
Scalable Processing of Context Information with
COSMOS

Denis Conan1, Romain Rouvoy2, and Lionel Seinturier3

1 GET/INT, CNRS Samovar
9 rue Charles Fourier, 91011 Évry, France

Denis.Conan@int-evry.fr
2 University of Oslo, Department of Informatics

P.O.Box 1080 Blindern, 0316 Oslo, Norway
rouvoy@ifi.uio.no

3 INRIA-Futurs, Projet Jacquard/LIFL
Université des Sciences et Technologies de Lille (USTL)

59655 Villeneuve d’Ascq, France
Lionel.Seinturier@inria.fr

Abstract. Ubiquitous computing environments are characterised by a
high number of heterogeneous devices that generate a huge amount of
context data. These data are used to adapt applications to changing
execution contexts. However, legacy frameworks fail to process context
information in a scalable and efficient manner. In this paper, we pro-
pose to organise the classical functionalities of a context manager to
introduce a 3-steps cycle of data collection, interpretation, and situation
identification. We propose the COSMOS framework, which is based on
the concepts of context node and context management policies translated
into software components in software architecture. This paper presents
COSMOS and evaluates its efficiency throughout the example of the
composition of context information to implement a caching/off-loading
adaptation situation.

Keywords: Mobile computing, context, architecture, component.

1 Introduction

Ubiquitous computing environments are characterised by an high number of
mobile devices, wireless networks and usage modes. Distributed applications for
such environments must continuously manage their execution context in order
to detect the conditions under which some adaptation actions are required [6].
This execution context contains various categories of observable entities, such
as operating system resources, user preferences, or sensors. Data coming from
these entities are often related and aggregated to provide a high-level and co-
herent view of the execution context. Besides, the management of such a view

J. Indulska and K. Raymond (Eds.): DAIS 2007, LNCS 4531, pp. 210–224, 2007.
c© IFIP International Federation for Information Processing 2007



Scalable Processing of Context Information with COSMOS 211

is under the responsibility of a context manager, which is furthermore in charge
of identifying situations where applications need to be adapted.

Two categories of approaches exist in the literature for context management:
The ones that are “user-centred”, and those based on “system” supervision. This
paper wishes to reconciliate both by proposing a component-based framework
for context management.

With the “user-centred” approach, context includes the user terminal, nearby
small devices, such as sensors and devices reachable through a network. Exist-
ing works in the literature [6,10,17] divide context management into four func-
tionalities: Data collecting, data interpreting, condition-for-change detection, and
adaptation usage. The central point of existing frameworks consists in computing
high-level abstract information about the context from some low-level raw data.
In our opinion, two weak points can be identified in these frameworks: (i) the
difficulty for composing context information and (ii) scalability, either in terms
of the volume of processed data and/or in terms of the number of supported
client applications.

The “system” supervision approachhas been studied thoroughly in the past [15].
This approach is gaining again some attention as clusters, grids [2,4] and ubiqui-
tous computing [7,9] are becoming mainstream. Existing solutions consist in in-
strumenting operating systems and collecting data. The weak point of frameworks
in this approach is often that the collected data are numerical and too low-level for
being used efficiently by adaptation policies.

This paper proposes COSMOS (COntext entitieS coMpositiOn and Sharing),
which is a component-based framework for managing context data in ubiqui-
tous environments. The applications we are targeting are, for example, tourist
computer-based guides with contextual navigation or applications with contex-
tual annotations, such as multi-player games. The context management provided
by the COSMOS framework is (i) user and application centred to provide in-
formation that can be easily processed, (ii) built from composed instead of pro-
grammed entities, and (iii) efficient by minimising the execution overhead. The
originality of COSMOS is to combine component-based and message-oriented
approaches for encapsulating context data, and to use an architecture descrip-
tion language (ADL) for composing these context data components. By this way,
we hope to foster the design, the composition, the adaptation and the reuse of
context management policies.

This paper is organised as follows. Section 2 motivates the definition of the
COSMOS framework for composing context information. Section 3 presents the
design of the COSMOS framework, starting from the concept of a context node,
and then proceeding by presenting the design patterns that are proposed for
composing context nodes. Section 4 presents the case study of a caching/off-
loading adaptation situation. Sections 5 and 6 reports on the implementation of
the COSMOS framework and evaluates its performances, respectively. Section 7
presents some related work. Finally, Section 8 concludes this paper and identifies
some perspectives.



212 D. Conan, R. Rouvoy, and L. Seinturier

2 Overview and Motivations

This section proposes a general overview of COSMOS, which is our framework for
context management. The architecture of the COSMOS framework is illustrated
in Figure 1. COSMOS is divided into three layers: the Context collector layer,
the Context processing layer, and the Context adaptation layer.

The lower layer of the COSMOS framework defines the notion of a context
collector. Context collectors are software entities that provide raw data about the
environment. These pieces of data come from operating system probes, network
devices (e.g., sensors), or any other kind of hardware equipment. The notion of
a context collector also encompasses information coming from user preferences.
The rationale for this choice is that context collectors should provide all the
inputs needed to reason about the execution context.

The middle layer of COSMOS defines the notion of a context processor. Con-
text processors filter and aggregate raw data coming from context collectors.
The purpose is to compute some high-level, numerical or discrete, information
about the execution environment. The status of the network link (e.g., strongly
connected, weakly connected, or disconnected) is an example of the piece of in-
formation outputted by a context processor. Data provided by context processors
are fed into the adaptation layer.

The upper layer of COSMOS is concerned with the process of decision making.
The purpose is to be able to make a decision on whether or not an adaptation
action should be planned. The adaptation layer is thus a service that is provided
to applications and that encapsulates the situations identified by context nodes
and processors.

Context processing

Context adaptation

User profilesRemote dataSensorsSystem ressources

Context collector Data collecting

Data interpretation

Situations identification

Fig. 1. Architecture of a COSMOS context manager

To provide a scalable context processing framework, the design of COSMOS
has been motivated by three founding principles: separation of concerns, isolation
and composability. We elaborate on these principles in the next paragraphs.

The notion of separation of concerns promotes a clear separation of func-
tionalities into different modules. In the case of the COSMOS framework, the
activities we want to separate are related to the grabbing of context informa-
tion, the interpretation of this information, and the decision making process.
The actions undertaken in these three cases correspond to three separate soft-
ware engineering domains. The context collector layer addresses issues that are
related to network technologies with solutions, such as UPnP for discovering and



Scalable Processing of Context Information with COSMOS 213

connecting devices, to distributed systems with, for example, data consistency
protocols and network failure detectors, and to operating systems for information
about hardware devices. Although separate, these three domains (network, dis-
tributed systems and operating systems) are close. The context processor layer
addresses issues that are quite different. The techniques used to aggregate, filter,
and reason about context data are related to domains, such as software engi-
neering, databases, or information systems. One can also envision case studies
where inference engines are used to implement the process of decision making.
Finally, the context adaptation layer is directly related to the application be-
ing developed. The adaptation scenarios which are handled by this layer are
domain-specific. The fact that all these concerns are quite different motivated
the definition of the three above-mentioned layers.

The second principle which motivated the definition of a 3-layers architecture
for the COSMOS framework, is to isolate the part that interacts with the oper-
ating system, from the rest of the framework and of the application. Although
adaptation actions should not be too frequent, processing context information is
an activity that must be conducted more often, while data gathering is a third
activity that must be continuous. Thus, we have three different activities with
different frequencies. We decouple as much as possible these activities in order to
obtain a non-blocking and usable framework. Each activity is conducted in one
of the three layers, which has its own autonomous life cycle: Each layer performs
a 3-steps cycle of data collection (from its lower layer), processing, and decision
making (for its upper layer). This principle is illustrated on the right side of
Figure 1.

Composability is the third principle that motivated the design of the COSMOS
framework. We want to obtain a solution where context information can be eas-
ily assembled. By being able to compose context information, we hope to foster
the reuse of context management policies. For this, we adopt a component-based
software engineering approach: As explained in the next section, context infor-
mation is reified into software components. By connecting these components, we
define assemblies that gather all the data needed to implement a specific policy.

3 Building Context Management Policies from Context
Nodes

In this section, we present the composition of context information with COS-
MOS. Sections 3.1 and 3.2 introduce the concept of context nodes, their proper-
ties and parameters. Next, Section 3.3 defines the generic architecture of context
nodes. Finally, Section 3.4 is focused on the design of the overall architecture of
COSMOS, that is the relationships between the context nodes.

3.1 Concept of Context Node

The basic structuring concept of COSMOS is the context node. A context node
is a context information modelled by a component. Context nodes are organised



214 D. Conan, R. Rouvoy, and L. Seinturier

into hierarchies with the possibility of sharing. The graph of context nodes repre-
sents the set of context management policies defined by client applications. The
sharing of a context node (and by implication of a partial or complete hierarchy)
corresponds to the sharing (of a part or the whole) of a context management
policy.

COSMOS provides the developer with pre-defined generic context nodes: Ele-
mentary nodes for collecting raw data, memory nodes, such as averagers, trans-
lation nodes, data mergers with different quality of service, abstract or inference
nodes, such as additioners, thresholds nodes, etc. Note that in a classical context
manager architecture the first nodes constitute the collectors, most of the other
ones are part of the interpretation layer, while the last thresholds based ones
serve to identify situations. In COSMOS, each class of nodes can be used in
every layers, hence leveraging the expressiveness power of context policies.

3.2 Properties of a Context Node

Passive vs. active. A passive node obtains context information upon demand.
A passive node must be invoked explicitly by another context node (passive or
active). An active node is associated to a thread and initiates the gathering
and/or the treatment of context information. The thread may be dedicated to
the node or be retrieved from a pool. A typical example of an active node is the
centralisation of several types of context information, the periodic computation
of a higher-level context information, and the provision of the latter information
to upper nodes.

Observation vs. notification. The observation reports containing context infor-
mation are encapsulated into messages that circulate from the leaves to the root
of the hierarchies. When the circulation is initiated at the request of parent nodes
or client applications, it is an observation. In the other case, this is a notification.

Blocking or not. During an observation or a notification, a node that treats the
request can be blocking or not. During an observation, a non-blocking context
node begins by requesting a new observation report from each of its child nodes,
and then updates its context information before answering the request of the
parent node or the client application. During a notification, a non-blocking node
computes a new observation report with the new context information just being
notified, and then notifies the parent node of the client application. In the case
of a blocking node, an observed node provides the most up-to-date context in-
formation that it possesses without requesting child nodes, and a notified node
updates its state without notifying parent nodes. In addition, a node can be con-
figured for a unique observation or notification if its state is immutable. Finally,
the observation of a node can raise exceptions, for instance when the physical
resource is not present or in case of a configuration problem. On demand, the
thrown exception can be masked to parent nodes or client applications, and
default values can be provided in that case.



Scalable Processing of Context Information with COSMOS 215

3.3 Architecture of a Context Node

The architecture of a context node is component-based. This architecture is im-
plemented with the Fractal component model [3] and its associated tools:
the Fractal ADL architecture description language, and the DREAM [13]
message-oriented component library. We take advantage of the two main charac-
teristics of Fractal which are to provide a hierarchical component model with
sharing. However, nothing is specific to Fractal in our design and COSMOS
could be implemented with any other component model supporting these two
notions.

Each context information is a context node which extends the composite
abstract component ContextNode (see Figure 2). Pull and Push are interfaces
for observation and notification. A ContextNode contains at least an opera-
tor (primitive abstract component ContextOperator), and is connected to the
message-oriented communication service provided by the DREAM framework.
The properties introduced in Section 3.2 become component attributes of Con-
textOperator. By default, nodes are passive (isActiveXxx = false), non-blocking
(xxxThrough = true), and the observation reports are mutable (xxxOnlyOnce
= false). The attributes nodeName and catchObservationException serve to name
the context node, and to specify whether the exceptions which may be thrown
must be forwarded to parent nodes (the default value is false), respectively.

Connection to the
message-oriented

of Dream

communication service
Operator

[pull-obs-out] Pull
[push-notif-in] Push

* [pull-obs-in] Pull
* [push-notif-out] Push*

ContextNode

Context

isActiveObserver(F), periodObserve(0), observeThrough(T)
isActiveNotifier(F), periodNotify(0), notifyThrough(T)
observeOnlyOnce(F), notifyOnlyOnce(F){
nodeName, catchObservationException(F)

Fig. 2. Abstract Composite ContextNode

Context nodes are then classified into two categories. Leaves of the hierarchy
import context information from a lower layer of the context management ar-
chitecture. This lower layer may be the operating system or another framework,
built with COSMOS or not, component-oriented or not. For instance, a WiFi re-
source manager can obtain the corresponding context information directly from
the operating system (through system calls) or can encapsulate a (legacy) frame-
work dedicated to the reification of system resources. Nodes of the graph that
are not leaves, contain one or several other context nodes. For instance, a context
node may compute the overall memory capacity of a terminal by encapsulating



216 D. Conan, R. Rouvoy, and L. Seinturier

two other context nodes, the first one computing the average free memory and
the second one computing the average free swap.

3.4 Architecture of COSMOS

COSMOS proposes three design patterns to compose context nodes. These are
architectural design patterns which organise the collaboration between con-
text nodes to implement the context management policy. The four patterns
that are used by COSMOS are: Composite, Factory method, Flyweight and
Singleton.

The hierarchical composition of context nodes is achieved with the “Com-
posite” [11] design pattern. This design pattern homogenises the definition of
the architecture and allows defining elements composed of several sub-elements,
which may be themselves either composite or primitive elements. Hierarchies
built in COSMOS take advantage of nodes composition for inferring higher-level
context information. The Composite pattern simplifies the composition of con-
text nodes and the management of their dependencies.

Each node of the hierarchy encapsulates a particular treatment on the infor-
mation provided either by child nodes or by encapsulated primitive components
in the case of leaves. The context nodes apply a component-oriented version
of the design pattern “Factory method” [11]. The skeleton of a context node is
defined as the assembly of a context operator (extension of ContextOperator)
with, on the one hand, the components for the extra-functional services and on
the other hand, the child nodes. Thanks to this approach, the definition of a
context node remains simple. In addition, the internal object-oriented design of
the primitive component ContextOperator also follows the design pattern “Fac-
tory method” (the object-oriented version). Through its server interfaces, this
component defines generic (resp. abstract) methods to overload (resp. imple-
ment). The algorithms for observing and notifying are always the same. Thus,
the skeletons of theses algorithms are generic and delegate specific treatments
to sub-classes.

The system resources reified in the nodes of the hierarchy can be shared
by several context nodes since the leave nodes may contain lots of elementary
context data. This is precisely the purpose of the design pattern “Flyweight” [11]
to efficiently share numerous fine-grained objects. By applying a component-
oriented version of this design pattern, context nodes in COSMOS can efficiently
share any child node of the hierarchy.

4 Case Study

In this section, we assess the expressiveness and the quality of context composi-
tion using COSMOS with a scenario from the domain of ubiquitous computing:
Caching/off-loading (see Section 4.1) which is implemented with context nodes
(see Section 4.2).



Scalable Processing of Context Information with COSMOS 217

4.1 Caching/Off-Loading Scenario

The scenario of the case study follows. We assume that the user of a mobile
terminal executes a distributed application while roaming. The WiFi connection
of the mobile terminal is subject to disconnections. In order to tolerate such dis-
connections, the middleware platform can be augmented with the capabilities of
importing/caching application entities into a software cache. Another issue is the
capability of exporting/off-loading application treatments on (more powerful)
hosts of the wired network. In order to choose between caching and off-loading,
the context manager computes the memory capacity as the sum of the average
free memory plus the average free swap. The context manager also monitors the
connection to the WiFi network. It detects disconnections and computes the ad-
justed bit rate (average bit rate during periods of strong connectivity). When the
memory capacity is sufficient, but the adjusted bit rate low, caching is preferred.
When the memory capacity is low, but the adjusted bit rate sufficient, off-loading
is preferred. In the two other cases, the end-user or the middleware platform give
their preferences (caching or off-loading). Once the decision is taken, connectiv-
ity information is used to detect the activation instants for caching/off-loading
when the connectivity mode changes (from strongly connected to disconnected
and vice versa).

4.2 Implementation with COSMOS Context Nodes

The implementation with context nodes of the above described scenario is illus-
trated in Figure 3. Every node is given an intuitive name expressing the context
operator it contains. The edges of the graph model the composition and the shar-
ing relationships. When the value of a property differs from the default case, this
value is indicated next to the node: Active observations and notifications, block-
ing or non-blocking, etc. In the example, most of the actives nodes are observers;
only the nodes that detect state changes (User preference’s change detector and
Connectivity detector) and decision changes (Decision stabilisation) notify their
changes to parent nodes. Note that the Connectivity detector node is shared by
two parents, one of them being not a direct parent. The WiFi manager is shared
by three parent nodes. This is a blocking node. This choice has been made to
avoid emitting system calls too frequently and thus to avoid freezing the user
device.

The decision When caching/off-loading? requires a graph of approximately
twenty context nodes. In COSMOS, developers have at their disposal raw nu-
merical data: Swap size, free swap, free memory, WiFi link quality, etc., plus
composition facilities that help in declaratively composing these data. The re-
sulting solution is thus reusable for other use cases. Furthermore, developers are
assisted in the management of extra-functional concerns: These tasks prove to
be cumbersome, and indeed even not completely manageable. The strength of
COSMOS thus lies into the separation of concerns: Separation of business con-
cerns (relevant raw data and inference treatments) from extra-functional ones
(system resource management for performance).



218 D. Conan, R. Rouvoy, and L. Seinturier

detector

WiFi link WiFi
bit rate

Caching or off−loading

When caching/off−loading?

WiFi adjusted bit rate

quality

Connectivity

variable?
Is bit rate

WiFi
manager

Free
memory

Memory
manager

Free
swapsize

Swap

Swap
manager

Memory capacity

swap
Average

Average bit rate
if variable

System call System call System call

max 1

Average
memory

Average
link quality

Decision stabilisation

detection
Condition−for−change

Data interpretation

Data gathering

max 1

Block notification

Block observation

At most one obs./notif.

Active observer

Active observer and notifier

Caching/offloading
preference

manager
User preference

Registry call

User preference’s
change detector

Fig. 3. Example of Composition of Context Nodes

5 Implementation of COSMOS

The implementation of the COSMOS framework is based on three existing frame-
works: Fractal, DREAM, and SAJE. Fractal [3] is the component model
of the ObjectWeb consortium for open-source middleware. Fractal defines
a lightweight, hierarchical and open component model (see http://fractal.
objectweb.org). We use the Julia [3] version, which is a Java implementation
of Fractal. We also take advantage of the numerous tools available for this
component model, such as Fractal ADL, FPath, and Fraclet (a lightweight
programming model). DREAM [13] is a library composed of several Fractal
components. DREAM allows the construction of message-oriented middleware
(MOM) and the fine-grained control of concurrency management with thread
pools and message pools. Finally, SAJE [5] is a framework for gathering data
from system resources, either physical (battery, processor, memory, network in-
terface, etc.) or logical (sockets, threads, etc.). SAJE supports several operating
systems: GNU/Linux, Windows XP, Windows 2000 and Windows Mobile 2003.

Implementing context adaptation policies with COSMOS consists in conduct-
ing two activities: (i) developing Fractal components for the context nodes
that are resource managers linked with SAJE and for the context operators, and
(ii) composing these components by using the Fractal ADL language. Fur-
thermore, as described in Section 3.2, context nodes are defined to be highly
configurable through numerous attributes (about ten attributes). The inherent
drawback is the complexity of the configuration of a graph of context nodes, such



Scalable Processing of Context Information with COSMOS 219

as the one presented in the example of Section 4.2 which contains about twenty
nodes. To address this complexity, we use FPath, a language inspired from XPath
and dedicated to the navigation into hierarchies of Fractal components.

A first version of COSMOS is available under the GNU LGPL license and can
be downloaded from http://picolibre.int-evry.fr/projects/cosmos.

6 Performance Evaluation of the Prototype

The objective is to confirm experimentally the appropriateness of the component-
based approach. Therefore, we make the distinction between the costs introduced
by the reification of system resources by the framework SAJE and the costs due
to the composition with COSMOS.

We have conducted performance measurements on a laptop PC with the fol-
lowing software and hardware configuration: 1.8GHz processor, 1GB of RAM,
Compaq IEEE 802.11b WL110 card at 11Mbps, GNU/Linux Debian Sarge with
the kernel 2.6.15, Java Virtual Machine Sun JDK 1.5 Update 6, and Fractal
implementation Julia 2.1.3 (none of the execution optimisations activated). The
results are presented in Table 1. Each test was run 10, 000 times in order to
obtain meaningful averages. A garbage collection and a warm-up phase occurred
before each run. The unit of measure is the millisecond. When the measured val-
ues are less than one millisecond, the iterations number becomes 1, 000, 000. The
configuration is the default one: passive nodes and non-blocking observations.

Table 1. Performances of SAJE and COSMOS

Observation (ms)

a SAJE Free memory Memory 0.038
COSMOS Memory manager PeriodicMemory 0.045

b SAJE Quality of the WiFi link WirelessInterface 14.0
COSMOS WiFi manager PeriodicWireless 33.8

c COSMOS Example of Figure 3 WhenCachingOffloading—default config. 163.7
COSMOS Example of Figure 3 WhenCachingOffloading—Figure 3 conf. 4.7

The first series of measurements (see Table 1-a) concerns the extraction of
the free memory information. With SAJE, the observation of the Memory object
corresponds to an access to the Unix /proc file system (present in RAM) and
to the initialisation of the data structures storing the information, that is to say
less than 1ms. The differences between the observations with SAJE and with
COSMOS (PeriodicMemory), which is evaluated to approximately 7μs, is the sum
of (1) the cost of the calls to Fractal components (crossing the membrane and
interception by controllers), (2) the extraction of context information from the
SAJE object, and (3) the filling of the DREAM message chunk via the message
manager component.

The second series of measurements (see Table 1-b) concerns the extraction
of the quality of the WiFi link. The observation of the WirelessInterface SAJE
object lasts longer than the observation of the Memory SAJE object because



220 D. Conan, R. Rouvoy, and L. Seinturier

the data of the WiFi interface are not present in RAM, but must be read from
the network device. The observation of a PeriodicWireless component lasts longer
since the context node extracts automatically all the available atttibutes (more
than 30).

The last series of measurements (see Table 1-c) is the observation of the
example of Figure 3 (component WhenCachingOffloading). It takes 163ms in the
worst case: Every component is non-blocking. If the components are configured
as presented in Figure 3, since the child components of WhenCachingOffloading
block the observations, the observation time of WhenCachingOffloading becomes
neglible (less than 5ms). This concludes that the component-based composition
of context data not only pertinent but also efficient while preserving the context
information accuracy.

7 Related Work

In this section, we compare COSMOS with the legacy frameworks dedicated to
context monitoring, such as Phoenix and LeWYS. Then, we compare COSMOS
with several middleware frameworks for context management.

Phoenix is a software framework for the observation of system resources for
distributed applications deployed on clusters [2]. The architecture of Phoenix is
composed of four parts: Observation agents, probes, broadcast primitives (into
local networks), and a tool library. Observation agents can configure the observa-
tion frequency and multiplex the observations (by adjusting the frequency to the
lowest requested value). Phoenix provides a dedicated language for describing
an observation: Observable resource identifiers, comparison operators, first or-
der logic and DELTA operators to measure the amplitude of variations. Phoenix
provides only elementary operators: No memory or threshold operators, format
translation, data merging, etc. However, the dedicated language approach for ex-
pressing observation requests could be used in the future evolution of COSMOS.
In addition, Phoenix does not support the easy introduction of new operators.

LeWYS is a middleware framework for the supervision of clusters [4]. Its ar-
chitecture encompasses probes that are deployed on all the computers of the
cluster and a distributed system for notifying events. Even if LeWYS is built us-
ing Fractal, it does not support the composition of context data. For example,
all the data retrieved by the probes are propagated without being filtered.

Context Toolkit is one of the first work on context management that was
based on event programming and widget concepts introduced by GUI (Graphi-
cal User Interfaces) [10]. In the same framework, all the following functionalities
are grouped: The interpreter for composing and abstracting context information,
the aggregator for the mediation with the application, the service for controlling
application actions performed on the context, and the discoverer that acts as
a registry. Following the same philosophy, interpretation and aggregation func-
tionalities have to be programmed in monolithic blocks: One interpreter and one
aggregator per application, independently of the number of widgets and the level



Scalable Processing of Context Information with COSMOS 221

of abstraction requested by the application. Finally, the management of system
resources consumed by treatments is not addressed.

MoCA Context Service architecture [8] defines an access interface, an event
manager, a context-type manager, and a context repository. The event manager
design highlights the need for technical services, called orthogonal services, to
improve performance. In addition, context data are typed and described using an
XML-based model that builds a type system implemented as Java objects. Sim-
ilarly to our work, the authors describe the need for using meta-information in
order to leverage performance and scalability. However, since the authors trans-
pose an ontology-based approach to an object-oriented one, the MoCA archi-
tecture does not separate the context management functionalities. For instance,
the source of context data (local or remote) is described via an attribute rather
than being described in the architecture. Contrariwise, with COSMOS, we apply
the component-oriented approach both at the context manager architecture level
and at the context node definition level. The XML-based model of MoCA is sim-
ilar to a component descriptor with its attributes. But, since COSMOS uses an
ADL, the specification becomes explicit and benefits from the expressiveness of
the language and its tools. Finally, the authors propose to partition the context
data space into views for improving the performance. In a component model
with hierarchy and sharing, this feature is automatically available.

MoCoA provides an environment for building context-aware applications for
ad hoc networks based on sentient objects [16]. Sentients objects have most of the
characteristics of components. The low-level inference treatments are organised
as data merging pipes. MoCoA only allows notifications, contrary to COSMOS
that add observations. Pipe treatments are complemented with inference ones
with facts and rules, which are inspired from artificial intelligence. The pipes
are logically enclosed in sentients objects, including for the control of system
resources’ consumption. But, contrary to COSMOS, MoCoA neither details nor
provides any means to externally specify these controls. Finally, the authors of
MoCoA express the useness of an ADL to describe the composition of pipes and
sentients objects as we propose in COSMOS.

The context manager of Draco [14] is organised around a database and an
ontology broker. The component-based approach is chosen for its ability to dy-
namically adapt the context management system to changing conditions of appli-
cations’ requirements and context devices. The objective is to deploy / undeploy
on demand functional context management components, such as filtering, history
or transformation. The drawback of this use of the Singleton design pattern for
functional context management services is that it does not scale. On the contrary,
in COSMOS, these fine-grained functional services are replicated and integrated
into context nodes when necessary. Concerning the ontology orientation, the
evaluation concludes (i) to the difficulty to define an optimal deployment due
to the difficulty to estimate of the processing time for all context management
activities, and (ii) to the difficulty to use an ontology broker on small devices.

In Le Contexteur [7], Contexteurs are software entities similar to data
components, and their meta-data (describing the data quality) as well as their



222 D. Conan, R. Rouvoy, and L. Seinturier

controllers (modifying the configuration) are available for both inputs and out-
puts. A Contexteur is a Java class that is associated to an XML descriptor. Thus,
the software framework builds, in an ad hoc manner, a container around the Con-
texteur component. This ad hoc component model is implicit and not configurable
(e.g., for managing system resources). For each Contexteur using at least an activ-
ity, the local resource consumption can not be controlled. Furthermore, the shar-
ing of context nodes supported by COSMOS is not addressed by Le Contexteur.
In addition, Contexteurs exchange control information in order to ask to stop or
force the data notification for example. However, given that there is no explicit
component model, it is impossible to introduce new configuration possibilities,
such as some new attributes or control modes. In COSMOS, the structure and
the life-cycle of components is finely managed by the Fractal controllers.

Last but not least, RCSM [17] is an object-oriented framework with an archi-
tecture similar to ours. Every context source (users, sensors, operating system,
remote hosts) is separated. But, the authors do not tackle the issues of the
synchrony of the treatments or of the control of system resources for context
management. PACE [12] presents a different architecture in which context data
are stored in a database. The meta-data (temporality, quality, etc.) are added
either to context data or to relations between them. The authors indicate clearly
that they did not have a look at issues such as scalability or performance. Con-
cerning context modelling, the same authors prone the object or the ontology
orientations as the two acceptable alternatives among the myriad of modelling
methods. With COSMOS, we add the component orientation, which raises a lim-
itation of the object orientation: A more formal specification of the dependencies
between context entities thanks to the usage of an ADL.

8 Conclusion

Ubiquitous environments put some constraints on the design and the implemen-
tation of applications. Among other requirements, applications for such environ-
ment must be highly adaptable. Before adapting, the decision making process
that leads to adaptation is a difficult issue for which few efficient solutions exist.
This process is based on gathering, analysing and treating vast amount of phys-
ical and logical data produced by the execution environment. In this article, we
propose the COSMOS framework for managing such context information.

The COSMOS framework introduces the notions of context nodes and context
policies (see Section 3). Context nodes are designed and implemented as soft-
ware components, and can be composed and assembled to form complex context
management policies. The goal of such an assembling is to drive the adaptation
of an application.

The COSMOS framework is architectured around three principles: the separa-
tion of context data gathering from context data processing, the systematic use
of software components, and the use of software patterns for composing these
components. The first principle allows proposing new scalable context manage-
ment architectures with several levels of cycles, each one being composed of
successive “gathering / interpretation / situations identification” phases. The



Scalable Processing of Context Information with COSMOS 223

second principle, software components, allows reusing more easily context nodes
and the processors in the context nodes. The third principle allows composing
rather than programming context management policies. For that, we have se-
lected, in Section 3.4, three well-know design patterns [11] that are recurrently
used when designing adaptation policies: the Composite, the Factory method,
the Flyweight and the Singleton design patterns. The novelty of our approach
is to use these patterns for composing software components which represent
context nodes and context processors.

Scalability has been a driving factor for the design of COSMOS. We believe
that several elements participate to this result: the composability brought by
software components, the fact that COSMOS is divided in three independent
layers, the fact that components can be shared and can have different properties
to reduce their intrusiveness (see Section 3.2) and that the execution overhead
have been kept as low as possible (see Section 6). The COSMOS framework is
implemented on top of the Fractal [3] component model and the DREAM
component library [13].

As a matter of future work, we plan to adopt three directions. First, we believe
that the COSMOS framework is one of the main services that lies at the core
of a platform for adapting distributed applications in a mobile environment.
We could therefore think of integrating COSMOS in such a platform. A second
direction concerns the composition of context management policies. The issue
is to be able to address situations where two or several policies have to cohabit
in a same platform for a same set of applications. As the intersection between
these policies may not be empty, it is then necessary to provide tools to detect
and solve the conflicts that arise between these policies. A direction that can be
investigated consists in defining a type system [1] such as the one existing for the
DREAM component library [13]. A related issue consists also in the possibility of
setting up repositories for context collector components in order to facilitate their
sharing. Finally, a third research direction consists in defining a domain specific
language (DSL) for designing the composition of context nodes and context
processors. Such a DSL could reuse ideas from the WildCAT [9] framework.

Acknowledgements

The authors wish to thank the anonymous reviewers and (in alphabetical or-
der) Djamel Belaïd, Sophie Chabridon, Bertil Folliot, Pierre Sens and Chantal
Taconet for their detailed reading and their numerous remarks on this paper.

References

1. Bidinger, P., Leclercq, M., Quéma, V., Schmitt, A., Stefani, J.-B.: Dream Types:
A Domain Specific Type System for Component-Based Message-Oriented Mid-
dleware. In: 4th ESEC/FSE Workshop on Specification and Verification of
Component-Based Systems, Lisbon, Portugal (September 2005)

2. Boutros Saab, C., Bonnaire, X., Folliot, B.: PHOENIX: A Self Adaptable Moni-
toring Platform for Cluster Management. Cluster Computing 5(1), 75–85 (2002)



224 D. Conan, R. Rouvoy, and L. Seinturier

3. Bruneton, É., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Frac-
tal Component Model and Its Support in Java. Software—Practice and Ex-
perience, special issue on Experiences with Auto-adaptive and Reconfigurable
Systems 36(11), 1257–1284 (2006)

4. Cecchet, E., Elmeleegy, H., Layaïda, O., Quéma, V.: Implementing Probes for J2EE
Cluster Monitoring. Studia Informatica 4(1), 31–40 (2005)

5. Courtrai, L., Guidec, F., Le Sommer, N., Mahéo, Y.: Resource Management for
Parallel Adaptive Components. In: IEEE IPDPS Workshop on Java for Parallel
and Distributed Computing, pp. 134–141, Nice, France (April 2003)

6. Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: The disappearing computer: Con-
text is Key. Communications of the ACM 48(3), 49–53 (2005)

7. Coutaz, J., Rey, G.: Foundations for a Theory of Contextors. In: 4th International
Conference on Computer-Aided Design of User Interfaces, pp. 13–34. Kluwer Aca-
demic Publishers, Dordrecht (2002)

8. da Rocha, R., Endler, M.: Context Management in Heterogeneous, Evolving Ubiq-
uitous Envrionments. IEEE Distributed Systems Online, vol. 7(4) (April 2006)

9. David, P., Ledoux, T.: WildCAT: a generic framework for context-aware appli-
cations. In: 3rd International Workshop on Middleware for Pervasive and Ad-hoc
Computing, pp. 1–7, Grenoble, France (November 2005)

10. Dey, A., Salber, D., Abowd, G.: A conceptual framework and a toolkit for support-
ing the rapid prototyping of context-aware applications. Special issue on context-
aware computing in the Human-Computer Interaction Journal 16(2–4), 97–166
(2001)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, London (1994)

12. Henricksen, K., Indulska, J., McFadden, T., Balasubramaniam, S.: Middleware for
Distributed Context-Aware Systems. In: 7th International Symposium on Distrib-
uted Objects and Applications, Agia Napa (Cyprus). LNCS, Springer, Heidelberg
(2005)

13. Leclercq, M., Quéma, V., Stefani, J.-B.: DREAM: a Component Framework for the
Construction of Resource-Aware, Configurable MOMs. IEEE Distributed Systems
Online, vol. 6(9) (September 2005)

14. Preuveneers, D., Berbers, Y.: Adaptive context management using a component-
based approach. In: 5th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems, Athens (Greece), vol. 3543, pp. 14–26.
Springer-Verlag, Heidelberg (2005)

15. Schroeder, B.: On-Line Monitoring: A Turorial IEEE Computer, pp. 72–78 (June
1995)

16. Senart, A., Cunningham, R., Bouroche, M., O’Connor, N., Reynolds, V., Cahill,
V.: MoCoA: Customisable Middleware for Context-Aware Mobile Applications. In:
8th International Symposium on Distributed Objects and Applications. LNCS,
vol. 4275, pp. 1722–1738. Springer, Heidelberg (2006)

17. Yau, S., Karim, F., Wang, Y., Wang, B., Gupta, S.: Reconfigurable Context-
Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing 1(3),
33–40 (2002)


	Introduction
	Overview and Motivations
	Building Context Management Policies from Context Nodes
	Concept of Context Node
	Properties of a Context Node
	Architecture of a Context Node
	Architecture of COSMOS

	Case Study
	Caching/Off-Loading Scenario
	Implementation with COSMOS Context Nodes

	Implementation of COSMOS
	Performance Evaluation of the Prototype
	Related Work
	Conclusion

