵmin = 1.27 for k = 3,
ϵmin = 1.09 for k = 4, and ϵmin = 1.05 for k = 5.

A consequence of increasing the number of hash functions is that the party P1, who uses simple
hashing, needs to increase the maximum bin size maxb . This is due to two factors: on one hand P1

needs to map each element k times to its hash table. On the other hand, the parties decrease
the number of bins due to the reduced ϵ . We re-compute the maximum bin size of P1 given the
increased number of hash functions using Equation 3 and give the results in Table 6. Given these
results, we can compute the total number of comparisons by multiplying the number of binsb with
maxb . From these results, we observe that k = 3 achieves the best performance for equal set sizes.

Adjusting the Number of Bins b. The required stash sizes for b = 2.4n bins and k = 2 hash func-
tions are relatively large for small set sizes (e.g., s = 8 forn = 256). In case of equal set sizesn1 = n2,
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Fig. 2. Error probability when mapping 256 el-

ements to b = 256ϵ bins using cuckoo hashing

with k = 2 hash functions for stash sizes 0 ≤
s ≤ 4. The solid lines correspond to actual mea-

surements, the dashed lines were extrapolated

using logarithmic regression.

Table 7. Required Number of Bins b = 256ϵ to

Achieve < 2−η Hashing Failure Probability Given

a Fixed Stash Size s

Stash Size s 0 1 2 3 4

ϵ (η = 30) 166 7.8 4.2 3.4 3
ϵ (η = 40) 2,500 16 6.2 4.4 3.8

this does not impact the performance of the protocols much. In the case of unequal set sizes n1 �
n2, however, large stash sizes will greatly decrease the performance, since each element in the
stash needs to be compared with each item in the large set with possibly millions of elements.
Furthermore, even when increasing the number of hash functions k > 2 to remove the stash, P1

would need to map each of its million elements k times into its hash table, which increases maxb

and hence incurs a great overhead.
To improve the performance for unequal set sizes, we fix the stash sizes s ∈ {0, 1, 2, 3, 4} and

the number of hash functions to k = 2 and try to identify the number of bins b = ϵn such
that the hashing failure probability is less than 2−η . Similar to the previous experiments, we
ran 230 repetitions of cuckoo hashing, mapping n items to b = ϵn bins, for n = 256 and ϵ =
{2.4, 3, 4, 5, 6, 7, 8, 9, 10, 20, 100, 200}, and recorded the stash size s that was needed for cuckoo hash-
ing to be successful. We chose n = 256 since it is a good approximation of the number of contacts
in a user’s addressbook and it is used in our experiments in Section 6.2.3.

The results of our experiments are depicted as solid lines in Figure 2. From the results, we can
observe that the probability of requiring a stash size of s decreases logarithmically with growing ϵ :
while for small ϵ the probabilities decrease quickly, they decrease slower for large ϵ , e.g., when
increasing ϵ from 2.4 to 4, the hashing failure probability for a stash of size s = 0 decreases from
2−6 to 2−12. If, on the other hand, ϵ is increased from 20 to 100, the hashing failure probability
for s = 0 only decreases from 2−21 to 2−28. Since we are interested in identifying ϵ such that the
probability of requiring a stash of size s decreases below 2−η , we use regression via a logarithmic
function to extrapolate the probabilities. These estimated probabilities are depicted as dotted lines
in Figure 2 and the smallest ϵ for which the hashing failure probability decreases below 2−30 and
2−40 is given in Table 7.

The estimations indicate that, to reduce the stash size to s = 0, we would need to set ϵ = 166
to guarantee 2−30 hashing failure probability and to ϵ = 2,500 to guarantee 2−40 hashing failure
probability. When allowing a bigger stash size s = 1, ϵ decreases drastically, allowing us to set
ϵ = 7.8 for 2−30 hashing failure probability and ϵ = 16 for 2−40 hashing failure probability. In our
experiments, the exact choice of ϵ and s depends on the difference between the set sizes n1 and n2

as well as the protocol that is used (cf. Section 6.2.3), i.e., if n2 is only a few hundred while n1 is
several million, it can be more efficient to choose ϵ = 166 to achieve stash size s = 0.
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3.3 Permutation-Based Hashing

The overhead of our circuit-based PSI protocols in Section 4 and of the OT-based PSI protocol
in Section 5 depends on the bit-length σ of the items that the parties map to bins. The bit-length
of the stored items can be reduced based on a permutation-based hashing technique that was
suggested in Arbitman et al. (2010) for reducing the memory usage of cuckoo hashing. That
construction was presented in an algorithmic setting to improve memory usage. As far as
we know, this is the first time that it is used in secure computation or in a cryptographic
context.

The construction uses a Feistel-like structure. Let x = xL |xR be the bit representation of an input
item, where |xL | = logb, i.e., is equal to the bit-length of an index of an entry in the hash table. (We
assume here that the number of bins b in the hash table is a power of 2. It was shown in Arbitman
et al. (2010) how to handle the general case.) Let f () be a random function whose range is [0,b − 1].
Then item x is mapped to bin xL ⊕ f (xR ). The value that is stored in the bin is xR , which has a
length that is shorter by logb bits than the length of the original item. This is a great improvement,
since the length of the stored data is significantly reduced, especially if |x | is not much greater than
logb. As for the security, since the function f is random, the maximum load of a bin is logn with
high probability.

The structure of the mapping function ensures that if two items x ,x ′ store the same value xR =

x ′R in the same bin, then it must hold that x = x ′: if the two items are mapped to the same bin,
then xL ⊕ f (xR ) = x ′L ⊕ f (x ′R ). If the stored values are equal and hence satisfy xR = x ′R , it must
also hold that xL = x ′L , and therefore x = x ′.

As a concrete example, assume that |x | = 32 and that the table has b = 220 bins. Then the values
that are stored in each bin are only 12 bits long, instead of 32 bits in the original scheme. Note
also that the computation of the bin location requires a single instantiation of f , which can be
implemented with a medium-size lookup table. Note that, when mapping an element into a bin
using multiple hash functions, e.g., when using cuckoo hashing, the index of the hash function
needs to be added to the representation in the bin to preserve uniqueness. This observation was
also pointed out in Lambæk (2016).

4 CIRCUIT-BASED PSI

Unlike special purpose PSI protocols, the protocols that we describe in this section are based on
generic secure computation techniques that can be used for computing arbitrary functionalities.
Two of the most prominent generic secure computation protocols in the semi-honest model are
the Goldreich-Micali-Wigderson (GMW) protocol (Goldreich et al. 1987) and Yao’s garbled circuits
protocol (Yao 1986). A detailed description and comparison of these two protocols is given in
Schneider and Zohner (2013). Both protocols securely evaluate a function by representing it as
Boolean circuit, where the parties evaluate cryptographic operations and perform communication
for each AND gate in the circuit. Hence, the complexity of generic protocols is often measured
in the circuit size, which is the overall number of AND gates. In addition, the complexity of the
GMW protocol is also measured in the circuit depth, which is the highest number of AND gates
from any input to any output, since the GMW protocols need to perform interaction for each AND
gate. In this section, we outline the sort-compare-shuffle (SCS) circuit of Huang et al. (2012), a
Boolean circuit of size O (n logn) for computing the PSI functionality (Section 4.1). We then show
how to use the hashing methods described in Section 3 to achieve better complexity than the
SCS circuit using a naïve pairwise-comparison circuit (Section 4.2). Finally, we revisit the method
of Pinkas et al. (2009) where generic secure computation techniques are used to instantiate an
OPRF (cf. Section 2.1), which is used to process the input elements of one party (Section 4.3).
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The usage of generic protocols has the advantage that the functionality of the protocol can eas-
ily be extended, without having to change the protocol or the security of the resulting protocol.
For example, it is straightforward to change the SCS and PWC protocols to compute the size of the
intersection, or a function that outputs if the intersection is greater than some threshold, or com-
pute a summation of values (e.g., revenues) associated with the items that are in the intersection.
Computing these variants using other PSI protocols is non-trivial.

4.1 Sort-Compare-Shuffle Circuit for PSI

A Boolean circuit for PSI that hasO (n logn) size is the SCS circuit described in Huang et al. (2012).
(We refer here to the SCS circuit that uses the Waksman permutation for shuffling.) The SCS circuit
computes the intersection between two sets by first sorting both sets into a single sorted list, then
comparing all neighboring elements for equality, and finally shuffling the intersecting elements to
hide any information that could be obtained from the resulting order.

The overall size of the SCS circuit for inputs of bit-length σ is σ (3n log2 n + 4n) − n AND gates,
which is the sum of 2σn log2 (2n) AND gates for the sort circuit, σ (3n − 1) − n AND gates for the
compare circuit, and σ (n log2 n − n + 1) for the shuffle circuit. It is important to note that approxi-
mately 2/3 of the AND gates in the circuit are due to multiplexers. These multiplexer gates can be
efficiently evaluated in GMW using vector multiplication triples (Demmler et al. 2015), reducing
the cost in GMW from σ AND gates to the equivalent of 1 AND gate for a σ -bit multiplexer.

Instantiation. For our experiments in Section 6, we used GMW to evaluate a depth-optimized
variant of the SCS circuit, where the comparison gates have 3σ − log2 (σ ) − 2 AND gates instead
of σ but have a depth of log2 σ instead of σ for σ -bit values (cf. Schneider and Zohner (2013)).
Consequently, the size of the SCS circuit is increased from approximately 3nσ log2 n to 5nσ log2 n,
but its depth is decreased from σ log2 n to log2 (n) log2 (σ ). Using the vector multiplication-triple
optimization of Demmler et al. (2015), the size of the depth-optimized SCS circuit is again decreased
back to approximately 3nσ log2 n.

4.2 Pairwise Comparison (PWC) and Hashing

A simpler circuit for performing the PSI functionality is a pairwise-comparison (PWC) circuit,
where each element in the set of P1 is compared to each element in the set of P2. However, this
circuit would scale withO (n1n2), making it impractical for larger sets. Using the hashing methods
from Section 3, we can drastically reduce the number of comparisons as follows:

—Both parties use a table of size b = O(n2) to store their elements. Our analysis (Section 3.2.2)
shows that settingb = ϵn2 reduces the error probability to be negligible for reasonable input
sizes (28 ≤ n2 ≤ 224) when setting the stash size accordingly (cf. Section 3.2).

—P2 maps its input elements to b bins using cuckoo hashing with k hash functions and a
stash; empty bins are padded with a dummy element d2.

—P1 maps its input elements into b bins using simple hashing. The size of the bins is set to be
maxb , a parameter that is set to ensure that no bin overflows (cf. Section 3.1.2). The remain-
ing slots in each bin are padded with a dummy element d1 � d2. The analysis described in
Section 3.1.2 shows how maxb is computed and is set to a value smaller than logn2.

—The parties securely evaluate a circuit that compares the element that was mapped to a bin
by P2 to each of the maxb elements mapped to it by P1.

—Finally, each element in P2’s stash is checked for equality with all n1 input elements of P1

by securely evaluating a circuit computing this functionality.
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—To reduce the bit-length of the elements in the bins, and, respectively, the circuit size, the
protocol uses permutation-based hashing as described in Section 3.3. (Note that using this
technique is impossible with SCS circuits of Huang et al. (2012).)

Efficiency. Let m be the number of element comparisons that are performed in the circuit with
m = b ·maxb + sn1, i.e., for each of theb bins, the parties perform maxb comparisons per bin as well
asn1 comparisons for each of the s positions in the stash. Each element is of length σ ′ bits, which is
the reduced length of the elements after being mapped to bins using permutation-based hashing,
i.e., σ ′ = σ − log2 b. A comparison of two σ ′-bit elements is done by computing the bitwise XOR
of the elements and then a tree of σ − 1 OR gates, with depth 
log2 σ

′�. The topmost gate of this
tree is a NOR gate. Afterwards, the circuit computes the XOR of the results of all comparisons
involving each item of P2. (Note that, at most, one of the comparisons results in a match, therefore
the circuit can compute the XOR, rather than the OR, of the results of the comparisons.) Overall,
the circuit consists of aboutm · (σ ′ − 1) ≈ n1 · (maxb + s ) · (σ ′ − 1) AND gates and has a depth of

log2 σ �.

Advantages. The PWC circuit offers several advantages over the SCS circuit:

—Compared to the number of AND gates in the SCS circuit, which is 3nσ logn (cf. Huang et al.
(2012), and recalling that σ ′ < σ , and that maxb was shown to be no greater than 2 logn for
k = 2 and 28 ≤ n ≤ 224 in Table 3 (and not greater than logn asymptotically), the number
of non-linear gates in the PWC circuit is smaller by more than a factor 1.5 compared to
the number of non-linear gates in the SCS circuit (even though both circuits have the same
asymptotic sizes).

—The main advantage of the PWC circuit is the low AND depth of log2 σ , which is also inde-
pendent of the number of elements n. This affects the overhead of the GMW protocol that
requires a round of interaction for every level in the circuit.

—Another advantage of the PWC circuit is its simple structure: The same small comparison
circuit is evaluated for each bin. This property allows for a SIMD (Single Instruction Multiple
Data) evaluation with a very low memory footprint and easy parallelization.

—Finally, the efficiency of the SCS circuit is tailored for equal set sizes. For unequal set sizes
n1 � n2, its circuit size does not scale well and improves by at most a factor of 2. In contrast,
the PWC circuit scales much better for unequal set sizes and in our experiments improves
by factor 3.2x to 5.4x.

4.3 Secure Evaluation of an OPRF

Another method for circuit-based PSI was outlined in Freedman et al. (2005) and Pinkas et al.
(2009) and uses an OPRF (cf. Section 2.1). In this protocol, the parties use secure computation to
evaluate a pseudo-random function Fk (y) = z, which takes as input a random key k from P1 and
an element y from P2 and returns the output z to P2. The use of secure computation guarantees
the obliviousness, i.e., that P1 learns no information about y or z while P2 learns no information
about k . The PSI functionality can then be achieved by evaluating the OPRF on each element in
the set of P2 and having P1 locally evaluate and send Fk (xi ) for all elements xi ∈ X . P2 can then
identify the intersection by computing the plaintext intersection between his output of the OPRF
with the elements sent by P1.

Efficiency. The efficiency of the circuit-based OPRF construction depends mainly on the instan-
tiation of the pseudo-random function F . While it is possible to instantiate F with a cipher that
is optimized for use in secure computation such as Albrecht et al. (2015), we consider an AES-
based instantiation in our efficiency analysis, since the security of AES is better established and
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many of today’s CPUs have native instructions for AES (AES-NI). The number of AND gates in
the AES circuit is 5,120 and its multiplicative depth is 60 (Boyar and Peralta 2010). In total, we have
to perform n2 parallel oblivious AES evaluations, resulting in a total of 5,120n2 AND gates and a
depth of 60. P1, on the other hand, can perform a plaintext AES evaluation on his elements and
only needs to send n1 collision-resistant strings length of � = λ + log(n1) + log(n2) bit. Hence, due
to the large constants, the OPRF-based approach is less efficient in concrete terms than the SCS
or PWC circuits, even though it scales with O (n) while both other circuits scale with O (n logn).
However, if the set sizes of the parties greatly differ, i.e., for n1 � n2, the size of the OPRF-based
circuit improves by factor n1/n2 and this approach can be more efficient than other circuit-based
constructions and even more efficient than all other PSI protocols, since the elements in the much
larger set of P1 can be processed at very low cost (cf. Section 6.2.3).

5 PRIVATE SET INTERSECTION VIA OT

In this section, we describe our new OT-based PSI protocol, of which an earlier version appeared
in Pinkas et al. (2014, 2015). In contrast to the conference versions, we improve our protocol such
that its complexity is now independent of the bit length σ for realistic set sizes. The core of our
OT-based PSI protocol is an efficient OPRF (cf. Section 2.1) instantiation using recent OT extension
techniques, in particular the random OT functionality (Nielsen et al. 2012; Asharov et al. 2013)
and the ( N

1 )-OT of Kolesnikov and Kumaresan (2013), which are essentially used to implement an
OPRF. Our protocol operates in three steps: the parties hash their elements into hash tables, mask
their elements using the OPRF, and compute the plaintext intersection of these masked elements to
identify the intersecting elements. The hashing step uses the methods from Section 3 for hashing
the elements to bins. In the following, we describe the OPRF construction (Section 5) in more
detail.

Hashing: In the first step of our OT-based PSI protocol, the parties have mapped their elements
into hash tablesT1 andT2, where the elements in the tables have bit-length μ = σ − log2 b + log2 k
due to permutation-based mapping (cf. Section 3.3). P1 has used simple hashing and hence its hash
tableT1 has two dimensions (in the sense of a two-dimensional array in a programming language),
where the first dimension addresses the bins and the second dimension addresses the elements in
the bins. P2 has used cuckoo hashing and hence its hash table T2 has only one dimension, which
addresses the bins. Our OT-based PSI protocol then evaluates for each bin i an ideal OPRF func-
tionality F (cf. Section 2.1) where P1 inputs a random key ti and P2 inputs the μ-bit element T2[i]
and obtains random output M2[i] = Fi (T2[i]). The OPRF must ensure that P1 learns no informa-
tion on the input of P2 and that P2 learns no information except the outputs that correspond to its
elements. Since P1 knows the secret OPRF key ti , it can locally evaluate F on its elements T1[i][j]
to obtain M1[i][j] = OPRFti

(T1[i][j]), for 1 ≤ j ≤ |T1[i]|.
Computing an OPRF: The main observation is that we can instantiate the OPRF functional-

ity using OT. This step can be implemented using random OT, since there is no need for the
sender to explicitly set the transmitted values. Furthermore, we can use the ( N

1 )-ROT protocol
of Kolesnikov and Kumaresan (2013), where the sender receives a key t and a receiver with an
input x receives Ft (x ). In more detail, for μ-bit inputs we use one 1-out-of-2μ random OT on �-bit
strings (( 2μ

1 )-ROT1
�), where P1 plays the sender who has no inputs and receives as output the ran-

dom OPRF key ti , while P2 plays the receiver who inputsT2[i] and obtains Fti
(T2[i]), for 1 ≤ i ≤ b.

P1 can then use the random OPRF key ti , which corresponds to the valuesqi and s in the Kolesnikov
and Kumaresan (2013) protocol in Prot. 2, to evaluate the OPRF outputs M1[i][j] = Fti

(vj ) on its
input values vj = T1[i][j] as M1[i][j] = H (qi ⊕ (s ∧ cvj

)), where cvj
is vj -th codeword from the

error-correcting code CN , for 1 ≤ i ≤ b and 1 ≤ j ≤ |T1[i]|. In fact, this observation has also been
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used in parallel to our work by Kolesnikov et al. (2016) to realize an OT-based PSI protocol that is
independent of the element bit-length σ .

PROTOCOL 3 (Our OT-based PSI Protocol).

— Input of P1 : X = {x 1, . . . ,x n1 }.
— Input of P2 : Y = {y 1, . . . ,y n2 }.
— Common Input: Bit-length of elements σ ; number of bins b = ϵn2 (cf. Section 3.2.2);

k random hash functions {h1, . . . ,hk } : {0, 1}σ �→ [1...b ]; reduced bit-length of items
in the hash table μ = σ − log2 b + log2 k (cf. Section 3.3); symmetric security parameter
κ ; statistical security parameter λ ; mask-length � = λ + log2 (k n1 ) + log2 (n2 ); N =
2μ ; dummy element d2 ; stash size s .

— Oracles and cryptographic primitives: Both parties have access to a ( N
1 )-ROT1

�
functionality.

(1) Hashing:

(a) P1 maps the elements in its set X into a two-dimensional hash tableT1[ ][ ] using
simple hashing and k hash functions {h1, . . . ,hk }. The first dimension has size
b and addresses the bin in the table while the second dimension addresses the
elements in the bins.

(b) P2 maps the elements in its setY into a one-dimensional hash tableT2[ ] and stash
S[ ] using cuckoo hashing and k hash functions {h1, . . . ,hk }. The hash table has
size b and the stash has size s . P2 then fills all empty entries in T2 and S with d2 .

Let |T1[i]| be the number of elements that are stored in the i-th bin of the hash table
T1 and μ be the bit-length of these elements for 1 ≤ i ≤ b .

(2) OPRF evaluation (via OT):

For each bin 1 ≤ i ≤ b , the parties perform the following steps:
(a) Let vj = T1[i][j] and w = T2[i] for 1 ≤ j ≤ |T1[i]|.
(b) The parties invoke the OPRF functionality (instantiated using ( N

1 )-ROT1
� ), where

P1 learns a random key ti and PB inputs its elementw and obtains M2[i] = Fti
(w ).

(c) P1 who holds the OPRF key ti locally evaluates Fon its inputs vj and obtains
M1[i][j] = Fti

(vj ).
Stash: For each element in the stash S , the parties repeat the same steps where, for
the i-th stash position, P1 evaluates the OPRF on his whole input set X and obtains
n1 masks MS1 [i] while P2 evaluates the OPRF on S[i] and obtains one mask MS2 [i].

(3) Plaintext Intersection

(a) Let
⋃

1≤i≤b ,1≤j≤ |T1[i] |M1[i][j]. P1 randomly permutes V and sends it to P2 .
(b) P2 computes the intersection Z = {T2[i]|M2[i] ∈ V }.
Stash: The parties perform the same operation to identify whether an element on the
stash is in the intersection: P1 permutes and sends MS1 [i] to P2 , who adds S[i] to the
intersection Z if MS2 [i] ∈ MS1 [i].

— Output: P1 has no output; P2 outputs the intersection Z = X ∩ Y .

Computing the intersection: After P1 has evaluated the OPRF for all bins i , it collects the OPRF
outputsM1[i][j] for all j ∈ [1...|T1[i]|] to a setV , permutes the order of the elements ofV and sends
the result. P2 identifies whether T2[i] is in the intersection by checking whether M2[i] matches

ACM Transactions on Privacy and Security, Vol. 21, No. 2, Article 7. Publication date: January 2018.



Scalable PSI Based on OT Extension 7:23

any element in V . If the element T2[i] matches any element in T1[i], their OPRF outputs will be
equal. If T2[i] matches no element in T1[i], their OPRF outputs will differ except with probability
|T1[i]| · 2−� . The elements in the stash of P2 are processed independently in a similar fashion: both
parties evaluate the OPRF, P2 obtains the output for the elements in its stash, and P1 evaluates the
OPRF locally on each element of its set and sends the permuted outputs to P2, who identifies the
intersection.

Efficiency. The main computation and communication overhead comes from the OPRF evalua-
tion. The efficiency of the OPRF depends greatly on the underlying instantiation. We instantiate
the OPRF that maps μ-bit inputs to �-bit outputs using the ( 2μ

1 )-ROT1
� protocol of Kolesnikov

and Kumaresan (2013) with the linear BCH code [277, 512, 129], generated by Morelos-Zaragoza
(2006) (cf. Section 2.2.3). Overall, the parties perform s + b OPRF evaluations, which correspond
to ( 2μ

1 )-ROTs+b
� , where the stash size s and the number of bins b = ϵn2 are chosen to achieve

negligible cuckoo hashing error probability (cf. Section 3.2.2). Regarding the communication, P2

sends 512(s + b) bits for the ( 2μ

1 )-ROT, while P1 sends k�n1 bits for the permuted OPRF out-
put, where k is the number of hash functions used for cuckoo hashing (cf. Section 3.2.2) and
� = log2 (kn1) + log2 (n2) + λ. Regarding computation, note that in a naïve ( 2μ

1 )-ROT evaluation
the sender P1 would need to perform 2μ CRF evaluations, one for each message. However, since P1

only needs to obtain the output for actual elements in its bins, it only needs to perform (k + s )n1

CRF evaluations, which is independent of μ.

Correctness. In the following, we analyze the correctness of the scheme. We assume that in Step 1
in Prot. 3, P1 has used simple hashing to map each element k times into the hash tableT1 while P2

has used cuckoo hashing to map each element once into the hash table T2.
If x = y, then P1 and P2 will have the same item in a bin in their hash tables (P2 has mapped

the item to one of k bins while P1 has mapped the item to all k bins). For this bin i , P2 obtains
Mx = Fti

(x ) as output of the OPRF and P1 can locally compute My = Fti
(y) with Mx = My , and P2

successfully identifies equality.
If x � y, then the probability that Mx = My is 2−� . However, we require that all OPRF outputs

M2 for elements in the hash table T2 of P2 are distinct from all outputs M1 for elements in the
hash table T1 of P1, which happens with probability kn1n22−� . Thus, to achieve correctness with
probability 1-2−λ , we must increase the bit-length of the OTs to � = λ + log2 (kn1) + log2 (n2).

Security. The proof of security follows the common security definitions of secure computa-
tion (Goldreich 2004) for semi-honest adversaries. We show that the view of both P1 and P2 in
the PSI protocol can be simulated given only their input and output to the protocol. We assume
that the ( N

1 )-ROT protocol implements an ideal ( N
1 )-ROT functionality. Namely, in the analysis

we can replace this protocol with a trusted party that receives an input x from the receiver and no
input from the sender, and outputs a random key t to the sender and the value Ft (x ) to the receiver.

The simulation of P1’s view is obvious, since the only information that it learns in the PSI proto-
col are the random keys ti chosen in the random OT, which are independent of P2’s input. There-
fore, P1’s view can be simulated by sending it a list of random values, using them to encrypt its
inputs, as is defined in the protocol, and sending the result to P2.
P2’s view in the protocol consists of the set M2 of encrypted outputs of F which it learns in the

( N
1 )-ROT protocols, and the set of encrypted valuesM1 sent to it (in permuted order) by P1. If there

are two elements x ∈ X and y ∈ Y with x = y, then there are corresponding valuesmx ∈ M1,my ∈
M2 for which mx =my . All other values in M1,M2 are indistinguishable from random, based on
the pseudo-randomness of F . Therefore, the view of P2 can be simulated given the output of the
protocol (i.e., knowledge whether each of its inputs y is in the intersection): The set M2 consists
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of random values m1, . . . ,m |Y | . For each y ∈ X ∩ Y we add my to M1, and add to M1 additional
|X | − |Y | random values. This is exactly the distribution of values which P2 receives when the
( N

1 )-ROT is implemented by a trusted party.

6 EVALUATION

In the following, we evaluate the most promising PSI protocols that were outlined before. We first
discuss their implementational features and compare them theoretically (Section 6.1). We then give
an empirical performance comparison between the protocols for different settings (Section 6.2).
Throughout the evaluation, we divide the PSI protocols into four categories, depending on whether
the protocol is based on public-key operations, circuits, OT, or provides limited security, and mark
the best result of each category in bold.

6.1 Theoretical Evaluation

Before evaluating the empirical performance of the PSI protocols, we discuss implementational
features of the protocols such as their suitability for large-scale PSI on sets with several million
elements (Section 6.1.1) or the ability of the schemes for parallelization (Section 6.1.2), and give
their asymptotic computation and communication complexities (Section 6.1.3).

6.1.1 Suitability for Large-Scale PSI. Although hardly discussed, memory consumption poses
a very big problem when implementing cryptographic schemes that operate on large amounts
of data. As such, many of the implemented PSI protocols quickly exceeded the main memory,
requiring more engineering effort and a more careful implementation to allow for PSI on larger
sets. In fact, even computing the plaintext intersection for sets of billions of elements becomes a
tedious problem, since at least one set needs to be fully stored at one point during the execution.
In this case, one can store the data on disk, which decreases performance greatly when arbitrary
lookups are performed.

Limited Security & Public-Key-Based PSI. The naïve-hashing, server-aided, and public-key-based
PSI schemes are very memory efficient, since they operate only on single elements and can be
easily pipelined, allowing PSI on millions of elements even on standard PCs.

Circuit-Based PSI. The circuit-based PSI schemes have a very high memory consumption. In our
implementations, we evaluate and delete gates if they will not be used anymore to decrease the
memory consumption. Yao’s garbled circuits has a higher memory consumption than GMW, since
κ-bit keys have to be stored for each wire instead of single bits. A pipelined circuit generation and
evaluation, as is done in FastGC (Huang et al. 2011; Henecka and Schneider 2013) , would allow us
to perform PSI on larger sets. The main memory limitation of our Yao and GMW implementation
comes from the circuit having to be fully built and stored in memory. To decrease the memory
footprint of the circuit, we build circuits that are evaluated many times in parallel in a SIMD
fashion, which evaluates the circuit on multiple values in parallel. This SIMD evaluation especially
benefits the PWC (Section 4.2) and OPRF (Section 4.3) circuits, since the same circuit is evaluated
on all elements in parallel.

OT-Based PSI. The garbled Bloom filter and random garbled Bloom filter PSI protocols of Dong
et al. (2013) and Pinkas et al. (2014) need random access to positions in the Bloom filter to
identify the intersecting elements. Hence, the entire Bloom filter needs to be kept in memory or
alternatively needs to be outsourced to disk, but this would result in higher runtimes. The garbled
Bloom filter holds 1.44nκ entries of at least λ-bit shares, resulting in at least 875MB for sets of
one million elements. The main memory limitation of our OT-based PSI protocol (Section 5) are
the hash tables, in particular the cuckoo hash table. While the hash table for simple hashing can
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be easily stored on disk, the cuckoo hash table needs to perform arbitrary lookups when evicting
elements. The cuckoo hash table holds 1.2n elements of at most � = λ + log(n1) + log(n2)-bit
length, resulting in 12MB for sets of one million elements and hence scales much better than the
Bloom filter-based protocols.

6.1.2 Parallelizability of Schemes. The experiments we perform in the empirical evaluation
only consider execution using a single thread. However, if more computational resources are
available, the schemes can be run using multiple threads to improve their performance. Note,
however, that the bottleneck for many protocols (i.e., all except the public-key-based protocols)
quickly shifts from computation to communication, since symmetric cryptographic operations
can be evaluated very efficiently using AES-NI. In the following, we discuss the ability of the
schemes to be parallelized.

Limited Security & Public-Key-Based PSI. The naïve-hashing, server-aided, and public-key-based
PSI schemes can easily be parallelized since the elements are processed independently of each
other. The main bottleneck for parallelization in all these schemes is the plaintext intersection of
hash values that is done at the end of each protocol.

Circuit-Based PSI. The circuit-based PSI protocols parallelize differently depending on the under-
lying secure computation protocol. The GMW protocol uses OT extension to pre-compute multi-
plication triples. This step presents the main computational workload and can be parallelized well.
However, the circuit evaluation of GMW requires a number of sequential interactions between
the parties that is linear in the depth of the circuit and which cannot be parallelized. Yao’s garbled
circuits, on the other hand, is a constant round protocol. Its ability to parallelize depends on the
underlying circuit structure. Circuits that can be split into many sub-circuits that are independent
of each other, such as the PWC and OPRF circuits, can be parallelized easily and efficiently while
circuits where all gates are connected, such as the SCS circuit, require circuit-dependent methods
for parallelization.

OT-Based PSI. For all OT-based PSI protocols, it holds that the underlying OT extension protocol
can be parallelized well. The main differences in parallelizability are due to the hashing scheme
that is used to map the elements into the corresponding structure. In the garbled Bloom filter-based
PSI protocol of Dong et al. (2013), P1 has to generate the garbled Bloom filter in advance, and this
step does not parallelize well. This is improved on by the random garbled Bloom filter protocol
of Pinkas et al. (2014), where the garbled Bloom filter is generated as an output of OT extension
and can hence be fully parallelized. In our OT-PSI protocol, the main bottleneck for parallelization
is the cuckoo-hashing procedure. However, cuckoo hashing can be pre-processed since no input
of the other party is required.

6.1.3 Asymptotic Performance Comparison. We depict the asymptotic computation complex-
ity for the party with the majority of the workload and total communication complexity of the
PSI protocols in Table 8. The computation complexity is expressed as the number of symmetric
cryptographic primitive evaluations (sym) and the number of asymmetric cryptographic primitive
operations (pk). We assume 3 sym per OT (2.5 sym for the Bloom filter-based protocols), 4 sym
per AND gate in Yao’s protocol, and 6 sym per AND gate in the GMW protocol.

The most crucial observation we make from the asymptotic complexities is that, asymptotically,
the performance amongst the schemes with the same type is nearly equal. The naïve hashing and
server-aided protocol both require 1 sym operation per element, the public-key-based protocols
all require 2 pk operations per element and need to send two ciphertexts and a hash value, the
circuit-based protocols all have to perform work linear in the number of AND gates in the circuit,
and the Bloom filter-based protocols both have to perform work linear in the size of the Bloom
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Table 8. Asymptotic Complexities for PSI Protocols

Type Protocol

Computation

[#Ops sym/pk]

Communication

[bit]

Limited Security
Naïve Hashing m sym n1�

Server-Aided (Kamara et al. 2014) m sym t + |X ∩ Y |

Public-Key

DH FFC (Meadows 1986) 2t pk t ρ + n1�

DH ECC (Meadows 1986) 2t pk tφ + n1�

RSA (Cristofaro and Tsudik 2010) 2t pk t ρ + n1�

Circuit

Yao SCS (Huang et al. 2012) 12mσ log m + 3mσ sym 6mκσ log m + 2mκσ

GMW SCS (Huang et al. 2012) 18mσ log m sym 6m (κ + 2)σ log m

Yao PWC (Section 4.2) σ (4ϵn2maxb + 4sn1 +

3ϵn2 ) sym
2ϵn2κmaxb σ + 3sn1κσ +

2ϵn2σ

GMW PWC (Section 4.2) 6σ (ϵn2maxb + sn1 ) sym 2(2 + κ )σ (ϵn2maxb + sn1 )

Yao OPRF (Section 4.3) 21,760n2 + 3σ n2 sym 10,880n2κ + 2n2κσ + n1�

GMW OPRF (Section 4.3) 32,640n2 sym 10,880n2 (κ + 2) + n1�

OT

Bloom Filter (Dong et al. 2013) 3.6mκ sym 1.44mκ (κ + λ)

Random Bloom Filter (Pinkas et al. 2014) 3.6mκ sym 1.44mκ2 +m�

OT (Section 5) + Hashing (Section 3) 3ϵn2 + (k + s )n1 sym 512ϵn2 + (k + s )n1�

(σ : Bit Size of Set Elements; t = n1 + n2; m = max(n1, n2); pk: Public-key Operations; sym: Symmetric Cryptographic
Operations; � = λ + log n1 + log n2; κ , ρ , φ , λ: Security Parameters as Defined in Section 2.1; ϵ, k, s, maxb : Hashing
Parameters as Defined in Section 3.1 and Section 3.2). Computation Gives the Number of Operations that Need to be
Performed in Sequence.

filter. The main discrepancy can be seen among the OT-based protocols, where the communication
complexity of the Bloom filter-based protocols scales quadratically with the symmetric security
parameter κ while our OT-based PSI protocol scales only linear in the security parameter κ (we
need 512-bit codewords to achieve relative Hamming distance κ, cf. Section 2.2.3).

6.2 Empirical Evaluation

We empirically evaluate and compare the performance of the presented semi-honest PSI protocols.
All protocols are instantiated with a 128-bit security level according to NIST recommendations
(cf. Section 2.1). We first describe our benchmarking environment and outline our implementa-
tions (Section 6.2.1). We then benchmark the protocols in a LAN and a WAN setting and give
their concrete communication (Section 6.2.2). Finally, we evaluate the performance of large-scale
PSI (Section 6.2.4).

6.2.1 Benchmarking Environment. We ran our experiments in a LAN and a WAN setting. The
LAN setting consists of two PCs (Intel Haswell i7-4770K CPU with 3.5GHz and 16GB RAM) that are
connected via a Gigabit Ethernet. The WAN setting consists of two Amazon EC2 m3.medium in-
stances (Intel Xeon E5-2670 CPU with 2.6GHz and 3.75GB RAM) that are located in North Virginia
(U.S. east coast) and Frankfurt (Europe) with an average bandwidth of 98MBit/s and an average
round-trip time of 94ms.

We evaluate the performance of the PSI protocols in two scenarios. In the first scenario, P1 and
P2 hold the same number of input elements n1,n2 ∈ {28, 212, 216, 220, 224}. In the second scenario,
P1 has a larger set than P2 and we set n1 ∈ {216, 220, 224} and n2 ∈ {28, 212}. Both parties are not
allowed to perform any pre-computation. For the sort-compare-shuffle and PWC circuit-based
protocols whose complexity depends on the bit-length of elements σ , we fix σ = 32 (e.g., for PSI
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on IPv4 addresses). We use the long-term security parameters as described in Section 2.1. We
benchmarked the server-aided PSI protocol of Kamara et al. (2014) by executing the trusted server
on one machine and the two clients that wish to compute the intersection on the second machine.

Implementations. The implementation of the blind-RSA-based (Cristofaro and Tsudik 2010)
and garbled Bloom filter (Dong et al. 2013) protocols were taken from the authors, but we used
a hash-table to compute the last step in the blind-RSA protocol that finds the intersection (the
original implementation used pairwise comparisons with quadratic runtime overhead) and the
OT extension implementation of Asharov et al. (2013) for the Bloom filter protocol. We use
the state-of-the-art Yao’s garbled circuits and GMW protocol implementations in the C++ ABY
framework (Demmler et al. 2015), which implements point-and-permute (Malkhi et al. 2004),
half-gates (Zahur et al. 2015), free-XOR (Kolesnikov and Schneider 2008), fixed-key garbling
(Bellare et al. 2013), and OT extension (Asharov et al. 2013). For Yao’s garbled circuits protocol,
we evaluated a size-optimized version of the sort-compare-shuffle circuit (comparison circuits of
size and depth σ ) while for GMW we evaluated a depth-optimized version (comparison circuits of
size 3σ and depth log2 σ ) for σ -bit input values (Schneider and Zohner 2013). We instantiated the
PRP of the server-aided PSI protocol in Kamara et al. (2014) and the CRF in the ( 2

1 )-OT extension

with fixed-key AES-128, and instantiated the RO and the CRF in the ( N
1 )-OT extension with

SHA-256. We instantiated the CRF in the ( N
1 )-OT using SHA-256 instead of AES, since it needs to

process inputs of 512 bit-length and AES only allows to process inputs with 128 bit when using
fixed-key AES-128 or 256 bit when using the key schedule of AES-256 (Dessouky et al. 2017).
We implemented FFC (finite field cryptography) using the GMP library (v. 5.1.2), ECC using the
Miracl library (v. 5.6.1), symmetric cryptographic primitives using OpenSSL (v. 1.0.1e), and used
the OT extension implementation of Asharov et al. (2013). We perform all operations in FFC in a
subgroup of order q, where |q | = 2κ-bits.

We argue that we provide a fair comparison, since all protocols are implemented in the same
programming language (C/C++), run on the same hardware, and use the same underlying libraries
for cryptographic operations.

For each protocol, we measured the time from starting the program until the client outputs the
intersecting elements. All runtimes are averaged over 10 executions.

6.2.2 Empirical Comparison. We evaluate the empirical performance of the PSI protocols in the
LAN setting and give the concrete communication of the protocols. While the LAN setting does
not necessarily represent a real-world setting for PSI, it allows us to benchmark the protocols in an
almost ideal network setting and hence focus on the computation complexity of the protocols. We
give a classification for n = 220 element sets in Figure 3, and depict the detailed runtime in Table 9
and communication in Table 10. We now compare the performance of the different types of PSI
protocols and then compare the PSI protocols of the same type.

Comparison Between Types. From Figure 3, we can observe that PSI protocols of the same type
have a similar runtime and communication with the exception of the OT-based PSI protocols. The
insecure naïve hashing protocol and server-aided PSI protocol outperform the other PSI protocols
by at least an order of magnitude in computation and communication. The public-key-based PSI
protocols require only little communication (especially the DH-ECC protocol), but have the highest
runtime. The circuit-based PWC protocol has a faster runtime than the public-key-based protocols
but requires two orders of magnitude more communication and does not scale well to large sets.
Finally, the OT-based PSI protocols differ in performance: the GBF protocol of Dong et al. (2013)
has a similar runtime and communication as the circuit-based PWC protocol and our OT-based PSI
protocol has a faster runtime than the public-key and circuit-based protocols and require at least
an order of magnitude less communication compared to the circuit-based protocols. Among all PSI
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Fig. 3. Runtime in s and communication in MB of PSI protocols forn = 220 elements andκ = 128-bit security.

Detailed results are given in Table 9 and Table 10.

Table 10. Communication in MB for PSI Protocols

Type Set Size n 28 212 216 220 224

Limited Security
Naïve Hashing 0.002 0.031 0.600 10.000 176.000

Server-Aided (Kamara et al. 2014) 0.003 0.063 1.133 20.125 354.000

Public-Key

DH-Based FFC (Meadows 1986) 0.195 3.125 50.000 800.000 12,800.000

DH-Based ECC (Meadows 1986) 0.020 0.280 4.560 74.000 1,200.000

RSA-Based (Cristofaro and Tsudik 2010) 0.195 3.125 50.000 800.000 12,800.000

Circuit

Yao SCS (Huang et al. 2012) (σ = 32) 7.522 168.590 3,484.751 - -

GMW SCS (Huang et al. 2012) (σ = 32) 7.319 162.851 3,348.011 - -

Yao PWC (Section 4.2, σ = 32) 8.833 124.098 1,751.780 - -

GMW PWC (Section 4.2, σ = 32) 5.587 78.229 1,101.383 14,014.427 -

Yao OPRF (Section 4.3) 44.033 704.210 - - -

GMW OPRF (Section 4.3) 43.193 690.890 11,054.050 - -

OT

Garbled Bloom Filter (Dong et al. 2013) 1.037 17.314 288.560 4,801.639 -

Random Bloom Filter (Pinkas et al. 2014) 0.723 11.574 185.241 2,964.855 -

OT (Section 5) + Hashing (Section 3) 0.055 0.456 6.799 111.299 1,828.528

σ : Bit-Length of Elements. “-” Indicates the Execution Ran Out of Memory. Best Results in Each Class Marked in Bold.

protocols, our novel OT-based PSI protocol is the fastest and requires about the same amount of
communication as public-key-based PSI protocols.

Limited Security-Based PSI. The naïve hashing protocol outperforms the server-aided protocol
by a factor of 2 in runtime and communication. However, these protocols have weaker security
guarantees than the other protocols that we describe.

Public-Key-Based PSI. For the public-key-based PSI protocols, we observe that the DH-based
protocol of Meadows (1986) outperforms the RSA-based protocol of Cristofaro and Tsudik (2010)
when using finite field cryptography (FFC). The elliptic curve cryptography (ECC) instantiation
of the DH-based protocol becomes even more efficient and outperforms the FFC instantiation by
a factor of 2. The advantage of the ECC-based protocol is its communication complexity, which is
lowest among all PSI protocols (cf. Table 10). We note that a major advantage of these protocols is
their simplicity, which makes them relatively easy to implement.

Circuit-Based PSI. Here we compare the SCS circuit of Huang et al. (2012), our PWC circuit (Sec-
tion 4.2), and the OPRF circuit (Section 4.3), evaluated using Yao’s garbled circuits and GMW. The
results can be summarized as follows:
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Table 11. Parameters for Circuit PWC and Our OT-Based PSI Used in the Unequal Set Size Experiments

Server Set Size n1 216 220 224

Client Set Size n2 = 28

Parameter k ϵ s maxb k ϵ s maxb k ϵ s maxb

Circuit PWC (Section 4.2, σ = 32) 3 1.27 0 804 3 1.27 0 10,426 2 16 1 8,938

OT (Section 5) + Hashing (Section 3) 3 1.27 0 0 3 1.27 0 0 2 2500 0 0

Client Set Size n2 = 212

Parameter k ϵ s maxb k ϵ s maxb k ϵ s maxb

Circuit PWC (Section 4.2, σ = 32) 3 1.27 0 98 3 1.27 0 816 3 1.27 0 10,488

OT (Section 5) + Hashing (Section 3) 3 1.27 0 0 3 1.27 0 0 3 1.27 0 0

The GMW protocol is around factor 2 faster than Yao’s garbled circuits protocol, which is due to
the balanced communication. The PWC circuit scales better than the SCS and OPRF circuits with
increasing set sizes and is at least three times more efficient for sets of 216 elements. Due to its
simple functionality, the PWC circuit can scale up to much larger set sizes and can even process
two sets of 220 elements sets using GMW.

OT-Based PSI. The random garbled Bloom filter protocol of Pinkas et al. (2014) improves the
optimized garbled Bloom filter variant outlined in Dong et al. (2013) by around factor 1.5x in
runtime and communication.

Our OT-based PSI protocol has a higher runtime than both Bloom filter-based protocols for small
set sizes since the number of base-OTs (and hence public-key operations) that are required for the
( N

1 )-OT extension is four times higher. However, this workload is linear in the security parameter
and amortizes with increasing set sizes. For larger set sizes of n > 212, our OT-based PSI protocol is
up to nine times more efficient in terms of runtime than the random garbled Bloom filter protocol
and has between factor 12x and 25x less communication.

6.2.3 PSI with Unequal Set Sizes. In many PSI applications, the parties have unequal set sizes—
often a client with a set of a few hundred elements performs PSI with a server that has a database
of millions of records. We perform PSI with unequal set sizes n1 ∈ {216, 220, 224} and n2 ∈ {28, 216}
using the previously best performing protocols of each category: naïve hashing, the server-aided
protocol of Kamara et al. (2014), the DH-ECC protocol of Meadows (1986), the PWC and OPRF
circuits in Section 4.2 and Section 4.3, and our OT-based PSI protocol in Section 5. We evaluate
their performance in the LAN and WAN setting, and give the resulting runtimes in Table 12 and
concrete communication in Table 13. For the circuit PWC protocol and our OT-based PSI protocol,
which both use hashing techniques, we used the parameters given in Table 11. Note that in the
naïve hashing protocol, P1 with the large set sends its hashes to P2 with the small set. One could
drastically reduce communication by having P2 send its hashes to P1 instead. However, we decided
to benchmark the protocols in a consistent setting where P2 obtains the outputs and the existing
two-party PSI protocols all seem to have a communication lower-bound linear in the set sizes of
both parties.

The results are similar to the equal set size experiments with one notable exception: the OPRF
circuit performs extremely well and achieves a similar runtime as the server-aided protocol and
even outperforms naïve hashing for n2 = 28 and n1 = 224. This good performance of the OPRF
circuit can be explained by the asymmetric costs for processing the sets of the client and server.
While each element in the set of the client is encrypted by securely evaluating an AES circuit
using generic secure computation techniques, the server only needs to encrypt each element in
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Table 13. Communication in MB for PSI with Unequal Set Sizes n1 � n2

Type
Client Set Size n2 28 212

Server Set Size n1 216 220 224 216 220 224

Limited Naïve Hashing 0.500 9.000 144.000 0.563 9.000 160.000

Security Server-aided (Kamara et al. 2014) 0.502 9.002 144.002 0.598 9.040 160.040

Public-Key DH ECC (Meadows 1986) 2.329 30.017 592.008 2.582 37.545 592.270

Circuit

Yao PWC (Section 4.2, σ = 32) 336.315 - - 535.082 - -

GMW PWC (Section 4.2, σ = 32) 204.18 2,643.424 - 333.452 2,778.348 -

Yao OPRF (Section 4.3) 40.965 49.402 184.402 646.674 655.112 790.112

GMW OPRF (Section 4.3) 41.454 49.891 187.441 654.564 663.001 798.001

OT OT (Section 5) + Hashing
(Section 3)

1.549 27.050 432.049 2.018 27.331 480.331

σ : Bit-length of Elements. “-” Indicates that the Execution Ran Out of Memory. Best Results Per Class Marked in Bold.

his set using AES with a fixed key and send the resulting ciphertext to the client. Since the set
size of the client is small, the overhead for the generic secure computation techniques does not
impact the overall runtime significantly. In contrast, the naïve hashing protocol uses SHA-256 to
process the elements, which is slower than AES.

6.2.4 PSI on Billion Element Sets. Finally, we demonstrate the scalability of our OT-based PSI
protocol by evaluating it on sets of a billion σ = 128-bit elements each. For these sizes, the in-
put elements require16GB of storage, which exceeds the main memory of our servers. Instead,
the servers store the elements and intermediate values on their solid state drive (SSD). We also
benchmark the naïve hashing protocol as a baseline for performance. We refrained from adding
more main memory to process these sets, even though it is the most simple solution, since we are
interested in the performance of the protocols if data needs to be stored on the SSD.

To compute the intersection between 2-billion-element sets, naïve hashing requires 74 minutes,
of which 19 minutes (26%) are for hashing and transferring data and 55 minute (74%) are for com-
puting the plaintext intersection. Our OT-based PSI protocol takes 34.2 hours in total, of which
30.0 hours (88%) are for simple hashing (cuckoo hashing runs in parallel and requires 16.3 hours),
3 hours (9%) are for computing the OTs, and 1.2 hours (4%) are for computing the plaintext
intersection.
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